0.1 Theory of Data Analysis ?!

a Courses in statistics:

Collection of methods for a defined type of problems. Exercises: Datasets asking for this methodology.

0.1 Theory of Data Analysis ?!

a Courses in statistics:

Collection of methods for a defined type of problems. Exercises: Datasets asking for this methodology.

b Practice: Start from (scientific) question and (potential) data.

 \longrightarrow Choose appropriate statistical methods

In reality:

1

• Questions are often vague

 \longrightarrow Sharpen to identify suitable methods

• Data are distorted, missing, ...

- Questions are often vague
 - \longrightarrow Sharpen to identify suitable methods
- Data are distorted, missing, ...

c Practice of Data Analysis is difficult to teach consistently. \longrightarrow "Apprenticeship", "Statistics Lab"

- Questions are often vague
 - \longrightarrow Sharpen to identify suitable methods
- Data are distorted, missing, ...

c Practice of Data Analysis is difficult to teach consistently. \longrightarrow "Apprenticeship", "Statistics Lab"

d Theory of Data Analysis?

would need "soft science" methods. First step: Concepts, like

• Statistical Problem:

("Scientific") Question and (potential) Data.

- Strategy, consisting of steps (see course on Regression).
- Quality of a result:
 How to measure? → Ranking of Strategies.

• Statistical Problem:

("Scientific") Question and (potential) Data.

- Strategy, consisting of steps (see course on Regression).
- Quality of a result:
 How to measure? → Ranking of Strategies.

e Case Studies are useful!

• Statistical Problem:

("Scientific") Question and (potential) Data.

- Strategy, consisting of steps (see course on Regression).
- Quality of a result:
 How to measure? → Ranking of Strategies.

e Case Studies are useful!

f General Strategy to define and tackle a Statistical Problem?

1 Statistical Studies and Consulting

1.1 Experience

- a Statistical Consulting covers a wide spectrum:
 - Knowledge and skill of the client and the consultant
 - Goals of the project

"How should I interpret this output?" "A reviewer has criticized the following: ...

1.1. EXPERIENCE

How can I justify my approach?"

"I have been told to do a *Conjoint Analysis*. Which program does this for me?"

"I have here an interesting data set.

I would like to apply multivariate methods."

1 Statistical Studies and Consulting

1.1 Experience

- a Statistical Consulting covers a wide spectrum:
 - Knowledge and skill of the client and the consultant
 - Goals of the project

"How should I interpret this output?"
"A reviewer has criticized the following: ... How can I justify my approach?"
"I have been told to do a *Conjoint Analysis*. Which program does this for me?"
"I have here an interesting data set. I would like to apply multivariate methods."

1.1. EXPERIENCE

- b Roles: Statistician is
 - consultant with a limited task (limited liability)
 - responsible for adequate statistical analysis of the data
 - partner in the project, from planning to reporting / article

c Communication

1.1

- Who poses the (scientific) problem, and to whom should the answer be targeted?
 What effort will the targeted persons make to understand the answer?
 → Type of answer, approaches that can be understood.
- What knowledge do the targeted persons the specialists the statisticians have?
- How much effort can be invested? (Money, time, energy)

1.1. EXPERIENCE

1.1

- d Critical points. At the beginning clarify:
 - the problem ("scientific" question).
 Informal questions are ok. at the outset, but must be made precise!
 → leads to methodology = models and procedures
 - structure of the data: How have / will they be generated?
 Search for groupings
 - blocks,
 - "main/subplot" / "within/between subjects"
 - "closeness" in space or time.

1 1

e Why is data structure important?
 Statistics = model + estimation of parameters
 estimation without indication of precision is meaningless → "standard error"
 → confidence interval or test.

Determination of s.e. needs independent observations

(or a good model for the dependencies)

If (positive) correlations among observations are neglected,

→ s.e. will be under-estimated
→ too short confidence intervals or "liberal tests" (=wrong !)

Look for independent groups of observations! Do any analysis you like, as for individual observations, then use bootstrap over groups to get precision.

2.5 Structure of a Report

a Target audience: Client and his/her "environment".

Theory: Sketch main ideas, give basic reference.

2.5 Structure of a Report

a Target audience: Client and his/her "environment".

Theory: Sketch main ideas, give basic reference.

b Structure: in scientific articles, the common structure is fixed:
 "Introduction", "Material and Methods", "Results", "Discussion"
 This may be adequate. Sometimes preferable:
 Integrate statistical methods with results

2.5 Structure of a Report

a Target audience: Client and his/her "environment".

Theory: Sketch main ideas, give basic reference.

b Structure: in scientific articles, the common structure is fixed:
 "Introduction", "Material and Methods", "Results", "Discussion"
 This may be adequate. Sometimes preferable:
 Integrate statistical methods with results

c Do not write a detective story! Do not withhold the results!

- d Proposal for the structure:
 - Introduction: Problem, background, earlier work.
 - Data

2.5

- Statistical methods and results
- Discussion and outlook
 - Summary and interpretation of results,
 - Outlook on open questions and extensions of the analyses

2.5

e Write summary in the end. Should be readable for itself.

e Write summary in the end. Should be readable for itself.

f Appendices:

2.5

- detailed description of data,
- exact description of statistical methods
- "complaints"
- repetitive analyses
- analyses with uninteresting results

e Write summary in the end. Should be readable for itself.

f Appendices:

2.5

- detailed description of data,
- exact description of statistical methods
- "complaints"
- repetitive analyses
- analyses with uninteresting results

g Length of report: 5 - 10 pages (witout appendices)