

Marcel Dettling

Institute for Data Analysis and Process Design

Zurich University of Applied Sciences

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, May 6, 2013

Forecasting with Time Series

- **Goal:** Prediction of future observations with a measure of uncertainty (confidence interval)
- Note: will be based on a stochastic model- builds on the dependency structure and past data
 - is an extrapolation, thus to take with a grain of salt
 - similar to driving a car by using the rear window mirror

Forecasting, More Technical

Sources of Uncertainty in Forecasting

There are 4 main sources of uncertainty:

- 1) Does the data generating model from the past also apply in the future? Or are there any breaks?
- 2) Is the AR(p)-model we fitted to the data $\{x_1, ..., x_n\}$ correctly chosen? What is the "true" order?
- 3) Are the parameters $\alpha_1, ..., \alpha_p, \sigma_E^2$ and *m* accurately estimated? How much do they differ from the "truth"?
- 4) The stochastic variability coming from the innovation E_t

→ we will here restrict to short-term forecasting!

How to Forecast?

Probabilistic principle for point forecasts:

$$\hat{X}_{n+k,n} = E\left[X_{n+k} \mid X_1^n\right]$$

 \rightarrow we forecast the expected value, given our observations

Probabilistic principle for prediction intervals:

$$Var(X_{n+k} \mid X_1^n)$$

 \rightarrow we use the conditional variance

MA(1) Forecasting: Summary

- We have seen that for an MA(1)-process, the k-step forecast for k>1 is equal to *m*.
- In case of k=1, we obtain for the MA(1)-forecast: $\hat{X}_{n+1,n} = m + \beta_1 \cdot E[E_n \mid X_1^n]$

The conditional expectation is (too) difficult to compute

• As a trick, we not only condition on observations 1,...,n, but on the infinite past:

$$e_n \coloneqq E[E_n \mid X_{-\infty}^n]$$

Zurich University

MA(1) Forecasting: Summary

• We then write the MA(1) as an AR(∞) and solve the model equation for E_n :

$$E_{n} = \sum_{j=0}^{\infty} (-\beta_{1})^{j} \cdot (X_{n-j} - m)$$

- In practice, we plug-in the time series observations x_{n-j} where available. For the "early" times, where we don't have observations, we plug-in \hat{m} .
- This is of course only an approximation to the true MA(1)forecast, but it works well in practice, because of:

Zurich University

ARMA(p,q) Forecasting

As with MA(1)/MA(q) forecasting, we face problems with

 $E[E_{n+1-j} \mid X_{-\infty}^n]$

which is difficult to compute. We use the same tricks as for MA(1) and obtain

$$\hat{X}_{n+k,n} = m + \sum_{i=1}^{p} \alpha_i (E[X_{n+k-i} | X_{-\infty}^n] - m) + E[E_{n+k} | X_{-\infty}^n] - \sum_{j=1}^{q} \beta_j E[E_{n+k-j} | X_{-\infty}^n]$$

where ...

ARMA(p,q) Forecasting

...where

$E[X_t \mid X_{-\infty}^n] = - \left\{ \begin{bmatrix} X_t \mid X_{-\infty}^n \end{bmatrix} = - \left\{ X_t \mid$	$-X_t$	if t≤n
	$\hat{X}_{t,n}$	if t>n

and

with

$$e_{t} = x_{t} - m - \sum_{i=1}^{p} \alpha_{i}(x_{t-i} - m) + \sum_{j=1}^{q} \beta_{j} e_{t-j}$$

ARMA(p,q) Forecasting: Douglas Fir

ARMA(p,q) Forecasting: Example

Forecasting the Differenced Douglas Fir Series

Time

Forecasting Decomposed Series

The principle for forecasting time series that are decomposed into trend, seasonal effect and remainder is:

1) Stationary Remainder

Is usually modelled with an ARMA(p,q), so we can generate a time series forecast with the methodology from before.

2) Seasonal Effect

Is assumed as remaining "as is", or "as it was last" (in the case of evolving seasonal effect) and extrapolated.

3) Trend

Is either extrapolated linearly, or sometimes even manually.

Forecasting Decomposed Series: Example

Unemployment in Maine

Forecasting Decomposed Series: Example

Logged Unemployment in Maine

Forecasting Decomposed Series: Example

STL-Decomposition of Logged Maine Unemployment Series

Forecasting Decomposed Series: Example

Forecast of Logged Unemployment in Maine

Forecasting with SARIMA

We have seen that forecasting decomposed series can be a somewhat laborious process. In R, it is easier and quicker to use a SARIMA model for forecasting season/trend-series.

