Supervised Learning: Linear Methods (1/2)

Applied Multivariate Statistics – Spring 2012

Overview

- Review: Conditional Probability
- LDA / QDA: Theory
- Fisher's Discriminant Analysis
- LDA: Example
- Quality control: Testset and Crossvalidation
- Case study: Text recognition

Conditional Probability

One approach to supervised learning

Bayes rule:

Choose class where P(C|X) is maximal

(rule is "optimal" if all types of error are equally costly)

Special case: Two classes (0/1)

- choose c=1 if P(C=1|X) > 0.5 or

- choose c=1 if posterior odds P(C=1|X)/P(C=0|X) > 1

In Practice: Estimate P(C), μ_C , Σ_C

QDA: Doing the math... $\frac{1}{\sqrt{(2\pi)^d |\Sigma_C|}} \exp\left(-\frac{1}{2}(x-\mu_c)^T \Sigma_C^{-1}(x-\mu_c)\right)$

- Choose class where $\delta_c(x)$ is maximal
- Special case: Two classes Decision boundary: Values of x where $\delta_0(x) = \delta_1(x)$ is quadratic in x
- Quadratic Discriminant Analysis (QDA)

Simplification

- Assume same covariance matrix in all classes, i.e. $X|C \sim N(\mu_C \Sigma)$ Fix for all classes
- $\delta_c(x) = \log(P(C)) \frac{1}{2}\log(|\Sigma|) \frac{1}{2}(x \mu_C)^T \Sigma^{-1}(x \mu_C) + c =$ Prior $= \log(P(C)) - \frac{1}{2}(x - \mu_C)^T \Sigma^{-1}(x - \mu_C) + d =$ Sq. Mahalanobis distance $(= \log(P(C)) + x^T \Sigma^{-1} \mu_C - \frac{1}{2} \mu_C^T \Sigma^{-1} \mu_C)$

Decision boundary is linear in x

Linear Discriminant Analysis (LDA)

Classify to which class (assume equal prior)?

- Physical distance in space is equal
- Classify to class 0, since Mahal. Dist. is smaller

LDA vs.

+ Only few parameters to estimate; accurate estimates

- Inflexible

(linear decision boundary)

QDA

- Many parameters to estimate; less accurate
- + More flexible
- (quadratic decision boundary)

Fisher's Discriminant Analysis: Idea

Find direction(s) in which groups are separated best

- Class Y, predictors $X = (X_1, ..., X_d)$ $\rightarrow U = w^T X$
- Find w so that groups are separated along U best
- Measure of separation: Rayleigh coefficient

$$J(w) = \frac{D(U)}{Var(U)}$$

where $D(U) = (E(U|Y=0) - E(U|Y=1))^2$

•
$$E[X|Y = j] = \mu_j, Var(X|Y = j) = \Sigma$$

 $\Rightarrow E[U|Y = j] = w^T \mu_j, V(U) = w^T \Sigma w$

Concept extendable to many groups

LDA and Linear Discriminants

- Direction with largest J(w): 1. Linear Discriminant (LD 1)
 - orthogonal to LD1, again largest J(w): LD 2

- etc.

- At most: min(Nmb. dimensions, Nmb. Groups -1) LD's e.g.: 3 groups in 10 dimensions – need 2 LD's
- Computed using Eigenvalue Decomposition or Singular Value Decomposition Proportion of trace: Captured % of variance between group means for each LD
- R: Function «Ida» in package MASS does LDA and computes linear discriminants (also «qda» available)

Example: Classification of Iris flowers

Iris setosa

Iris versicolor

Iris virginica

Classify according to sepal/petal length/width

Quality of classification

- Use training data also as test data: Overfitting Too optimistic for error on new data
- Separate test data

 Cross validation (CV; e.g. "leave-one-out cross validation): