Marcel Dettling

Institute for Data Analysis and Process Design

Zurich University of Applied Sciences

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, February 18, 2013

Your Lecturer

- Name: Marcel Dettling
- Age: 38 Years
- Civil Status: Married, 2 children
- Education: Dr. Math. ETH
- Position: Lecturer @ ETH Zürich and @ ZHAW Researcher in Applied Statistics @ ZHAW
- Time Series: Research with industry: *airlines*, *cargo*, *marketing* Academic research: *high-frequency financial data*

A First Example

In 2006, Singapore Airlines decided to place an order for new aircraft. It contained the following jets:

- 20 Boeing 787
- 20 Airbus A350
- 9 Airbus A380

How was this decision taken?

It was based on a combination of time series analysis on airline passenger trends, plus knowing the corporate plans for maintaining or increasing the market share.

A Second Example

- Taken from a former research project @ ZHAW
- Airline business: # of checked-in passengers per month

Airline Pax: Absolute Number per Month

Some Properties of the Series

- Increasing trend (i.e. generally more passengers)
- Very prominent seasonal pattern (i.e. peaks/valleys)
- Hard to see details beyond the obvious

Goals of the Project

- Visualize, or better, extract trend and seasonal pattern
- Quantify the amount of random variation/uncertainty
- Provide the basis for a man-made forecast after mid-2007
- Forecast (extrapolation) from mid-2007 until end of 2008
- How can we better organize/collect data?

Airline Pax: Absolute Number per Month

Organization of the Course

Contents:

- Basics, Mathematical Concepts, Time Series in R
- Descriptive Analysis (Plots, Decomposition, Correlation)
- Models for Stationary Series (AR(p), MA(q), ARMA(p,q))
- Non-Stationary Models (SARIMA, GARCH, Long-Memory)
- Forecasting (Regression, Exponential Smoothing, ARMA)
- Miscellaneous (Multivariate, Spectral Analysis, State Space)

Goal:

The students acquire experience in analyzing time series problems, are able to work with the software package R, and can perform time series analyses correctly on their own.

Organization of the Course

Applied Time Series Analysis - SS 2013

People:

Lecturer: Dr. Marcel Dettling Assistants: Patric Müller Preetam Nandy

(patric.mueller@stat.math.ethz.ch) (nandy@stat.math.ethz.ch)

(marcel.dettling@stat.math.ethz.ch)

Organization:

This course will be visited by students from various Master and Doctoral Programs at ETH and elsewhere. It is the short version of the course which will be awarded with 4 ECTS credits. The extended version with 6 ECTS credits takes place in the even years.

Lectures:

Lectures will be held on Mondays from 10.15-11.55 at ETH Zentrum, room HG E1.2. Theory and examples will be shown on power point slides and the blackboard. Also, a scriptum is available. The tentative schedule is as follows:

Week	Date	LL	Topics
01	18.02.2013	L/L	Introduction, Examples, Goals
02	25.02.2013	L/E	Mathematical Concepts, Stationarity
03	04.03.2013	L/L	Visualization, Transformations
04	11.03.2013	L/E	Descriptive Decomposition
05	18.03.2013	L/L	Autocorrelation, Partial Autocorrelation
06	25.03.2013	L/E	Stationary Time Series Models 1
07	08.04.2013	L/L	Stationary Time Series Models 2
08	15.04.2013	L/E	Time Series Regression
09	22.04.2013	L/L	Forecasting with Time Series
10	29.04.2013	L/E	Exponential Smoothing
11	06.05.2013	L/L	Multivariate Time Series Analysis
12	13.05.2013	L/E	Spectral Analysis
13	20.05.2013	-1-	-
14	27.05.2013	L/L	Miscellaneous, Outlook, Exam Information

Exercises:

Exercises will be held every second week in the lecture room HG E1.2, where an assistant will provide some background and useful hints on how to approach the problems. Solving the problems needs to be done autonomously and requires the use of the statistical software package R. The exercise schedule is as follows:

Series	Date	Topic	Hand-In	Solutions
01	25.02.2013	Time series in R	04.03.2013	11.03.2013
02	11.03.2013	Plotting and Decomposing	25.03.2013	18.03.2013
03	25.03.2013	Autocorrelation, Modelling	08.04.2013	15.04.2013
04	15.04.2013	ARMA-Models and Applications	22.04.2013	29.04.2013
05	29.04.2013	Forecasting with Time Series	06.05.2013	13.05.2013
06	13.05.2013	Miscellaneous Topics	21.05.2013	-

→ more details are given on the additional organization sheet

Introduction: What is a Time Series?

