

Cluster Analysis

Applied Multivariate Statistics – Spring 2012

Overview

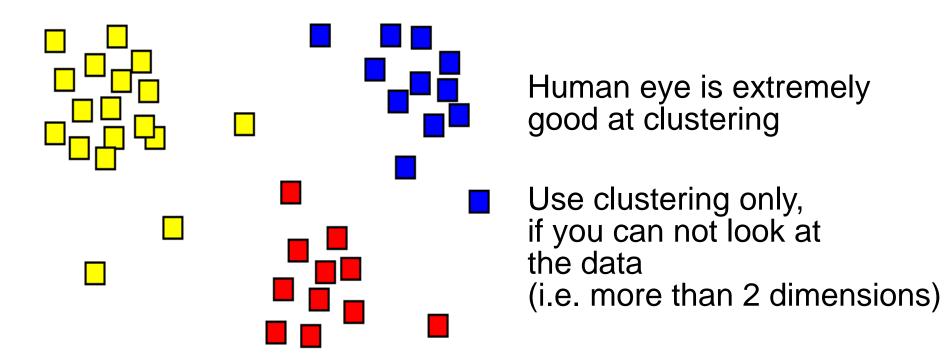
- Hierarchical Clustering: Agglomerative Clustering
- Partitioning Methods: K-Means and PAM
- Gaussian Mixture Models

Goal of clustering

 Find groups, so that elements within cluster are very similar and elements between cluster are very different Problem: Need to interpret meaning of a group

- Examples:
 - Find customer groups to adjust advertisement
 - Find subtypes of diseases to fine-tune treatment
- Unsupervised technique: No class labels necessary
- N samples, k cluster: k^N possible assignments
 E.g. N=100, k=5: 5¹⁰⁰ = 7*10⁶⁹!!
 Thus, impossible to search through all assignments

Clustering is useful in 3+ dimensions

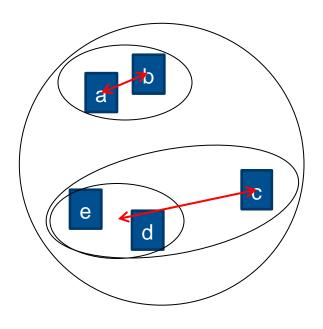


Hierarchical Clustering

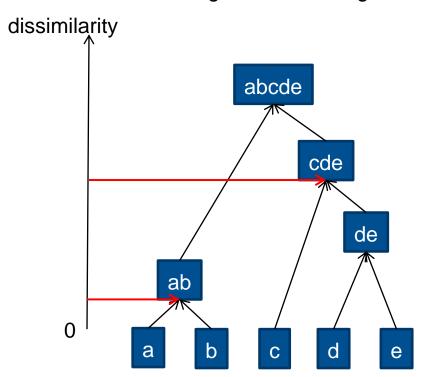
- Agglomerative: Build up cluster from individual observations
- Divisive: Start with whole group of observations and split off clusters
- Divisive clustering has much larger computational burden
 We will focus on agglomerative clustering
- Solve clustering for all possible numbers of cluster (1, 2, ..., N) at once
 Choose desired number of cluster later

Agglomerative Clustering

Data in 2 dimensions



Clustering tree = Dendrogramm

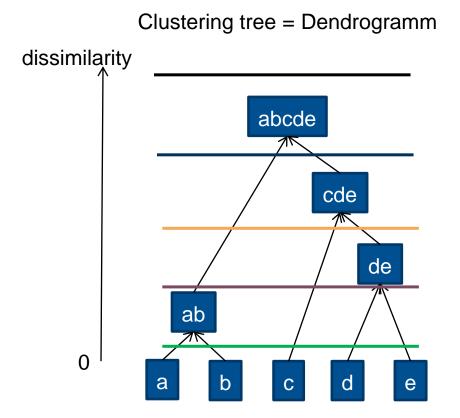


Join samples/cluster that are closest until only one cluster is left

Agglomerative Clustering: Cutting the tree

Get cluster solutions by cutting the tree:

- 1 Cluster: abcde (trivial)
- 2 Cluster: ab cde
- 3 Cluster: ab c de
- 4 Cluster: ab c d e
- 5 Cluster: a b c d e



Dissimilarity between samples

- Any dissimilarity we have seen before can be used
 - euclidean
 - manhattan
 - simple matching coefficent
 - Jaccard dissimilarity
 - Gower's dissimilarity
 - etc.

