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2. Greedy is good for p� n: Boosting

data: (X1, Y1), . . . , (Xn, Yn) ( i.i.d. or stationary),

predictor variables Xi ∈ Rp
response variables Yi ∈ R or Yi ∈ {0, 1, . . . , J − 1}
aim: estimation of function f(·) : Rp → R (including feature selection) e.g.

f(x) = IE[Y |X = x] or f(x) = IP[Y = 1|X = x] with Y ∈ {0, 1}
or distribution of survival time Y given X depends on some function f(X) only

our setting: typically p is very large

historically: Boosting is an ensemble scheme (multiple predictions and averaging)
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base procedure:

data
algorithm A−→ θ̂(·) (a function estimate)

e.g.: simple linear regression, tree, MARS, “classical” smoothing, neural nets, ...

generating multiple predictions:

weighted data 1
algorithm A−→ θ̂1(·)

weighted data 2
algorithm A−→ θ̂2(·)

· · · · · ·

weighted data M
algorithm A−→ θ̂M (·)

Aggregation: f̂A(·) =
∑M
m=1 amθ̂m(·)

data weights? averaging weights am?
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classification of 2 lymph nodal status in breast cancer using gene expressions from

microarray data:

n = 33, p = 7129 (for CART: gene-preselection, reducing to p = 50)

method test set error gain over CART

CART 22.5% –

LogitBoost with trees 16.3% 28%

LogitBoost with bagged trees 12.2% 46%
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2.1. Boosting algorithms

AdaBoost proposed for classification by Freund & Schapire (1996)

data weights (rough original idea): large weights to previously heavily misclassified

instances (sequential algorithm)

averaging weights am: large if in-sample performance in mth round was good

Why should this be good?

(actually: other weighting schemes are equally good or better...)
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Breiman (1998/99):

AdaBoost is functional gradient descent (FGD) procedure

a mix of statistical estimation and numerical optimization...
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2.2 L2Boosting

(see also Friedman, 2001)

L2Boosting with base procedure θ̂(·) is a “constrained minimization” of

empirical risk n−1
∑n

i=1(Yi − f(Xi))
2 w.r.t. f(·)

 useful for regression

m = 1 : (Xi, Yi)
n
i=1  θ̂1(·), f̂1 = νθ̂1  resid. Ui = Yi − f̂1(Xi)

m = 2 : (Xi, Ui)
n
i=1  θ̂2(·), f̂2 = f̂1 + νθ̂2  resid. Ui = Yi − f̂2(Xi)

... ...

fmstop(·) = ν
∑mstop

m=1 θ̂m(·), mstop a tuning parameter

repeated greedy fitting (with shrinkage ν) of residuals

Tukey (1977): twicing for mstop = 2 and ν = 1
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Any gain over classical methods? (for additive modeling)

Ozone data: n=300, p=8

boosting iterations

M
S

E

0 20 40 60 80 100

18
19

20
21

22

n = 300, p = 8

- magenta: L2Boosting with stumps

(horiz. line = cross-validated stopping)

- black: L2Boosting with componentwise

smoothing spline

(horiz. line = cross-validated stopping)

i.e: smoothing spline fitting against the

selected predictor which reduces RSS most

- green: MARS restricted to additive modeling

- red: additive model using backfitting

L2Boosting with stumps or comp. smoothing splines also yields additive model:∑M
m=0 θ̂m(x(Ŝm))) = ĝ1(x(1)) + . . .+ ĝp(x

(p))
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Simulated data: non-additive regression function, n = 200, p = 100

Regression: n=200, p=100

boosting iterations

M
S

E

0 50 100 150 200 250 300

11
12

13
14

15
16

- magenta: L2Boosting with stumps

- black: L2Boosting with componentwise

- green: MARS restricted to additive modeling

- red: additive model using backfitting and

fwd. var. selection
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similar for classification

very often: boosting performs comparatively well in high-dimensions

(there is a lot of empirical evidence for this)

also SVM is often surprisingly accurate...
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2.3. Choice of the base procedure

most popular in machine learning: tree algorithms (CART, C4.5)

they do variable/feature selection

have seen: for componentwise smoothing splines or stumps

−→ boosting yields an additive model fit

 we can use boosting for fitting in “quite many” structural models
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Example: degree 2 nonparametric interaction modeling

