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Forecasting with Time Series
Goal: Prediction of future observations with a measure of 

uncertainty (confidence interval)

Note: - will be based on a stochastic model
- builds on the dependency structure and past data
- is an extrapolation, thus to take with a grain of salt
- similar to driving a car by using the rear window mirror
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Forecasting, More Technical
Past                                    Future
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Sources of Uncertainty in Forecasting
There are 4 main sources of uncertainty:

1) Does the data generating model from the past 
also apply in the future? Or are there any breaks?

2) Is the AR(p)-model we fitted to the data
correctly chosen? What is the “true” order?

3) Are the parameters              ,       and accurately
estimated? How much do they differ from the “truth”?

4) The stochastic variability coming from the innovation

 we will here restrict to short-term forecasting!
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How to Forecast?
Probabilistic principle for point forecasts:

 we forecast the expected value, given our observations

Probabilistic principle for prediction intervals:

 we use the conditional variance
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MA(1) Forecasting: Summary
• We have seen that for an MA(1)-process, the k-step

forecast for k>1 is equal to . 

• In case of k=1, we obtain for the MA(1)-forecast:

The conditional expectation is (too) difficult to compute

• As a trick, we not only condition on observations 1,…,n, 
but on the infinite past:
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MA(1) Forecasting: Summary
• We then write the MA(1) as an AR(∞) and solve the model 

equation for      :

• In practice, we plug-in the time series observations
where available. For the „early“ times, where we don‘t 
have observations, we plug-in     . 

• This is of course only an approximation to the true MA(1)-
forecast, but it works well in practice, because of:
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ARMA(p,q) Forecasting
As with MA(1)/MA(q) forecasting, we face problems with

which is difficult to compute. We use the same tricks as for 
MA(1) and obtain

where …
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ARMA(p,q) Forecasting
…where

if t≤n

if t>n

and

if t≤n

0 if t>n 
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ARMA(p,q) Forecasting: Douglas Fir
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ARMA(p,q) Forecasting: Example
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Forecasting Decomposed Series
The principle for forecasting time series that are decomposed
into trend, seasonal effect and remainder is:

1) Stationary Remainder
Is usually modelled with an ARMA(p,q), so we can generate
a time series forecast with the methodology from before.

2) Seasonal Effect
Is assumed as remaining “as is”, or “as it was last” (in the
case of evolving seasonal effect) and extrapolated.

3) Trend
Is either extrapolated linearly, or sometimes even manually.

Marcel Dettling, Zurich University of Applied Sciences
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Forecasting Decomposed Series: Example

Unemployment in Maine
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Forecasting Decomposed Series: Example
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Logged Unemployment in Maine
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Forecasting Decomposed Series: Example
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STL-Decomposition of Logged Maine Unemployment Series
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Forecasting Decomposed Series: Example
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Forecasting Decomposed Series: Example
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Forecasting Decomposed Series: Example
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Forecasting Decomposed Series: Example
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Forecast of Logged Unemployment in Maine
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Forecasting with SARIMA
We have seen that forecasting decomposed series can be a 
somewhat laborious process. In R, it is easier and quicker to
use a SARIMA model for forecasting season/trend-series.

• The SARIMA model is fitted in R as usual. Then, we can
simply employ the predict() command and obtain the
forecast plus a prediction interval.

• Technically, the forecast comes from the non-stationary
ARMA(p,q)-formulation of the SARIMA model.

• The disadvantage of working with SARIMA forecasts is that it
is much more of a black box approach than the one before!
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Forecasting with SARIMA: Example
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Exponential Smoothing
Simple exponential smoothing:

- works for stationary time series without trend & season
- is a heuristic, model-free approach
- further in the past -> less weight in the forecast 

Turns out to yield these forecasts:

where                                  and

 See the blackboard for the derivation...
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Choice of Weights
An usual choice are exponentially decaying weights:

where (1 )i
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Forecasting with Exponential Smoothing
The 1-step forecast is:

General Formula        “Update”-Formula

Remarks:

- in real applications (finite sum), the weights do not add to 1.
- the update-formula is useful if “new” observations appear.
- the k-step forecast is identical to the 1-step forecast.
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Exponential Smoothing: Remarks
• the parameter can be determined by evaluating forecasts 

that were generated from different    . We then choose the 
one resulting in the lowest sum of squared residuals.

• exponential smoothing is fundamentally different from AR(p)-
forecasting. All past values are regarded for the 1-step 
forecast, but all k-step forecasts are identical to the 1-step.  

• It can be shown that exponential smoothing can be optimal 
for MA(1)-models.

• there are double/triple exponential smoothing approaches 
that can deal with linear/quadratic trends.

a
a
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Exponential Smoothing: Example

Complaints to a Motorizing Organization
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Exponential Smoothing: Example
> fit  <- HoltWinters(cmpl, beta=F, gamma=F)

Holt-Winters exponential smoothing without trend 
and without seasonal component.

Smoothing parameters:
alpha:  0.1429622 
beta :  FALSE 
gamma:  FALSE 

Coefficients:
[,1]

a 17.70343
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Exponential Smoothing: Example
Holt-Winters filtering

Time

O
bs

er
ve

d 
/ F

itt
ed

1996 1997 1998 1999 2000

5
10

15
20

25
30

35



29Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2013 – Week 11

Holt-Winters Method
Purpose:

- is for time series with deterministic trend and/or seasonality
- is still a heuristic, model-free approach
- again based on weighted averaging

Is based on these 3 formulae:

 See the blackboard for the derivation...
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Holt-Winters: Example
Sales of Australian White Wine
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Holt-Winters: Example
Logged Sales of Australian White Wine
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Holt-Winters: R-Code and Output
> HoltWinters(x = log(aww)) 

Holt-Winters exponential smoothing with trend and 
additive seasonal component.

Smoothing parameters:
alpha:  0.4148028; beta :  0; gamma:  0.4741967 

Coefficients:
a    5.62591329; b    0.01148402
s1  -0.01230437; s2   0.01344762; s3   0.06000025
s4   0.20894897; s5   0.45515787; s6  -0.37315236
s7  -0.09709593; s8  -0.25718994; s9  -0.17107682
s10 -0.29304652; s11 -0.26986816; s12 -0.01984965
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Holt-Winters: Fitted Values & Predictions

Holt-Winters filtering

Time

O
bs

er
ve

d 
/ F

itt
ed

1980 1985 1990 1995

4.
5

5.
0

5.
5

6.
0

6.
5



34Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2013 – Week 11

Holt-Winters: In-Sample Analysis
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Holt-Winters: Predictions on Original Scale
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Exercise
Data:

 use the Australian white wine sales data...
 ... or any other dataset you like

Goal: 

- Find a good model describing these data
- Evaluate which model yields the best predictions
- Generate a 29-month forecast from this model

Method:

 Remove the last 29 observations and mimic oos-forecasting


