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Decomposition
Stationarity is key for statistical learning, but real data often 
have trend/seasonality, and are non-stationary. We can (often) 
deal with that using the simple additive decomposition model: 

= trend + seasonal effect + stationary remainder

The goal is to find a remainder term     , as a sequence of 
correlated random variables with mean zero, i.e. a stationary ts.

We can employ: 1) taking differences (=differencing) 
2) smoothing approaches (= filtering)
3) parametric models (= curve fitting)
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Multiplicative Decomposition
is not always a good model: 
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Multiplicative Decomposition
Better:                       , respectively
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Smoothing, Filtering: Part 1
In the absence of a seasonal effect, the trend of a non-stationary 
time series can be determined by applying any additive, linear 
filter. We obtain a new time series     , representing the trend:

- the window, defined by     and    , can or can‘t be symmetric
- the weights, given by     , can or can‘t be uniformly distributed
- other smoothing procedures can be applied, too.
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Trend Estimation with the Running Mean
> trd <- filter(SwissTraffic, filter=c(1,1,1)/3)
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Smoothing, Filtering: Part 2
In the presence a seasonal effect, smoothing approaches are still 
valid for estimating the trend. We have to make sure that the sum 
is taken over an entire season, i.e. for monthly data: 

An estimate of the seasonal effect     at time    can be obtained by:

By averaging these estimates of the effects for each month, we 
obtain a single estimate of the effect for each month.
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Trend Estimation for Mauna Loa Data
> wghts <- c(.5,rep(1,11),.5)/12
> trd <- filter(co2, filter=wghts, sides=2)
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Estimating the Seasonal Effects
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Estimating the Remainder Term
ˆ ˆ ˆt t t tR x m s  

Estimated Stochastic Remainder Term
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Smoothing, Filtering: Part 3
• The smoothing approach is based on estimating the trend

first, and then the seasonality.

• The generalization to other periods than , i.e. monthly
data is straighforward. Just choose a symmetric window and
use uniformly distributed coefficients that sum up to 1.

• The sum over all seasonal effects will be close to zero. 
Usually, it is centered to be exactly there.

• This procedure is implemented in R with function: 
decompose()

12p 
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Estimating the Remainder Term
> plot(decompose(co2))
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Smoothing, Filtering: STL-Decomposition
The Seasonal-Trend Decomposition Procedure by Loess

•    is an iterative, non-parametric smoothing algorithm
•    yields a simultaneous estimation of trend and seasonal effect
 similar to what was presented above, but more robust!

+ very simple to apply
+ very illustrative and quick
+ seasonal effect can be constant or smoothly varying
- model free, extrapolation and forecasting is difficult

 Good method for „having a quick look at the data“
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STL-Decomposition: Constant Season
stl(log(ts(airline,freq=12)),s.window=„periodic“)
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STL-Decomposition: Constant Season
stl(log(ts(airline,freq=12)),s.window=„periodic“)
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STL-Decomposition: Evolving Season
stl(log(ts(airline,freq=12)),s.window=15)
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STL-Decomposition: Evolving Season
stl(log(ts(airline,freq=12)),s.window=15)
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STL-Decomposition: Evolving Season
stl(log(ts(airline,freq=12)),s.window=7)
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STL-Decomposition: Evolving Season
stl(log(ts(airline,freq=12)),s.window=7)
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Smoothing, Filtering: Remarks
Some advantages and disadvantages:

+ trend and seasonal effect can be estimated

+ ,     and are explicitly known, can be visualised

+ procedure is transparent, and simple to implement

- resulting time series will be shorter than the original

- the running mean is not the very best smoother

- extrapolation of ,    are not entirely obvious
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Parametric Modelling
When to use?

 Parametric modelling is often used if we have previous 
knowledge about the trend following a functional form.

 If the main goal of the analysis is forecasting, a trend in 
functional form may allow for easier extrapolation than a 
trend obtained via smoothing.

 It can also be useful if we have a specific model in mind 
and want to infer it. Caution: correlated errors!
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Parametric Modelling: Example
Maine unemployment data: Jan/1996 – Aug/2006
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Modeling the Unemployment Data
Most often, time series are parametrically decomposed by using
regression models. For the trend, polynomial functions are widely
used, whereas the seasonal effect is modelled with dummy
variables (= a factor).

where

Remark: choice of the polynomial degree is crucial!
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Polynomial Order / OLS Fitting
Estimation of the coefficients will be done in a regression con-
text. We can use the ordinary least squares algorithm, but: 

•   we have violated assumptions,      is not uncorrelated
•   the estimated coefficients are still unbiased
•   standard errors (tests, CIs) can be wrong

Which polynomial order is required?