Dissimilarity between cluster

- Based on dissimilarity between samples
- Most common methods:
 - single linkage
 - complete linkage
 - average linkage
- No right or wrong: All methods show one aspect of reality
- If in doubt, I use complete linkage

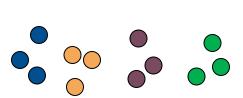
Single linkage

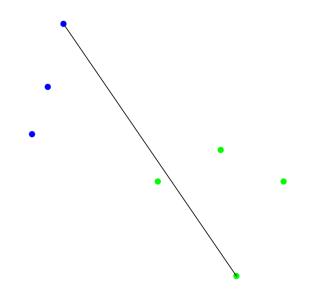
 Distance between two cluster = minimal distance of all element pairs of both cluster

 Suitable for finding elongated cluster

Complete linkage

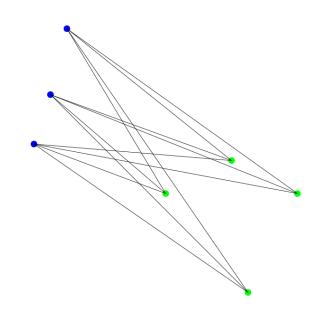
- Distance between two cluster = maximal distance of all element pairs of both cluster
- Suitable for finding compact but not well separated cluster





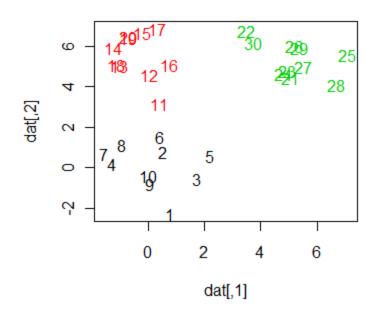
Average linkage

- Distance between two cluster = average distance of all element pairs of both cluster
- Suitable for finding well separated, potato-shaped cluster

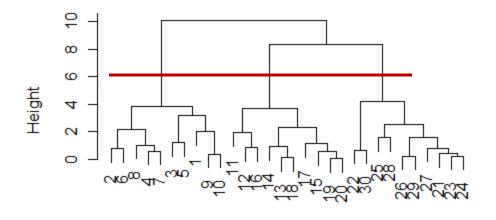


Choosing the number of cluster

- No strict rule
- Find the largest vertical "drop" in the tree



Cluster Dendrogram



dist(dat) hclust (*, "complete")

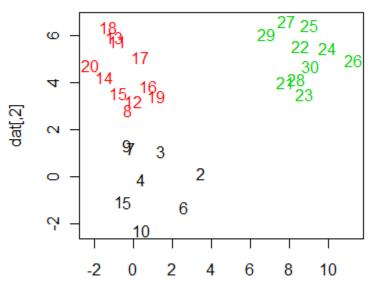
Quality of clustering: Silhouette plot

- One value S(i) in [0,1] for each observation
- Compute for each observation i:
 a(i) = average dissimilarity between i and all other points of the cluster to which i belongs
 b(i) = average dissimilarity between i and its "pointher"
 - b(i) = average dissimilarity between i and its "neighbor" cluster, i.e., the nearest one to which it does *not* belong.

