Marcel Dettling

Institute for Data Analysis and Process Design

Zurich University of Applied Sciences

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, March 18, 2013

Basics of Modeling

Data \rightarrow (Time Series) Model

A Simple Model: White Noise

A time series $(W_1, W_2, ..., W_n)$ is a **White Noise series** if the random variables $W_1, W_2, ...$ are *independent and identically* distributed with *mean zero*.

This imples that all variables W_t have the same variance σ_w^2 , and

$$Cov(W_i, W_j) = 0$$
 for all $i \neq j$.

Thus, there are no autocorrelations either: $\rho_k = 0$ for all $k \neq 0$.

If in addition, the variables also follow a *Gaussian distribution*, i.e. $W_t \sim N(0, \sigma_w^2)$, the series is called **Gaussian White Noise**.

The term White Noise is due to the analogy to white light.

Applied Time Series Analysis SS 2013 – Week 05 Example: Gaussian White Noise

> plot(ts(rnorm(200, mean=0, sd=1)))

Gaussian White Noise

Example: Gaussian White Noise

Marcel Dettling, Zurich University of Applied Sciences

Estimating the Conditional Mean

Time Series Modeling

There is a wealth of time series models

- AR autoregressive model
- MA moving average model
- ARMA combination of AR & MA
- ARIMA non-stationary ARMAs
- SARIMA seasonal ARIMAs

- ...

We start by discussing autoregressive models. They are perhaps the simplest and most intuitive time series models that exist.

Basic Idea for AR(p)-Models

We have a process where the random variable X_t depends on an <u>auto-regressive linear combination of the preceding</u> $X_{t-1}, ..., X_{t-p}$, plus a "completely independent" term called innovation E_t .

$$X_{t} = \alpha_{1} X_{t-1} + \dots + \alpha_{p} X_{t-p} + E_{t}$$

Here, p is called the order of the autoregressive model. Hence, we abbreviate by AR(p). An alternative notation is with the backshift operator B:

$$(1 - \alpha_1 B - \alpha_2 B^2 - \dots - \alpha_p B^p) X_t = E_t$$
 or short, $\Phi(B) X_t = E_t$

Here, $\Phi(B)$ is called the characteristic polynomial of the AR(p). It determines most of the relevant properties of the process.

AR(1)-Model

The simplest model is the AR(1)-model

 $X_t = \alpha_1 X_{t-1} + E_t$

where

$$E_t$$
 is i.i.d with $E[E_t] = 0$ and $Var(E_t) = \sigma_E^2$

Under these conditions, E_t is a white noise process, and we additionally require **causality**, i.e. E_t being an **innovation**:

$$E_t$$
 is independent of X_s , $s < t$

Causality

Note that causality is an important property that, despite the fact that it's missing in much of the literature, is necessary in the context of AR-modeling:

 E_t is an innovation process

All E_t are independent

 $\rightarrow E_t \text{ all are independent}$ $\overleftarrow{E_t} \text{ is an innovation}$

AR(p)-Models and Stationarity

The following is absolutely essential:

AR(p) models must only be fitted to stationary time series. Any potential trends and/or seasonal effects need to be removed first. We will also make sure that the processes are stationary.

Under which circumstances is an AR(p) stationary?

→ see blackboard...

Stationarity of AR(p)-Processes

We require:

- 1) $E[X_t] = \mu = 0$
- 2) Conditions on $(\alpha_1, ..., \alpha_p)$

All (complex) roots of the characteristic polynom

$$1 - \alpha_1 z - \alpha_2 z^2 - \alpha_p z^p = 0$$

need to lie outside of the unit circle. This can be checked with R-function polyroot()

A Non-Stationary AR(2)-Process

 $X_{t} = \frac{1}{2}X_{t-1} + \frac{1}{2}X_{t-2} + E_{t}$ is not stationary...

Non-Stationary AR(2)

Marcel Dettling, Zurich University of Applied Sciences

Simulated AR(1)-Series

Simulated AR(1)-Series

Simulated AR(1)-Series

Simulated AR(1)-Series: alpha_1=1

Autocorrelation of AR(p) Processes

On the blackboard...

Yule-Walker Equations

We observe that there exists a linear equation system built up from the AR(p)-coefficients and the ACF-coefficients of up to lag p. These are called Yule-Walker-Equations.

We can use these equations for fitting an AR(p)-model:

1) Estimate the ACF from a time series
2) Plug-in the estimates into the Yule-Walker-Equations
3) The solution are the AR(p)-coefficients

Theoretical vs. Estimated ACF

True ACF of AR(1)-process with alpha_1=0.7

Arcel Dettiing, Zurich University of Applied Sciences

Estimated ACF from an AR(1)-series with alpha_1=0.7

Lag

Theoretical vs. Estimated ACF

True ACF of AR(1)-process with alpha_1=-0.7

Lag

Estimated ACF from an AR(1)-series with alpha_1=-0.7

Applied Time Series Analysis SS 2013 – Week 05 AR(3): Simulation and Properties

> xx <- arima.sim(list(ar=c(0.4, -0.2, 0.3)),</pre>

AR(3) with α_1 =-0.4, α_2 =-0.2, α_3 =0.3

Applied Time Series Analysis SS 2013 – Week 05 AR(3): Simulation and Properties

- > autocorr <- ARMAacf(ar=c(0.4, -0.2, 0.3),...)</pre>
- > plot(0:20, autocorr, type="h", xlab="Lag")

Theoretical Autocorrelation for an AR(3)

Applied Time Series Analysis SS 2013 – Week 05 AR(3): Simulation and Properties

- > autocorr <- ARMAacf(ar=..., pacf=TRUE, ...)</pre>
- > plot(0:20, autocorr, type="h", xlab="Lag")

Theoretical Partial Autocorrelation for an AR(3)

Fitting AR(p)-Models

This involves 3 crucial steps:

1) Is an AR(p) suitable, and what is p?

- will be based on ACF/PACF-Analysis

2) Estimation of the AR(p)-coefficients

- Regression approach
- Yule-Walker-Equations
- and more (MLE, Burg-Algorithm)
- 3) Residual Analysis
 - to be discussed

Is an AR(p) suitable, and what is p?

- For all AR(p)-models, the **ACF** decays exponentially quickly, or is an exponentially damped sinusoid.
- For all AR(p)-models, the PACF is equal to zero for all lags k>p.

If what we observe is fundamentally different from the above, it is unlikely that the series was generated from an AR(p)-process. We thus need other models, maybe more sophisticated ones.

Remember that the sample ACF has a few peculiarities and is tricky to interpret!!!

Applied Time Series Analysis SS 2013 – Week 05 Model Order for sqrt(purses)

Applied Time Series Analysis SS 2013 – Week 05 Model Order for log(lynx)

