



Marcel Dettling

Institute for Data Analysis and Process Design

**Zurich University of Applied Sciences** 

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, April 22, 2013

dtli1 Dieses Folienset ist etwas langfädig. Zudem kommt man in 2 Lektionen nur knapp durch. Änderungen:

Einführung knapper und knackiger machen ZR-Regressionsproblem kompakter fassen Probleme ganz klar auflisten Beispiele vorstellen Rezept geben für ZR-Regression Bsp. für GLS-Transformation muss unbedingt rein Verallgemeinerung OK Dettling Marcel (dtli); 03.04.2012

#### Folie 1

## **Time Series Regression**







Zurich University

## The Setup

- There is a response time series  $Y_t$
- There is one or several explanatory/descriptive time series  $x_{t1}, ..., x_{tp}$
- The goal is to infer the relation  $Y_t \sim x_{t1} + ... + x_{tp}$ , i.e. find  $\beta_i$
- As long as the error series  $E_t$  is i.i.d, the usual regression setup with LS-estimates is perfectly fine

# → Caution and specific procedures are required if the errors are correlated!



Zurich University

## **Dealing with Correlated Errors**

- In case of time series regression, the error term  $E_t$  is usually correlated and not i.i.d.
- Then, the estimates  $\hat{\beta}_j$  are still unbiased, but the usual LS-procedure is no longer efficient and the standard errors can be grossly wrong
- There are procedures that correct for correlated errors:
  - Cochrane-Orcutt-Method
  - Generalized Least Squares
- They must be applied in case of correlated errors!



**Zurich University** 

## **Example 1: Global Temperature**



**Global Temperature Anomalies** 

#### Zurich University of Applied Sciences

#### Applied Time Series Analysis SS 2013 – Week 09



## Example 1: Global Temperature

**Temperature = Trend + Seasonality + Remainder** 

$$Y_{t} = \beta_{0} + \beta_{1} \cdot t + \beta_{2} \cdot \mathbf{1}_{[month="Feb"]} + \dots + \beta_{12} \cdot \mathbf{1}_{[month="Dec"]} + E_{t},$$

- → Recordings from 1971 to 2005, n = 420
- → The remainder term is usually a stationary time series, thus it would not be surprising if the regression model features correlated errors.
- → The applied question which is of importance here is whether there is a significant trend, and a significant seasonal variation

## **Example 2: Air Pollution**

**Air Pollution Data** 





**Zurich University** 



### zi av

## Example 2: Air Pollution

**Oxidant = Wind + Temperature + Error** 

 $Y_{t} = \beta_{0} + \beta_{1}x_{t1} + \beta_{2}x_{t2} + E_{t}$ 

- → Recordings from 30 consecutive days, n = 30
- $\rightarrow$  The data are from the Los Angeles basin, USA
- → The pollutant level is influence by both wind and temperature, plus some more, unobserved variables.
- → It is well conceivable that there is "day-to-day memory" in the pollutant levels, i.e. there are correlated errros.



**Zurich University** 

#### Applied Time Series Analysis SS 2013 – Week 09

## **Example 2: Air Pollution**





**Zurich University** 

## **Time Series Regression Model**

$$Y_{t} = \beta_{0} + \beta_{1} x_{t1} + \dots + \beta_{q} x_{tp} + E_{t}$$

- 
$$t = 1, ..., N$$

- no feedback from  $Y_t$  onto the predictors (i.e. input series)
- $E_t$  are independent from  $x_{sj}$  for all j and all s, t
- $E_t$  (generally) are dependent (e.g. an ARMA(p,q)-process)



## Facts When Using Least Squares

#### In case of correlated errors, the effect on point estimates is:

- the estimated coefficients  $\beta_1, ..., \beta_q$  are unbiased
- the estimates are no longer optimal:  $Var(\hat{\beta}_j) > \min_* Var(\hat{\beta}_j^*)$

#### Important is the effect on the standard errors of the estimates:

- $V\hat{a}r(\hat{\beta}_j)$  can be grossly wrong!
- often, the standard errors are underestimated
- too small CIs & spuriously significant test results



**Zurich University** 

## **Finding Correlated Errors**

1) Start by fitting an OLS regression and analyze residuals





**Zurich University** 

## **Finding Correlated Errors**

2) Continue with a time series plot of OLS residuals



**Residuals of the Im() Function** 



**Applied Time Series Analysis** 

# zł

Zurich University of Applied Sciences





## Model for Correlated Errors

→ It seems as if an AR(2) model provides an adequate model for the correlation structure observed in the residuals of the OLS regression model.

 $\rightarrow$  Residuals of this AR(2) model must look like white noise!