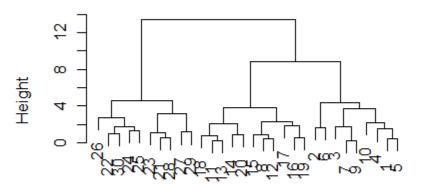
Then,
$$S(i) = \frac{(b(i)-a(i))}{\max(a(i),b(i))}$$

S(i) large: well clustered; S(i) small: badly clustered
 S(i) negative: assigned to wrong cluster

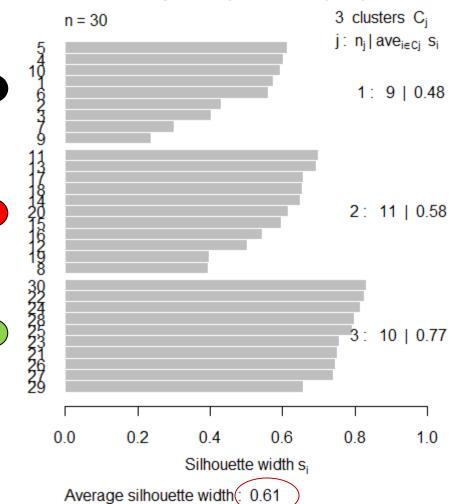
Silhouette plot: Example



Cluster Dendrogram



Silhouette plot of (x = cutree(c, 3), dist = dist



dist(dat) hclust (*, "complete")

Agglomerative Clustering in R

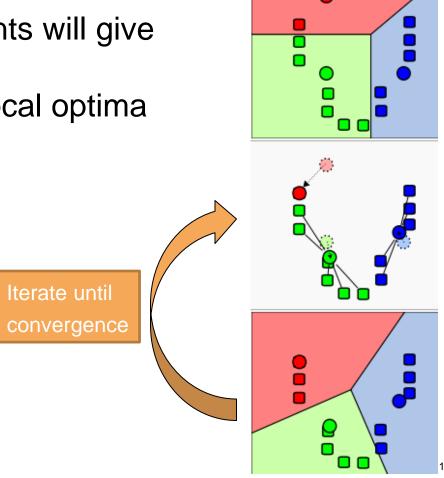
- Pottery Example
- Functions "hclust", "cutree" in package "stats"
- Alternative: Function "agnes" in package "cluster"
- Function "silhouette" in package "cluster"

Partitioning Methods: K-Means

- Number of clusters K is fixed in advance
- Find K cluster centers μ_i and assignments, so that within-groups Sum of Squares (WGSS) is minimal
- $WGSS = \sum_{all\ Cluster\ C} \sum_{Point\ i\ in\ Cluster\ C} (x_i \mu_i)^2$

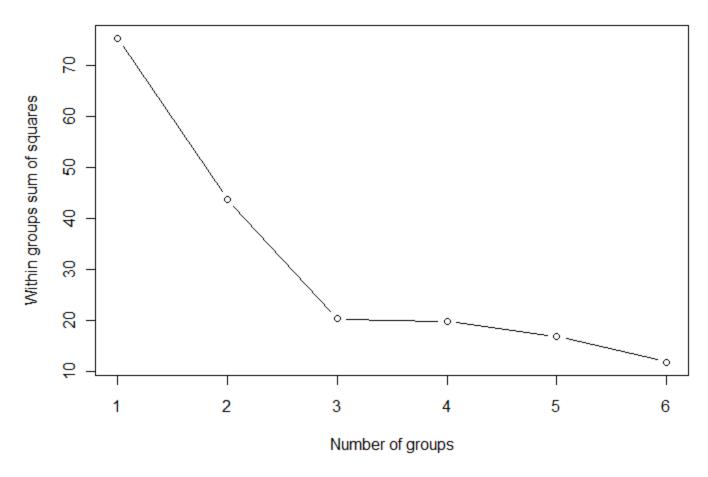
K-Means

- Exact solution computationally infeasible
- Approximate solutions, e.g. Lloyd's algorithm
- Different starting assignments will give different solutions
 Random restarts to avoid local optima



K-Means: Number of clusters

- Run k-Means for several number of groups
- Plot WGSS vs. number of groups
- Choose number of groups after the last big drop of



Robust alternative: PAM

- Partinioning around Medoids (PAM)
- K-Means: Cluster center can be an arbitrary point in space PAM: Cluster center must be an observation ("medoid")
- Advantages over K-means:
 - more robust against outliers
 - can deal with any dissimilarity measure
 - easy to find representative objects per cluster (e.g. for easy interpretation)

