4. Transformations

Overview	2
Family of powers and roots	3
Family of powers and roots	4
Method for finding transformation	5
Using a 'start'	6
Transforming skewness	7
Transforming nonlinearity	8
Transforming nonconstant spread	9
Summary of transformations	10

Overview

■ Linear least squares regression makes strong assumptions about the data:

- ◆ Linear relation
- ◆ Equal variance
- Normal distribution
- Transforming the data can help satisfy these assumptions. It can also assist in examining the data.
- Disadvantage of transformations: interpretation becomes more difficult

2 / 10

Family of powers and roots

- \blacksquare Useful family of transformations: $X\mapsto X^p$
 - $\blacklozenge \ p=2: \ X\mapsto X^2$

•
$$p = -1$$
: $X \mapsto 1/X$

- p = 1/2: $X \mapsto \sqrt{X}$
- Little more complex, but easier to compare: $X \mapsto X^{(p)} = \frac{X^p 1}{p}$.
- See picture.

Family of powers and roots

- **\blacksquare** Dividing by p is necessary to preserve the direction of X.
- All transformations match in value and slope at X = 1.
- We use the convention $X^{(0)} = \log X$ (because $\lim_{p \to 0} \frac{X^p 1}{p} = \log X$).
- Ascending the ladder (p > 1) spreads out large values and compresses small values.
- **\blacksquare** Descending the ladder (p < 1) compresses large values and spreads out small values.

4 / 10

Method for finding transformation

- Method:
 - Use $X^{(p)}$ to find the right value of p.
 - Once you've found the right p, it is often easier to use X^p instead of $X^{(p)}$.
- Also, it is often easier to use ${}^{10}\log(X)$ or ${}^{2}\log(X)$ instead of the natural logarithm.

Using a 'start'

- If there are negative values, the transformation doesn't preserve direction \rightarrow use a positive start.
- If the ratio of the largest to the smallest observation is close to $1 (\leq 5)$, then the transformation is nearly linear and therefore ineffective \rightarrow use a negative start.
- We usually select values in the range $-2 \le p \le 3$, and simple fractions such as 1/2 and 1/3.
- Always keep interpretability in mind. If p = .1 seems best for the data, it is often better to use the log transformation (p = 0), because this is easier to interpret.

6 / 10

Transforming skewness

- Problems with skewed distribution
 - Data difficult to examine because most observations are in a small part of the range of the data. Outlying values in the direction opposite to the skew may be invisible.
 - Least squares regression traces the conditional mean of Y given the X's. The mean is not a good summary of the center of a skewed distribution.
- Right skew (positive skew) \rightarrow need to compress large values \rightarrow descend the ladder of powers \rightarrow p < 1.
- Left skew (negative skew) \rightarrow need to compress small values \rightarrow ascend the ladder of powers $\rightarrow p > 1$.
- See R-code.

Transforming nonlinearity

- Why do we want things to be linear?
 - Linear relationships are simple, and there is nice statistical theory for these models.
 - ◆ If there are several independent variables, nonparametric regression may be infeasible
- *Simple monotone* nonlinearity (direction of curvature does not change) can often be corrected using a transformation in the family of powers and roots
- Example: quadratic function two possible transformations
- Mosteller and Tukey's Bulging rule
- Consider how transformation affects symmetry. If the dependent variable already was symmetric, then try to leave this one untouched. And again, keep in mind interpretability.
- See R-code.

8 / 10

Transforming nonconstant spread

- Differences in spread are often related to differences in level. Often: higher level → higher spread
- When spread is positively related to level, we need to compress large values \rightarrow transformation down the ladder of powers and roots $\rightarrow p < 1$.
- When spread is negatively related to level (rare), we need to spread out large values \rightarrow transformation up the ladder of powers and roots $\rightarrow p > 1$.
- See R-code.

Summary of transformations

- Advantage: transformations can help satisfy the assumptions of linearity, constant variance and normality.
- Disadvantage: interpretation is more difficult.
- The family of powers and roots $(X^p \text{ or } (X^p 1)/p)$:
 - Ascending the ladder of powers (p > 1) spreads out large values and compresses small values.
 - Descending the ladder of powers (p < 1) does the opposite.