Friedman #1 model:

Y = 10 sin(πX1X2) + 20(X3 − 0.5)2 + 10X4 + 5X5 +N(0, 1), X = (X1, . . . , X20) ∼ Unif.([0, 1]20)

0 100 200 300 400 500

4
5

6
7

p=20, p−eff=10, n=50

boosting iterations

M
S

E

MARS

L2Boost

AIC_c stopped

L2Boosting with pairwise splines

sample size n = 50

p = 20, effective peff = 5

16

'

&

$

%

2.4. L2Boosting for high-dimensional linear models

linear model

Y = f(X) + ε,

f(x) =

p∑

j=1

βjx
(j), p� n

or: a highly over-complete dictionary {gj(·); j = 1, . . . , p� n}
our approach: L2Boosting with componentwise linear LS regression

This base procedure fits a univariate linear regression model against the one

predictor variable which reduces residual sum of squares most
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first round of estimation: selected predictor variable X (Ŝ1) (e.g. = X(3))

corresponding ordinary least squares β̂Ŝ1

use shrunken fit f̂1 = νβ̂Ŝ1
X(Ŝ1) (e.g. ν = 0.1)

second round of estimation: selected predictor variable X (Ŝ2) (e.g.= X(21))

corresponding OLS β̂Ŝ2

use shrunken fit f̂2 = f̂1 + νβ̂Ŝ2
X(Ŝ2)

etc.

very different from forward variable selection

this method does variable selection and

assigns variable amount of degrees of freedom for selected variables (shrinkage)

not full OLS on selected variables (even with ν = 1)

For ν = 1, this L2Boosting is known as Matching Pursuit (Mallat and Zhang, 1993)
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Gauss-Southwell algorithm

C.F. Gauss in 1803

“Princeps Mathematicorum” R.V. Southwell in 1933

Professor in engineering

Oxford University
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because of

variable selection and

assigning variable amount of degrees of freedom (shrinkage) for selected variables

reminds to Lasso (`1-penalized regression) (Tibshirani, 1996)

β̂Lasso = argminβ

n∑

i=1

(Yi −
p∑

j=1

βjX
(j)
i )2 + λ︸︷︷︸

≥0

p∑

j=1

|βj |

and indeed: there is a relation (Efron, Hastie, Johnstone, Tibshirani, 2004)

but: the algorithms and estimates are not the same
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Theorem for high dimensions (PB, 2004)

L2Boosting with comp. linear LS regression is consistent (for suitable number of

boosting iterations) if:

• pn = O(exp(Cn1−ξ)) (0 < ξ < 1)

essentially exponentially many variables relative to n

• supn
∑pn
j=1 |βj,n| <∞ `1-sparseness of true function

i.e. for suitable, slowly growingm = mn:

IEX |f̂mn,n(X)− fn(X)|2 = oP (1) (n→∞)

“no” assumptions about the predictor variables/design matrix

in other words:

consistency for de-noising sparse signal with highly over-complete dictionaries

similar result has been given for the Lasso by Greenshtein and Ritov (2004)
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binary lymph node classification in breast cancer using gene expressions
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40

L2Boosting for breast cancer classification, p = 7130

boosting iterations

m
is

cl
as

si
fic

at
io

n

AIC−stopped

SVM

PELORA

42 out of p = 7130 genes are selected

(some of them biologically meaningful)

n = 49, p = 7130 gene expressions

- black: L2Boosting with componentwise

linear LS regression

- red: SVM with radial basis kernel

- blue: Pelora: a “biologically inspired”

gene grouping method

(Dettling & PB, 2004)

good prediction and

interesting gene selection
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3. L2Boosting, Lasso and LARS

Efron et al. (2004): intriguing relation between L2Boosting and

Lasso: β̂Lasso = argminβ
∑n

i=1(Yi −
∑p
j=1 βjX

(j)
i )2 + λ

∑p
j=1 |βj |

for some special cases, roughly:

iterations of “L2Boosting with “infinitesimally” small ν

yield all Lasso solutions when varying λ”

 computationally interesting to produce all Lasso solutions in

one sweep of boosting

Least Angle Regression LARS (Efron et al., 2004) is computationally even more

clever and efficient than L2Boosting
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for p� n

both: Lasso/LARS and L2Boosting are very useful

and LARS is really fast
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