Partitioning Methods in R

- Function "kmeans" in package "stats"
- Function "pam" in package "cluster"
- Pottery revisited

Gaussian Mixture Models (GMM)

- Up to now: Heuristics using distances to find cluster
- Now: Assume underlying statistical model
- Gaussian Mixture Model:

$$f(x; p, \theta) = \sum_{j=1}^{K} p_j g_j(x; \theta_j)$$

K populations with different probability distributions

• Example: $X_1 \sim N(0,1)$, $X_2 \sim N(2,1)$; $p_1 = 0.2$, $p_2 = 0.8$

$$f(x; p, \theta) = 0.2 \cdot \frac{1}{\sqrt{2\pi}} \exp(-x^2/2) + 0.8 \cdot \frac{1}{\sqrt{2\pi}} \exp(-(x-2)^2/2)$$

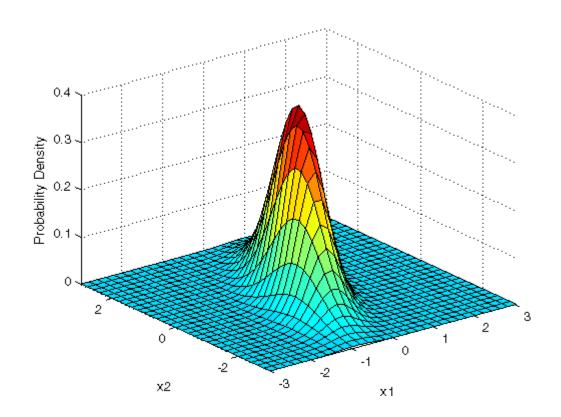
- Find number of classes and parameters p_j and θ_j given data
- Assign observation x to cluster j, where estimated value of

$$P(cluster j|x) = \frac{p_j g_j(x; \theta_j)}{f(x; p, \theta)}$$

is largest

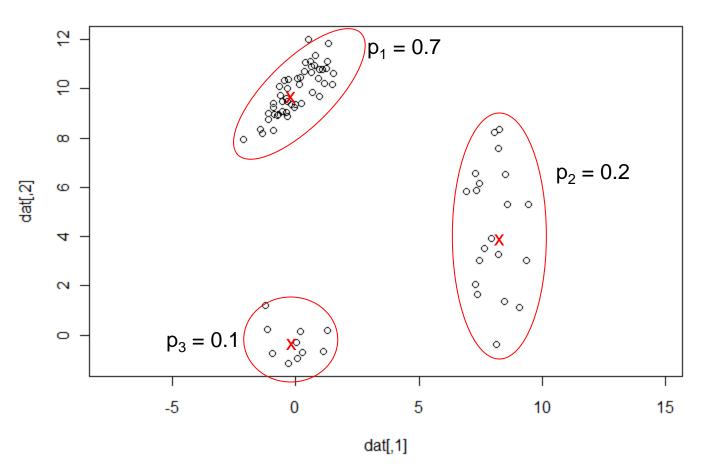
Revision: Multivariate Normal Distribution

$$f(x; \mu, \Sigma) = \frac{1}{\sqrt{2\pi|\Sigma|}} \exp\left(-\frac{1}{2} \cdot (x - \mu)^T \Sigma^{-1} (x - \mu)\right)$$



GMM: Example estimated manually

- 3 clusters
- $p_1 = 0.7$, $p_2 = 0.2$, $p_3 = 0.1$
- Mean vector and cov. Matrix per cluster



Fitting GMMs 1/2

 Maximum Likelihood Method Hard optimization problem

Simplification: Restrict Covariance matrices to certain patterns (e.g. diagonal)