Eyeballing allows to determine the minimum grade that is 
required for the polynomial. It is at least the number of 
maxima the hypothesized trend has, plus one.

tE
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Important Hints for Fitting
• The main predictor used in polynomial parametric modeling

is the time of the observations. It can be obtained by typing
time(maine).  

• For avoiding numerical and collinearity problems, it is
essential to center the time/predictors!

• R sets the first factor level to 0, seasonality is thus
expressed as surplus to the January value.

• For visualization: when the trend must fit the data, we have
to adjust, because the mean for the seasonal effect is
usually different from zero!
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Trend of O(4), O(5) and O(6)
Unemployment in Maine
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Residual Analysis: O(4)

Residuals vs. Time, O(4)
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Residual Analysis: O(5)

Residuals vs. Time, O(5)
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Residual Analysis: O(6)

Residuals vs. Time, O(6)
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Parametric Modeling: Remarks
Some advantages and disadvantages:

+ trend and seasonal effect can be estimated

+ and are explicitly known, can be visualised

+ even some inference on trend/season is possible

+  time series keeps the original length

- choice of a/the correct model is necessary/difficult

- residuals are correlated: this is a model violation!

- extrapolation of ,    are not entirely obvious
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Where are we?
For most of the rest of this course, we will deal with (weakly) 
stationary time series. They have the following properties:

•
•
•

If a time series is non-stationary, we know how to decompose 
into deterministic and stationary, random part. 

Our forthcoming goals are:
- understanding the dependency in a stationary series
- modeling this dependency and generate forecasts

[ ]tE X 
2( )tVar X 

( , )t t h hCov X X  
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Autocorrelation
The aim of this section is to explore the dependency structure
within a time series.

Def: Autocorrelation

The autocorrelation is a dimensionless measure for the
amount of linear association between the random variables 
collinearity between the random variables          and .

( , )( , )
( ) ( )

t k t
t k t

t k t
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Autocorrelation Estimation
Our next goal is to estimate the autocorrelation function (acf) from 
a realization of weakly stationary time series. 

Luteinizing Hormone in Blood at 10min Intervals
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Autocorrelation Estimation: lag k>1
Idea 1: Compute the sample correlation for all pairs ( , )s s kx x 
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Autocorrelation Estimation: lag k
Idea 2: Plug-in estimate with sample covariance

How does it work?

 see blackboard…
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Autocorrelation Estimation: lag k
Idea 2: Plug-in estimate with sample covariance

where
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Comparison Idea 1 vs. Idea 2
 see blackboard for some more information
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What is important about ACF estimation?
- Correlations are never to be trusted without a visual

inspection with a scatterplot.

- The bigger the lag k, the fewer data pairs remain for 
estimating the acf at lag k.

- Rule of the thumb: the acf is only meaningful up to about

a) lag 10*log10(n)
b) lag n/4

- The estimated sample ACs can be highly correlated.

- The correlogram is only meaningful for stationary series!!!
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Correlogram
A useful aid in interpreting a set of autocorrelation coefficients is 
the graph called correlogram, where the          are plotted 
against the lag k.

Interpreting the meaning of a set of autocorrelation coefficients 
is not always easy. The following slides offer some advice. 

ˆ ( )k

0 5 10 15

-0
.2

0.
2

0.
6

1.
0

Lag

A
C

F

Series  lh



40Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2013 – Week 03

Random Series – Confidence Bands
If a time series is completely random, i.e. consists of i.i.d. random 
variables     , the (theoretical) autocorrelations         are equal to 0.

However, the estimated         are not. We thus need to decide, 
whether an observed               is significantly so, or just appeared 
by chance. This is the idea behind the confidence bands.  
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Random Series – Confidence Bands
For long i.i.d. time series, it can be shown that the         are 
approximately                 distributed.  

Thus, if a series is random, 95% of the estimated         can be 
expected to lie within the interval 
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Random Series – Confidence Bands
Thus, even for a (long) i.i.d. time series, we expect that 5% of the 
estimated autocorrelation coeffcients exceed the confidence 
bounds. They correspond to type I errors.

Note: the probabilistic properties of non-normal i.i.d series are 
much more difficult to derive.
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