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A Simple Model: White Noise
A time series is a White Noise series if the random
variables                are independent and identically distributed with
mean zero.

This imples that all variables      have the same variance , and

for all          . 

Thus, there are no autocorrelations either:             for all          .  

If in addition, the variables also follow a Gaussian distribution, i.e.
, the series is called Gaussian White Noise.

The term White Noise is due to the analogy to white light.
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Example: Gaussian White Noise
> plot(ts(rnorm(200, mean=0, sd=1)))
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Example: Gaussian White Noise
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Estimating the Conditional Mean
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Time Series Modeling
There is a wealth of time series models

- AR autoregressive model
- MA moving average model
- ARMA combination of AR & MA
- ARIMA non-stationary ARMAs
- SARIMA seasonal ARIMAs
- …

We start by discussing autoregressive models. They are
perhaps the simplest and most intuitive time series models
that exist.
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Basic Idea for AR(p)-Models
We have a process where the random variable      depends on an 
auto-regressive linear combination of the preceding ,
plus a „completely independent“ term called innovation .  

Here, p is called the order of the autoregressive model. Hence, we
abbreviate by AR(p). An alternative notation is with the backshift
operator : 

or short, 

Here,           is called the characteristic polynomial of the AR(p).
It determines most of the relevant properties of the process.  
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AR(1)-Model
The simplest model is the AR(1)-model

where      

is i.i.d with                  and

Under these conditions,      is a white noise process, and we 
additionally require causality, i.e.     being an innovation: 

is independent of 
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Causality
Note that causality is an important property that, despite the fact 
that it‘s missing in much of the literature, is necessary in the 
context of AR-modeling:

is an innovation process  all are independent

All        are independent        is an innovationtE tE
tEtE
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AR(p)-Models and Stationarity
The following is absolutely essential:

AR(p) models must only be fitted to stationary time series. Any 
potential trends and/or seasonal effects need to be removed first. 
We will also make sure that the  processes are stationary.

Under which circumstances is an AR(p) stationary?

 see blackboard…
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Stationarity of AR(p)-Processes
We require:

1) 

2) Conditions on

All (complex) roots of the characteristic polynom

need to lie outside of the unit circle. This can be
checked with R-function polyroot()
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A Non-Stationary AR(2)-Process 
is not stationary… 1 2

1 1
2 2t t t tX X X E   

Non-Stationary AR(2)
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Simulated AR(1)-Series
Simulated AR(1)-Series: alpha_1=0.7
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Simulated AR(1)-Series
Simulated AR(1)-Series: alpha_1=-0.7
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Simulated AR(1)-Series
Simulated AR(1)-Series: alpha_1=1
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Autocorrelation of AR(p) Processes
On the blackboard…

Yule-Walker Equations

We observe that there exists a linear equation system built up from
the AR(p)-coefficients and the ACF-coefficients of up to lag p. 
These are called Yule-Walker-Equations.

We can use these equations for fitting an AR(p)-model:

1) Estimate the ACF from a time series
2) Plug-in the estimates into the Yule-Walker-Equations
3) The solution are the AR(p)-coefficients
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Theoretical vs. Estimated ACF
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Theoretical vs. Estimated ACF
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AR(3): Simulation and Properties
> xx <- arima.sim(list(ar=c(0.4, -0.2, 0.3)), 
n=200)

AR(3) with 1=-0.4, 2=-0.2, 3=0.3
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AR(3): Simulation and Properties
> autocorr <- ARMAacf(ar=c(0.4, -0.2, 0.3),...) 
> plot(0:20, autocorr, type="h", xlab="Lag")
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AR(3): Simulation and Properties
> autocorr <- ARMAacf(ar=..., pacf=TRUE, ...) 
> plot(0:20, autocorr, type="h", xlab="Lag")

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

c(
1,

 a
ut

oc
or

r)

Theoretical Partial Autocorrelation for an AR(3)



23Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2013 – Week 05 

Fitting AR(p)-Models
This involves 3 crucial steps:

1) Is an AR(p) suitable, and what is p?
- will be based on ACF/PACF-Analysis

2) Estimation of the AR(p)-coefficients
- Regression approach
- Yule-Walker-Equations
- and more (MLE, Burg-Algorithm)

3) Residual Analysis
- to be discussed
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AR-Modelling

1                                  2                                     3

Identification Parameter Model
of the Order p Estimation Diagnostics

- ACF/PACF - Regression - Residual Analysis
- AIC/BIC - Yule-Walker - Simulation

- MLE
- Burg
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Is an AR(p) suitable, and what is p?
- For all AR(p)-models, the ACF decays exponentially 

quickly, or is an exponentially damped sinusoid.

- For all AR(p)-models, the PACF is equal to zero for 
all lags k>p.

If what we observe is fundamentally different from the above, it is 
unlikely that the series was generated from an AR(p)-process. We 
thus need other models, maybe more sophisticated ones.

Remember that the sample ACF has a few peculiarities and is 
tricky to interpret!!!
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Model Order for sqrt(purses)
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Model Order for log(lynx)
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