1	
	/

identifier	Model	HC	EM	Distribution	Volume	Chana	Orientation
identiner	Model	пС	EdVI		vorume	Shape	Orientation
E		•	•	(univariate)	equal	\ /	/
V		•	•	(univariate)	variable	\	/
EII	λI	•	•	Spherical	equal	equal/	NA /
VII	$\lambda_k I$	•	•	Spherical	variable	equa	NA /
EEI	λA		•	Diagonal	equal	equal	coordinate axes
VEI	$\lambda_k A$		•	Diagonal	variable	equal	coordinate axes
EVI	λA_k		•	Diagonal	equal	variable	coordinate axes
VVI	$\lambda_k A_k$		•	Diagonal	variable	variable	coordinate axes
EEE	λDAD^T	•	•	Ellipsoidal	equal	equal	equal
EEV	$\lambda D_k A D_k^T$		•	Ellipsoidal	equal	equal	variable
VEV	$\lambda_k D_k A D_k^T$		•	Ellipsoidal	variable	equal	variable
VVV	$\lambda_k D_k A_k D_k^T$	•	•	Ellipsoidal	variable	variable	variable

Fitting GMMs 2/2

- Problem: Fit will never get worse if you use more cluster or allow more complex covariance matrices
 - → How to choose optimal model ?
- Solution: Trade-off between model fit and model complexity

BIC = log-likelihood - log(n)/2*(number of parameters)

Find solution with maximal BIC

GMMs in R

- Function "Mclust" in package "mclust"
- Pottery revisited

Giving meaning to clusters

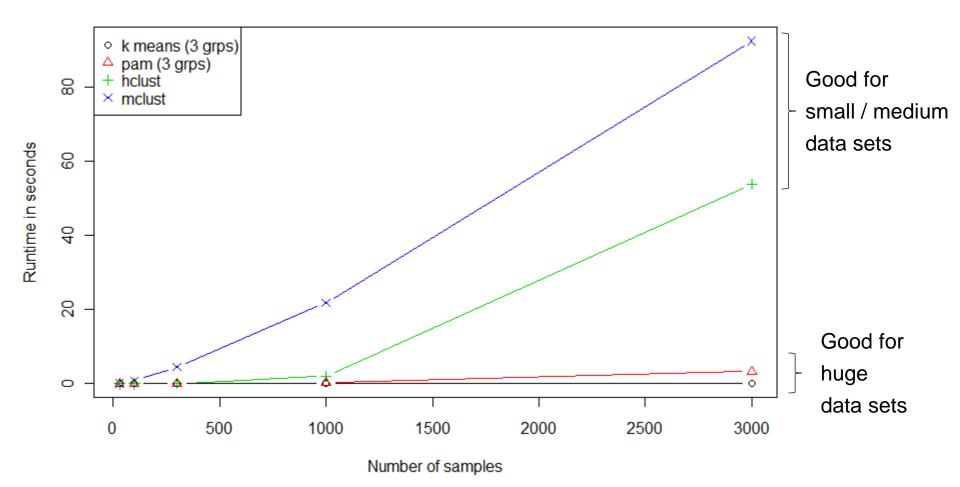
- Generally hard in many dimensions
- Look at position of cluster centers or cluster representatives (esp. easy in PAM)

(Very) small runtime study

Uniformly distributed points in [0,1]⁵ on my desktop

1 Mio samples with k-means: 5 sec

(always just one replicate; just to give you a rough idea...)



Comparing methods

- Partitioning Methods:
 - + Super fast ("millions of samples")
 - No underlying Model
- Agglomerative Methods:
 - + Get solutions for all possible numbers of cluster at once
 - slow ("thousands of samples")
- GMMs:
 - + Get statistical model for data generating process
 - + Statistically justified selection of number of clusters
 - very slow ("hundreds of samples")

Concepts to know

- Agglomerative clustering, dendrogram, cutting a dendrogram, dissimilarity measures between cluster
- Partitioning methods: k-Means, PAM
- GMM
- Choosing number of clusters:
 - drop in dendrogram
 - drop in WGSS
 - BIC
- Quality of clustering: Silhouette plot

R functions to know

- Functions "kmeans", "hclust", "cutree" in package "stats"
- Functions "pam", "agnes", "shilouette" in package "cluster"
- Function "Mclust" in package "mclust"