A time series is a set of observations x_t , where each of the observations was made at a specific time t.

- the set of times T is discrete and finite
- observations were made at fixed time intervals
- continuous and irregularly spaced time series are not covered

Rationale behind time series analysis:

The rationale in time series analysis is to understand the past of a series, and to be able to predict the future well.

Example 1: Air Passenger Bookings

> data(AirPassengers)

> AirPassengers

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1949	112	118	132	129	121	135	148	148	136	119	104	118
1950	115	126	141	135	125	149	170	170	158	133	114	140
1951	145	150	178	163	172	178	199	199	184	162	146	166
1952	171	180	193	181	183	218	230	242	209	191	172	194
1953	196	196	236	235	229	243	264	272	237	211	180	201
1954	204	188	235	227	234	264	302	293	259	229	203	229
1955	242	233	267	269	270	315	364	347	312	274	237	278
1956	284	277	317	313	318	374	413	405	355	306	271	306
1957	315	301	356	348	355	422	465	467	404	347	305	336
1958	340	318	362	348	363	435	491	505	404	359	310	337
1959	360	342	406	396	420	472	548	559	463	407	362	405
1960	417	391	419	461	472	535	622	606	508	461	390	432

Example 1: Air Passenger Bookings

> plot(AirPassengers, ylab="Pax", main="Pax Bookings")

Passenger Bookings

Example 2: Lynx Trappings

- > data(lynx)
- > plot(lynx, ylab="# of Lynx", main="Lynx Trappings")

Lynx Trappings

Example 3: Luteinizing Hormone

- > data(lh)
- > plot(lh, ylab="LH level", main="Luteinizing Hormone")

Luteinizing Hormone

Example 3: Lagged Scatterplot

- > plot(lh[1:47], lh[2:48], pch=20)
- > title("Scatterplot of LH Data with Lag 1")

Scatterplot of LH Data with Lag 1

Example 4: Swiss Market Index

We have a multiple time series object:

```
> data(EuStockMarkets)
> EuStockMarkets
Time Series:
Start = c(1991, 130)
End = c(1998, 169)
Frequency = 260
             DAX
                    SMT
                           CAC
                                 FTSE
1991.496 1628.75 1678.1 1772.8 2443.6
1991,500 1613,63 1688,5 1750,5 2460,2
1991.504 1606.51 1678.6 1718.0 2448.2
1991.508 1621.04 1684.1 1708.1 2470.4
1991.512 1618.16 1686.6 1723.1 2484.7
1991.515 1610.61 1671.6 1714.3 2466.8
```

Example 4: Swiss Market Index

> smi <- ts(tmp, start=start(esm), freq=frequency(esm))
> plot(smi, main="SMI Daily Closing Value")

SMI Daily Closing Value

Example 4: Swiss Market Index

- > lret.smi <- log(smi[2:1860]/smi[1:1859])</pre>
- > plot(lret.smi, main="SMI Log-Returns")

SMI Log-Returns

Goals in Time Series Analysis

1) Exploratory Analysis

Visualization of the properties of the series

- time series plot
- decomposition into trend/seasonal pattern/random error
- correlogram for understanding the dependency structure

2) Modeling

Fitting a stochastic model to the data that represents and reflects the most important properties of the series

- done exploratory or with previous knowledge
- model choice and parameter estimation is crucial
- inference: how well does the model fit the data?

Goals in Time Series Analysis

3) Forecasting

Prediction of future observations with measure of uncertainty

- mostly model based, uses dependency and past data
- is an extrapolation, thus often to take with a grain of salt
- similar to driving a car by looking in the rear window mirror

4) Process Control

The output of a (physical) process defines a time series

- a stochastic model is fitted to observed data
- this allows understanding both signal and noise
- it is feasible to monitor normal/abnormal fluctuations

Goals in Time Series Analysis

5) Time Series Regression

Modeling response time series using 1 or more input series

$$Y_t = \beta_0 + \beta_1 u_t + \beta_2 v_t + E_t$$

where E_t is independent of u_t and v_t , but not i.i.d.

Example: $(Ozone)_t = (Wind)_t + (Temperature)_t + E_t$

Fitting this model under i.i.d error assumption:

- leads to unbiased estimates, but...
- often grossly wrong standard errors
- thus, confidence intervals and tests are misleading

Stochastic Model for Time Series

- **Def:** A *time series process* is a set $\{X_t, t \in T\}$ of random variables, where T is the set of times. Each of the random variables $X_t, t \in T$ has a univariate probability distribution F_t .
- If we exclusively consider time series processes with equidistant time intervals, we can enumerate $\{T = 1, 2, 3, ...\}$
- An observed time series is a realization of $X = (X_1, ..., X_n)$, and is denoted with small letters as $x = (x_1, ..., x_n)$.
- We have a multivariate distribution, but only 1 observation (i.e. 1 realization from this distribution) is available. In order to perform "statistics", we require some additional structure.