## Does the Model Fit?

5) Visualize a time series plot of the AR(2) residuals



**Residuals of AR(2)** 



Zurich University of Applied Science

## **Does the Model Fit?**

5) ACF and PACF plots of AR(2) residuals





Zurich University of Applied Sciences



**Zurich University** 

## **Global Temperature: Conclusions**

- The residuals from OLS regression are visibly correlated.
- An AR(2) model seems appropriate for this dependency.
- The AR(2) yields a good fit, because its residuals have White Noise properties. We have thus understood the dependency of the regression model errros.
- → We need to account for the correlated errors, else the coefficient estimates will be unbiased but inefficient, and the standard errors are wrong, preventing successful inference for trend and seasonality





**Zurich University** 

## Air Pollution: OLS Residuals

Time series plot: dependence present or not?



Residuals of the Im() Function



ACF and PACF suggest: there is AR(1) dependence

## Air Pollution: OLS Residuals

**Applied Time Series Analysis** 

SS 2013 – Week 09

Marcel Dettling, Zurich University of Applied Sciences

#### Zurich University of Applied Sciences





Zurich University

## **Pollutant Example**

| <pre>&gt; summary(erg.poll,corr=F)</pre> |              |            |            |          |          |  |  |
|------------------------------------------|--------------|------------|------------|----------|----------|--|--|
| Call: lm(for                             | rmula = Oxid | ant ~ Wind | d + Temp,  | data =   | pollute) |  |  |
| Coefficients                             | 5:           |            |            |          |          |  |  |
|                                          | Estimate St  | d. Error t | t value Pr | (> t )   |          |  |  |
| (Intercept)                              | -5.20334     | 11.11810   | -0.468     | 0.644    |          |  |  |
| Wind                                     | -0.42706     | 0.08645    | -4.940 3.  | 58e-05   | * * *    |  |  |
| Temp                                     | 0.52035      | 0.10813    | 4.812 5.   | 05e-05   | * * *    |  |  |
| Residual sta                             | andard error | : 2.95 on  | 27 degree  | es of fr | eedom    |  |  |
| Multiple R-s                             | squared: 0.7 | 773, Adjus | ted R-squ  | ared: 0  | .7608    |  |  |

F-statistic: 47.12 on 2 and 27 DF, p-value: 1.563e-09

#### Zurich University of Applied Sciences

#### Applied Time Series Analysis SS 2013 – Week 09



## **Pollutant Example**

> summary(erg.poll,corr=F)

Call: lm(formula = Oxidant ~ Wind + Temp, data = pollute)

#### Coefficients:

Estimate Std. Error t value Pr(>|t|)

| (Intercept) | -5.20334 | 11.11810 | -0.468  | 0.644        |
|-------------|----------|----------|---------|--------------|
| Wind        | -0.42706 | 0.08645  | -4.940  | 3.58e-05 *** |
| Temp        | 0.52035  | 0.10813  | 4.812 5 | 5.05e-05 *** |

Residual standard error: 2.95 on 27 degrees of freedom Multiple R-squared: 0.7773, Adjusted R-squared: 0.7608 F-statistic: 47.12 on 2 and 27 DF, p-value: 1.563e-09



**Zurich University** 

## Durbin-Watson Test

• The Durbin-Watson approach is a test for autocorrelated errors in regression modeling based on the test statistic:

$$D = \frac{\sum_{t=2}^{N} (r_t - r_{t-1})^2}{\sum_{t=1}^{N} r_t^2}$$

- This is implemented in R: dwtest() in library(lmtest). A p-value for the null of no autocorrelation is computed.
- This test does not detect all autocorrelation structures. If the null is not rejected, the residuals may still be autocorrelated.

### → Never forget to check ACF/PACF of the residuals!



## **Durbin-Watson Test**

#### **Example 1: Global Temperature**

- > library(lmtest)
- > dwtest(fit.lm)
- data: fit.lm
- DW = 0.5785, p-value < 2.2e-16
- alt. hypothesis: true autocorrelation is greater than 0

#### **Example 2: Air Pollution**

> dwtest(fit.lm)
data: fit.lm
DW = 1.0619, p-value = 0.001675
alt. hypothesis: true autocorrelation is greater than 0

#### Zurich University of Applied Sciences

#### Applied Time Series Analysis SS 2013 – Week 09



## **Generalized Least Squares**

- → See the blackboard for full explanation
- OLS regression assumes a diagonal error covariance matrix, but there is a generalization to  $Var(E) = \sigma^2 \Sigma$ .
- If we find  $\Sigma = SS^T$ , the regression model can be rewritten as:

$$y = X\beta + E$$
  

$$S^{-1}y = S^{-1}X\beta + S^{-1}E$$
  

$$y^* = X^*\beta + E^* \quad \text{with } Var(E^*) = \sigma^2 I$$

• One obtains the generalized least square estimates:  $\hat{\beta} = (X^T \Sigma^{-1} X) X^T \Sigma^{-1} y$  with  $Var(\hat{\beta}) = (X^T \Sigma^{-1} X)^{-1} \sigma^2$ 



**Zurich University** 

## **Generalized Least Squares**

For using the GLS approach, i.e. for correcting the dependent errors, we need an estimate of the error covariance matrix  $\Sigma$ .

