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Multivariate Time Series Analysis
Idea: Infer the relation between two time series

and                 .

What is the difference to time series regression?

• Here, the two series arise „on an equal footing“, and we are
interested in the correlation between them.

• In time series regression, the two (or more) series are causally
related and we are interested in inferring that relation. There is
an independent and several dependent variables.

• The difference is comparable to the difference between
correlation and regression.

1 1,( )tX X 2 2,( )tX X
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Example: Permafrost Boreholes

A collaboration between the Swiss Institute 
for Snow and Avalanche Research with the
Zurich University of Applied Sciences:

Evelyn Zenklusen Mutter & Marcel Dettling 
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Example: Permafrost Boreholes
• given is a bivariate time series with 2*92 observations

• 2 measurements were made everyday in summer 2006

• series 1: air temperature at Platthorn 3345m

• series 2: soil temperature at Hörnli hut 3295m

Goal of the analysis:

1) Answer whether changes in the air temperature are
correlated with changes in the soil temperature.

2) If a correlation is present, what is the delay?  
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Air & Soil Temperature Comparison
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Are the Series Stationary?
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How to Proceed?
1) The series seem to have „long memory“

2) Pure AR/MA/ARMA do not fit the data well

 Differencing may help with this

Another advantage of taking differences:

 we infer, whether there is a relation between the changes
in the air temperatures, and the changes in the soil
temperatures. 
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Changes in the Air Temperature
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ACF/PACF for Air Temperature Changes
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Changes in the Soil Temperature
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ACF/PACF for Soil Temperature Changes
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Cross Covariance
The cross correlations describe the relation between two time 
series. However, note that the interpretation is quite tricky!

usual „within series“
covariance

cross covariance,
independent from t

Also, we have:

11 1, 1,( ) ( , )t k tk Cov X X 

22 2, 2,( ) ( , )t k tk Cov X X 

12 1, 2,( ) ( , )t k tk Cov X X 

21 2, 1,( ) ( , )t k tk Cov X X 

12 1, 2, 2, 1, 21( ) ( , ) ( , ) ( )t k t t k tk Cov X X Cov X X k     
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Cross Correlations
It suffices to analyze , and neglect , but we have to
regard both positive and negative lags k.

We again prefer to work with correlations:

which describe the linear relation between two values of and
, when the series is time units ahead.
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Estimation
Cross covariances and correlations are estimated as follows:

and

,    respectively.

The plot of              versus the lag k is called the cross 
correlogram. It has to be inspected for both + and – k. 
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Sample Cross Correlation
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Interpreting the Sample Cross Correlation
The confidence bounds in the sample cross correlation are only 
valid in some special cases, i.e. if there is no cross correlation 
and at least one of the series is uncorrelated.

Important: the confidence bounds are often too small!

For computing them, we need:

This is a difficult problem. We are going to discuss a few special 
cases and then show how the problem can be circumvented.

12ˆ( ( ))Var k
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Special Case 1
We assume that there is no cross correlation for large lags k:

If                     for              , we have for               :

This goes to zero for large k and we thus have consistency.
For giving statements about the confidence bounds, we would 
have to know more about the cross correlations, though.

12 ( ) 0j  | |j m | |k m

 12 11 22 12 12
1ˆ( ( )) ( ) ( ) ( ) ( )

j
Var k j j j k j k

n
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Special Case 2
There is no cross correlation, but X1 and X2 are time series that 
show correlation „within“:

See the blackboard… for the important example showing that 
the cross correlation estimations can be arbitrarily bad!

12 11 22
1ˆ( ( )) ( ) ( )
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Special Case 2: Simulation Example
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Special Case 3
There is no cross correlation, and X1 is a white noise series that 
is independent from X2. Then, the estimation variance simplifies 
to:

Thus, the confidence bounds are valid in this case.

However, we introduced the concept of cross correlation to infer 
the relation between correlated series. The trick of the so-called 
„prewhitening“ helps.

12
1ˆ( ( ))Var k
n
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Prewhitening
Prewhitening means that the time series is transformed such 
that it becomes a white noise process, i.e. is uncorrelated.

We assume that both stationary processes and can be
rewritten as follows:

and , 

with uncorrelated and . Note that this is possible for
ARMA(p,q) processes by writing them as an AR(∞). The left
hand side of the equation then is the innovation.

