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Visualization: Time Series Plot
> plot(tsd, ylab="(%)", main="Unemployment in Maine")
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Multiple Time Series Plots
> plot(tsd, main="Chocolate, Beer & Electricity")
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Only One or Multiple Frames?
• Due to different scale/units it is often impossible to directly

plot multiple time series in one single frame. Also, multiple 
frames are convenient for visualizing the series.

• If the relative development of multiple series is of interest, 
then we can (manually) index the series and (manually) plot 
them into one single frame.

• This clearly shows the magnitudes for trend and seasonality. 
However, the original units are lost.

• For details on how indexing is done, see the scriptum.
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Multiple Time Series Plots
> plot(tsd, main="Chocolate, Beer & Electricity")
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Transformations
For strictly stationary time series, we have:

We did not specify the distribution     and there is no restriction 
to it. However, many popular time series models are based on:

1) Gaussian distribution
2) linear relations between the variables 

If the data show different behaviour, we can often improve the 
situation by transforming             to                      . The most 
popular and practically relevant transformation is:

~tX F

F

1,..., nx x 1( ),..., ( )ng x g x

( ) log( )g   
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Transformations: Lynx Data
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Transformations: Lynx Data

Lynx Trappings
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Transformations: Lynx Data
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Decomposition
Stationarity is key for statistical learning, but real data often 
have trend/seasonality, and are non-stationary. We can (often) 
deal with that using the simple additive decomposition model: 

= trend + seasonal effect + stationary remainder

The goal is to find a remainder term     , as a sequence of 
correlated random variables with mean zero, i.e. a stationary ts.

We can employ: 1) taking differences (=differencing) 
2) smoothing approaches (= filtering)
3) parametric models (= curve fitting)
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t t t tX m s R  

tR



Multiplicative Decomposition
is not always a good model: 
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t t t tX m s R  
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Multiplicative Decomposition
Better:                       , respectively
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t t t tX m s R   log( )t t t tX m s R    

Logged Passenger Bookings

Time

lo
g(

P
ax

)

1950 1952 1954 1956 1958 1960

5.
0

5.
5

6.
0

6.
5



13Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2013 – Week 02

Differencing: Theory
 see blackboard…

Summary:

• Differencing means analyzing the observation-to-observation 
changes in the series, but no longer the original.

• This may (or may not) remove trend/seasonality, but does not 
yield estimates for and , and not even for .  

• Differencing changes the dependency in the series, i.e it
artificially creates new correlations.

tm ts tR
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Differencing: Example

tm ts tR
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Differencing: Example
> plot(diff(SwissTraffic), main=…)

tm ts tR
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Differencing: Further Remarks
• If log-transformed series are differenced (i.e. the SMI series), 

we are considering (an approximation to) the relative changes.

• The backshift operator “go back one step” allows for 
convenient notation for all differencing operations.

Backshift operator:

Differencing:

1 1
1

1 1 1

log( ) log( ) log log 1t t t t t
t t t

t t t

X X X X XY X X
X X X

 


  

    
        

   

1( )t tB X X 

1(1 )t t t tY B X X X    
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Higher-Order Differencing
The “normal” differencing from above managed to remove any 
linear trend from the data. In case of polynomial trend, that is no 
longer true. But we can take higher-order differences:

A quadratic trend can be removed by taking second-order 
differences. However, what we obtain is not an estimate of the 
remainder term     , but something that is much more complicated. 

2
1 2

2

1 1 2

1 2 2

,
(1 )
( ) ( )

2 2

t t t

t t

t t t t

t t t

X t t R R stationary
Y B X

X X X X
R R R
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Removing Seasonal Effects
Time series with seasonal effects can be made stationary through
differencing by comparing to the previous periods’ value.

•   Here,      is the frequency of the series.

• A potential trend which is exactly linear will be removed by the
above form of seasonal differencing.

• In practice, trends are rarely linear but slowly varying:
However, here we compare      with        , which means that 
seasonal differencing often fails to remove trends completely. 

(1 )p
t t t t pY B X X X    

p

1t tm m 
tm t pm 
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Seasonal Differencing: Example
> data(co2); plot(co2, main=…)
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Seasonal Differencing: Example
> sd.co2 <- diff(co2, lag=12)

Differenced Mauna Loa Data (p=12)

Time

sd
.c

o2

1960 1970 1980 1990

0.
0

1.
0

2.
0

3.
0



21Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2013 – Week 02

Seasonal Differencing: Example
> sd.co2 <- diff(co2, lag=12)

Differenced Mauna Loa Data (p=12)
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Seasonal Differencing: Example
This is:

Twice Differenced Mauna Loa Data (p=12, p=1)
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Differencing: Remarks
Some advantages and disadvantages:

+ trend and seasonal effect can be removed

+ procedure is very quick and very simple to implement

- ,     and are not known, and cannot be visualised

- resulting time series will be shorter than the original

- differencing leads to strong artificial dependencies

- extrapolation of ,    is not possible

ˆ tm t̂s

ˆ tm t̂s

ˆ
tR
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Smoothing, Filtering: Part 1
In the absence of a seasonal effect, the trend of a non-stationary 
time series can be determined by applying any additive, linear 
filter. We obtain a new time series     , representing the trend:

- the window, defined by     and    , can or can‘t be symmetric
- the weights, given by     , can or can‘t be uniformly distributed
- other smoothing procedures can be applied, too.

ˆ
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Trend Estimation with the Running Mean
> trd <- filter(SwissTraffic, filter=c(1,1,1)/3)

Time

In
de

x 
Va

lu
e

1990 1995 2000 2005 2010

10
0

11
0

12
0

13
0

Swiss Traffic Index with Running Mean



26Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2013 – Week 02

Smoothing, Filtering: Part 2
In the presence a seasonal effect, smoothing approaches are still 
valid for estimating the trend. We have to make sure that the sum 
is taken over an entire season, i.e. for monthly data: 

An estimate of the seasonal effect     at time    can be obtained by:

By averaging these estimates of the effects for each month, we 
obtain a single estimate of the effect for each month.

6 5 5 6
1 1 1ˆ 7,..., 6

12 2 2t t t t tm X X X X for t n   
        
 



ts t

ˆ ˆt t ts x m 
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Trend Estimation for Mauna Loa Data
> wghts <- c(.5,rep(1,11),.5)/12
> trd <- filter(co2, filter=wghts, sides=2)
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Estimating the Seasonal Effects
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Estimating the Remainder Term
ˆ ˆ ˆt t t tR x m s  

Estimated Stochastic Remainder Term
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Smoothing, Filtering: Part 3
• The smoothing approach is based on estimating the trend

first, and then the seasonality.

• The generalization to other periods than , i.e. monthly
data is straighforward. Just choose a symmetric window and
use uniformly distributed coefficients that sum up to 1.

• The sum over all seasonal effects will be close to zero. 
Usually, it is centered to be exactly there.

• This procedure is implemented in R with function: 
decompose()

12p 
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Estimating the Remainder Term
> plot(decompose(co2))
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Smoothing, Filtering: Remarks
Some advantages and disadvantages:

+ trend and seasonal effect can be estimated

+ ,     and are explicitly known, can be visualised

+ procedure is transparent, and simple to implement

- resulting time series will be shorter than the original

- the running mean is not the very best smoother

- extrapolation of ,    are not entirely obvious

ˆ tm t̂s

ˆ tm t̂s

ˆ
tR