The two major options for obtaining it are:

- 1) **Cochrane-Orcutt (for AR(p) correlation structure only)** iterative approach: i) $\beta$ , ii)  $\alpha$ , iii)  $\beta$
- 2) GLS (Generalized Least Squares, for ARMA(p,q)) simultaneous estimation of  $\beta$  and  $\alpha$
- → Full explanation of the two different approaches is provided on the blackboard!

## Applied Time Series Analysis SS 2013 – Week 09 GLS: Syntax



**Zurich University** 

Package nlme has function gls(). It does only work if the correlation structure of the errors is provided. This has to be determined from the residuals of an OLS regression first.

The output contains the **regression coefficients** and their **standard errors**, as well as the **AR-coefficients** plus some further information about the model (Log-Likeli, AIC, ...).



**Zurich University** 

## **GLS: Residual Analysis**

The residuals from a GLS must look like coming from a time series process with the respective structure:







GLS/OLS: Comparison of Results

 $\rightarrow$  The trend in the global temperature is significant!

```
> coef(fit.lm)["time"]
                                            OLS
     time
0.01822374
> confint(fit.lm, "time")
          2.5 % 97.5 %
time 0.01702668 0.0194208
> coef(fit.gls)["time"]
                                            GLS
     time
0.02017553
> confint(fit.gls, "time")
          2.5 % 97.5 %
time 0.01562994 0.02472112
```





GLS/OLS: Comparison of Results

 $\rightarrow$  The seasonal effect is not significant!

```
OLS
> drop1(fit.lm, test="F")
temp ~ time + season
      Df Sum of Sq RSS AIC F value Pr(F)
                   6.4654 - 1727.0
<none>
time 1 14.2274 20.6928 -1240.4 895.6210 <2e-16 ***
season 11 0.1744 6.6398 -1737.8 0.9982 0.4472
                                                GLS
> anova(fit.gls)
Denom. DF: 407
           numDF F-value p-value
(Intercept) 1 78.40801 <.0001
time
            1 76.48005 <.0001
              11 0.64371 0.7912
season
```



**Zurich University** 

## **Example 1: Global Temperature**



**Global Temperature Anomalies** 



Zurich University of Applied Science

## Air Pollution: Results

Both predictors are significant with both approaches...

```
> confint(fit.lm, c("Wind", "Temp"))
        2.5 % 97.5 %
Wind -0.6044311 -0.2496841
Temp 0.2984794 0.7422260
> confint(fit.gls, c("Wind", "Temp"))
        2.5 % 97.5 %
Wind -0.5447329 -0.2701709
Temp 0.2420436 0.7382426
```

 $\rightarrow$  But still, it is important to use GLS with correlated errors!



Zurich University

## Simulation Study: Model

We want to study the effect of correlated errors on the quality of estimates when using the least squares approach:

$$x_t = t / 50$$
$$y_t = x_t + 2x_t^2 + E_t$$

where  $E_t$  is from an AR(1)-process with  $\alpha = -0.65$  and  $\sigma = 0.1$ .

We generate 100 realizations from this model and estimate the regression coefficient and its standard error by:

1) LS 2) GLS





## Simulation Study: Series



#### Zurich University of Applied Sciences

#### Applied Time Series Analysis SS 2013 – Week 09



## Simulation Study: ACF of the Error Term





## Simulation Study: Results

**Applied Time Series Analysis** 

SS 2013 – Week 09

Marcel Dettling, Zurich University of Applied Sciences

#### 36

Zurich University of Applied Sciences

zh aw



Zurich University

## Missing Input Variables

- (Auto-)correlated errors are often caused by the nonpresence of crucial input variables.
- In this case, it is much better to identify the not-yet-present variables and include them in the analysis.
- However, this isn't always possible.
- → regression with correlated errors can be seen as a sort of emergency kit for the case where the non-present variables cannot be added.



**Zurich University** 

## Example: Ski Sales



Ski Sales





## Ski Sales: Residual Diagnostics







## Ski Sales: ACF/PACF of Residuals





**Zurich University** 

## Ski Sales: Model with Seasonal Factor



Ski Sales - Winter=1, Summer=0



## **Residuals from Seasonal Factor Model**





**Zurich University** 

## **Residuals from Seasonal Factor Model**





Zurich University

## Ski Sales: Summary

- the first model (sales vs. PDI) showed correlated errors
- the Durbin-Watson test failed to indicate this correlation
- this apparent correlation is caused by ommitting the season
- adding the season removes all error correlation!
- → the emergency kit "time series regression" is, after careful modeling, not even necessary in this example. This is quite often the case!