# Supervised Learning: Linear Method (2/2)

#### Applied Multivariate Statistics – Spring 2012



### **Overview**

- Logistic Regression
- Bayes rule for general loss functions

# **Generalized Linear Models**

Stochastic part

 $X \sim F(\theta)$ 

Deterministic part

$$g(\theta) = \eta(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p$$
   
 (1)   
 Link function Linear predictor

# **Examples**

- Linear Regression
  - $Y \sim N(\mu, \sigma^2)$
  - $\mu = \beta_0 + \beta_1 x_1$

Link function: Identity function Example: Distance and Travel time in tram

Logistic Regression

$$Y \sim Bernoulli(p)$$
$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1$$

Link function: logit Example: Survival and dose of poison





# Logistic regression for supervised learning

- Logistic regression computes posterior probability of class membership
- Can be used in the same way as LDA

#### Logistic regression and LDA are almost the same thing

LDA: Assuming same normal density in each group

Logistic regression by assumption:

$$\log\left(\frac{P(Y=1|X=x)}{P(Y=0|X=x)}\right) = \beta_0 + \beta^T x$$

# **Difference between LDA and Logistic Regression**

 Parameter estimate LDA: Maximize joint likelihood

$$\prod_{i} f(x_i, y_i) = \prod_{i} f(x_i | y_i) \prod_{i} f(y_i)$$

Gaussian Bernoulli

 Parameter estimate Logistic Regression: Maximize conditional likelihood

$$\prod_{i} f(x_{i}, y_{i}) = \prod_{i} f(y_{i} | x_{i}) \prod_{i} f(x_{i})$$

$$Iogistic \qquad ignored$$

 Logistic Regression is thus based on less assumptions, i.e., more flexible

# LDA

+ very comfortable implementation (CV, LD's)

+ easy to apply to several groups

- needs more assumptions

**Logistic Regression** 

 less comfortable implementation (CV harder, no LD's)

Possible but harder to use
for several groups
needs less assumptions

Personal suggestion:

- LDA for several groups, low-dim representation, quick solutions
- Logistic Regression for two groups, applications where performance is crucial

# **Example: Spam Filter**

R: Function "glm" with option "family = binomial"

True class

# **Loss functions**

Estimated class

- Loss function: L(k,I)
- Common choice: 0-1 loss

|       | T = 0 | T = 1 | T = 2 |
|-------|-------|-------|-------|
| E = 0 | 0     | 1     | 1     |
| E = 1 | 1     | 0     | 1     |
| E = 2 | 1     | 1     | 0     |

Other choices possible

|       | T = 0 | T = 1 | T = 2 |
|-------|-------|-------|-------|
| E = 0 | 0     | 10    | 3     |
| E = 1 | 9     | 0     | 27    |
| E = 2 | 4     | 5     | 0     |

# **Mathematical background**

- Classifier  $c(X): X \rightarrow \{1, ..., k\}$
- C: true class
- Probability of miss-classification:  $pmc(k) = P(c(X) \neq k | C = k)$
- **Risk function** R for classifier c:  $R(c,k) = E_X[L(k,c(X))|C = k] = \sum_{l=1}^{K} L(k,l)P(c(X) = l|C = k)$ Assuming 0-1-loss: R(c,k) = pmc(k)
- Total risk for classifier c:

Overall missclassification error

 $R(c) = E_C[R(c,C)] = \sum_{k=1}^{K} \pi_k R(c,k)$  error Assuming 0-1-loss:  $R(c) = \sum_{k=1}^{K} \pi_k pmc(k)$ 

## **Bayes rule for classification**

Classification rule that minimizes total risk under 0-1-loss is

$$c(X) = argmax_{l \le k} P(C = l | X = x)$$

 Classification rule that minimizes total risk under general loss function is

$$c(X) = \operatorname{argmin}_{l \le K} \sum_{j=1}^{K} L(j, l) P(C = j | X = x)$$

# **Bayes rule is a benchmark**

 No method can beat the Bayes rule, even given an infinite amount of data; i.e., sometimes, perfect classification is not possible

Intuition:



 Our job in practice: Find best possible estimate for posterior probability

### Example: Detecting HIV Assuming 0-1-loss

- Suppose LDA or Logistic regression yield for a patient P(HIV = 0|X=x) = 0.9, thus P(HIV = 1|X=x) = 0.1
- Assuming 0-1-loss

|          | T=HIV | T=No HIV |
|----------|-------|----------|
| E=HIV    | 0     | 1        |
| E=No HIV | 1     | 0        |

- Bayes rule: Choose class HIV=0 if P(HIV=0|X=x) > 0.5
- Thus in example, choose HIV=0, i.e. "patient has no HIV" Total risk based on 0-1-loss will be optimal

#### **Example: Detecting HIV**

**Assuming more realistic loss function** 

- Suppose LDA or Logistic regression yield for a patient P(HIV = 0|X=x) = 0.9, thus P(HIV = 1|X=x) = 0.1
- Assuming

|          | T=HIV | T=No HIV |
|----------|-------|----------|
| E=HIV    | 0     | 1        |
| E=No HIV | 100   | 0        |

Bayes rule: Choose class HIV=0 if  $\sum_{j=0}^{1} L(j,0)P(HIV = j | X = x) < \sum_{j=0}^{1} L(j,1)P(HIV = j | X = x)$ 

|                                            |           | T=HIV     | T=No HIV |
|--------------------------------------------|-----------|-----------|----------|
| Example: Continued                         | E=HIV     | 0         | 1        |
| truth estimate                             | E=No HIV  | 100       | 0        |
| L(0,0)P(0 x) + L(1,0)P(1 x) < L(0,1)P(0 x) | (x) + L   | (1,1)P(2) | 1 x)     |
| 0 * P(0 x) + 100 * P(1 x) < 1 * P(0 x) +   | -0 * P(1) | x)        |          |
| 100 * P(1 x) < P(0 x)                      |           |           |          |
| • Using $P(1 x) = 1 - P(0 x)$ we get:      |           |           |          |

100 - 100 \* P(0|x) < P(0|x)  $P(0|x) > \frac{100}{101} = 0.99$ 

- Bayes rule: Choose class HIV=0 if P(HIV=0|X=x) > 0.99
   I.e., only declare "no HIV" if you are really, really sure!
- Thus in example choose HIV=1, i.e., "patient has HIV" Total risk based on given loss function is optimized

# **Concepts to know**

- Logistic regression
- LDA vs. Logistic regression
- Bayes rule
  - as a benchmark
  - as a optimal rule for general loss functions

# **R** functions to know

Function "glm" with option family = "binomial"