- The SARIMA model is fitted in R as usual. Then, we can simply employ the predict() command and obtain the forecast plus a prediction interval.
- Technically, the forecast comes from the non-stationary ARMA(p,q)-formulation of the SARIMA model.
- The disadvantage of working with SARIMA forecasts is that it is much more of a **black box approach** than the one before!

Forecasting with SARIMA: Example

Forecast of log(AP) with SARIMA(0,1,1)(0,1,1)

Zurich University

Exponential Smoothing

Simple exponential smoothing:

- works for stationary time series without trend & season
- is a heuristic, model-free approach
- further in the past -> less weight in the forecast

Turns out to yield these forecasts:

$$\hat{X}_{n+1,n} = \sum_{i=0}^{n-1} w_i x_{n-i} \text{ where } w_0 \ge w_1 \ge w_2 \ge \ldots \ge 0 \text{ and } \sum_{i=0}^{n-1} w_i = 1$$

→ See the blackboard for the derivation...

Choice of Weights

An usual choice are exponentially decaying weights:

 $w_i = a(1-a)^i$ where $a \in (0,1)$

Zurich University

Forecasting with Exponential Smoothing

The 1-step forecast is:

Remarks:

- in real applications (finite sum), the weights do not add to 1.
- the update-formula is useful if "new" observations appear.
- the k-step forecast is identical to the 1-step forecast.

Zurich University

Exponential Smoothing: Remarks

- the parameter *a* can be determined by evaluating forecasts that were generated from different *a*. We then choose the one resulting in the lowest sum of squared residuals.
- exponential smoothing is fundamentally different from AR(p)forecasting. All past values are regarded for the 1-step forecast, but all k-step forecasts are identical to the 1-step.
- It can be shown that exponential smoothing can be optimal for MA(1)-models.
- there are double/triple exponential smoothing approaches that can deal with linear/quadratic trends.

Zurich University

Exponential Smoothing: Example

Zurich University

Exponential Smoothing: Example

> fit <- HoltWinters(cmpl, beta=F, gamma=F)</pre>

Holt-Winters exponential smoothing without trend and without seasonal component.

Smoothing parameters:

- alpha: 0.1429622
- beta : FALSE
- gamma: FALSE

Coefficients: [,1] a 17.70343

Zurich University

Exponential Smoothing: Example

Holt-Winters filtering

Zurich University of Applied Sciences

Applied Time Series Analysis SS 2013 – Week 11

Holt-Winters Method

Purpose:

- is for time series with deterministic trend and/or seasonality
- is still a heuristic, model-free approach
- again based on weighted averaging

Is based on these 3 formulae:

$$a_{t} = \alpha(x_{t} - s_{t-p}) + (1 - \alpha)(a_{t-1} + b_{t-1})$$

$$b_{t} = \beta(a_{t} - a_{t-1}) + (1 - \beta)b_{t-1}$$

$$s_{t} = \gamma(x_{t} - a_{t}) + (1 - \gamma)s_{t-p}$$

→ See the blackboard for the derivation...

Zurich University

Holt-Winters: Example

Sales of Australian White Wine

Zurich University

Holt-Winters: Example

Zurich University

Holt-Winters: R-Code and Output

> HoltWinters(x = log(aww))

Holt-Winters exponential smoothing with trend and additive seasonal component.

```
Smoothing parameters:
 alpha: 0.4148028; beta : 0; gamma: 0.4741967
Coefficients:
```

a 5.62591329; b 0.01148402

```
sl -0.01230437; s2 0.01344762; s3 0.06000025
```

```
s4 0.20894897; s5 0.45515787; s6 -0.37315236
```

```
s7 -0.09709593; s8 -0.25718994; s9 -0.17107682
```

```
s10 -0.29304652; s11 -0.26986816; s12 -0.01984965
```


Zurich University

Holt-Winters: Fitted Values & Predictions

Holt-Winters filtering

Zurich University

Holt-Winters: In-Sample Analysis

Holt-Winters-Fit

Zurich University

Holt-Winters: Predictions on Original Scale

Exercise

Data:

- \rightarrow use the Australian white wine sales data...
- \rightarrow ... or any other dataset you like

Goal:

- Find a good model describing these data
- Evaluate which model yields the best predictions
- Generate a 29-month forecast from this model

Method:

 \rightarrow Remove the last 29 observations and mimic oos-forecasting