1,
0

t i t i
i

U a X





 2,
0

t i t i
i

V b X







1X 2X

tU tV



22Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2013 – Week 14

Cross Correlation of Prewhitened Series
The cross correlation between and can be derived from
the one between and : 

Thus we have:

for all      for all   

Now: generate ; estimate cross correlations; and, by using
the confidence bands, check whether they are signficant

1 2
0 0
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Simulation Example
Since we are dealing with simulated series, we know that:

, thus

In practice, we don‘t know the AR-coefficients, but plug-in the
respective estimates:

with

with

We will now analyse the sample cross correlation of and , 
which will also allow to draw conclusions about and .

, , 10.9i t i t tX X E  

1, 1,1 1, 1ˆt t tU X X   1,1ˆ 0.911 

, , 10.9t i t i tE X X   

2, 2,1 2, 1ˆt t tV X X   2,1ˆ 0.822 

tU tV
1X 2X
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Cross Correlation in the Simulation Example
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Cross Correlation in the Simulation Example
We observe that:

- Ut and Vt are white noise processes

- There are no (strongly) significant cross correlations

We conjecture that:

- X1 and X2 are not cross correlated either.

 This matches our „expectations“, or better, true process.
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Prewhitening the Borehole Data
What to do:

- ARMA(p,q)-models are fitted to the differenced series

- Best choice: AR(5) for the air temperature differences
MA(1) for the soil temperature differences

- The residual time series are Ut and Vt, white noise

- Check the sample cross correlation (see next slide)

- Model the output as a linear combination of past
input values: transfer function model.
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Prewhitening the Borehole Data
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Transfer Function Models
Properties:

- Transfer function models are an option to describe the
dependency between two time series.

- The first (input) series influences the second (output) 
one, but there is no feedback from output to input.

- The influence from input to output only goes „forward“.

The model is:

2, 2 1, 1
0

( )t j t j t
j

X X E  
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Transfer Function Models
The model is:

- E[Et]=0.

- Et and X1,s are uncorrelated for all t and s.

- Et and Es are usually correlated.

- For simplicity of notation, we here assume that the 
series have been mean centered.

2, 2 1, 1
0

( )t j t j t
j

X X E  





   



30Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2013 – Week 14

Cross Covariance
When plugging-in, we obtain for the cross covariance:

- If only finitely many coefficients are different from zero, 
we could generate a linear equation system, plug-in
and      to obtain the estimates    .   

 This is not a statistically efficient estimation method.

21 2, 1, 1, 1, 11
0 0

( ) ( , ) , ( )t k t j t k j t j
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Special Case: X1,t Uncorrelated
If X1,t was an uncorrelated series, we would obtain the 
coefficients of the transfer function model quite easily:

However, this is usually not the case. We can then:

- transform all series in a clever way
- the transfer function model has identical coefficients
- the new, transformed input series is uncorrelated

 see blackboard for the transformation

21

11

( )
(0)k
k






32Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2013 – Week 14

Borehole Transformed
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Borehole: Final Remarks
• In the previous slide, we see the empirical cross correlations

of the two series and .

• The coefficients from the transfer function model will be
proportional to the empirical cross correlations. We can al-
ready now conjecture that the output is delayed by 1-2 days.

• The formula for the transfer function model coefficients is: 
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Borehole: R-Code and Results
> dd.air <- resid(fit.air)
> coefs <- coef(fit.air)[1:5])
> zz.soil <- filter(diff(soil.na), c(1, -coefs, sides=1)
> as.int  <- ts.intersect(dd.air, zz.soil)
> acf.val <- acf(as.int, na.action=na.pass)

Transfer Function Model Coefficients:
> multip <- sd(zz.soil, na.rm=..)/sd(dd.air, na.rm=..)
> multip*acf.val$acf[,2,1]

[1]  0.054305137  0.165729551  0.250648114  0.008416697
[5]  0.036091971  0.042582917 -0.014780751  0.065008411
[9] -0.002900099 -0.001487220 -0.062670672  0.073479065

[13] -0.049352348 -0.060899602 -0.032943583 -0.025975790
[17] -0.057824007