Stationarity

For being able to do statistics with time series, we require that the series "doesn't change its probabilistic character" over time. This is mathematically formulated by **strict stationarity**.

Def: A time series $\{X_t, t \in T\}$ is strictly stationary, if the joint distribution of the random vector (X_t, \dots, X_{t+k}) is equal to the one of (X_s, \dots, X_{s+k}) for all combinations of t, s and k.

→
$$X_t \sim F$$

$$E[X_t] = \mu$$

$$Var(X_t) = \sigma^2$$

$$Cov(X_t, X_{t+h}) = \gamma_h$$

$$X_t \text{ are identically distributed}$$

$$X_t \text{ and } X_t \text{ are identical expected value}$$

$$X_t \text{ bave identical variance}$$

$$X_t \text{ bave identical variance}$$

$$K_t \text{ bave identical variance}$$

Stationarity

It is impossible to "prove" the theoretical concept of stationarity from data. We can only search for evidence in favor or against it.

However, with strict stationarity, even finding evidence only is too difficult. We thus resort to the concept of *weak stationarity*.

Def: A time series $\{X_t, t \in T\}$ is said to be *weakly stationary*, if

$$E[X_t] = \mu$$

$$Cov(X_t, X_{t+h}) = \gamma_h \text{ for all lags } h$$

and thus also: $Var(X_t) = \sigma^2$

Note that weak stationarity is sufficient for "practical purposes".

Testing Stationarity

- In time series analysis, we need to verify whether the series has arisen from a stationary process or not. Be careful: stationarity is a property of the process, and not of the data.
- Treat stationarity as a hypothesis! We may be able to reject it when the data strongly speak against it. However, we can never prove stationarity with data. At best, it is plausible.
- Formal tests for stationarity do exist (→ see scriptum). We discourage their use due to their low power for detecting general non-stationarity, as well as their complexity.

\rightarrow Use the time series plot for deciding on stationarity!

Evidence for Non-Stationarity

- Trend, i.e. non-constant expected value
- **Seasonality**, i.e. deterministic, periodical oscillations
- Non-constant variance, i.e. multiplicative error
- Non-constant dependency structure

Remark:

Note that some periodical oscillations, as for example in the lynx data, can be stochastic and thus, the underlying process is assumed to be stationary. However, the boundary between the two is fuzzy.

Strategies for Detecting Non-Stationarity

1) Time series plot

- non-constant expected value (trend/seasonal effect)
- changes in the dependency structure
- non-constant variance

2) Correlogram (presented later...)

- non-constant expected value (trend/seasonal effect)
- changes in the dependency structure

A (sometimes) useful trick, especially when working with the correlogram, is to split up the series in two or more parts, and producing plots for each of the pieces separately.

Example: Simulated Time Series 1

Example: Simulated Time Series 2

Example: Simulated Time Series 3

Example: Simulated Time Series 4

Time Series in R

- In **R**, there are *objects*, which are organized in a large number of *classes*. These classes e.g. include *vectors*, *data frames*, *model output*, *functions*, and many more. Not surprisingly, there are also *several classes for time series*.
- We focus on **ts**, the basic class for regularly spaced time series in **R**. This class is comparably simple, as it can only represent time series with *fixed interval records*, and *only uses numeric time stamps*, i.e. enumerates the index set.
- For defining a **ts** object, we have to supply the *data*, but also the *starting time* (as argument start), and the *frequency* of measurements as argument frequency.

Time Series in R: Example

Data: number of days per year with traffic holdups in front of the Gotthard road tunnel north entrance in Switzerland.

2004	2005	2006	2007	2008	2009	2010
88	76	112	109	91	98	139

> rawdat <- c(88, 76, 112, 109, 91, 98, 139)
> ts.dat <- ts(rawdat, start=2004, freg=1)</pre>

```
> ts.dat
Time Series: Start = 2004
End = 2010; Frequency = 1
[1] 88 76 112 109 91 98 139
```

Time Series in R: Example

> plot(ts.dat, ylab="# of Days", main="Traffic Holdups")

Traffic Holdups

Further Topics in R

The scriptum discusses some further topics which are of interest when doing time series analysis in R:

- Handling of dates and times in R
- Reading/Importing data into R
- → Please thoroughly read and study these chapters. Examples will be shown/discussed in the exercises.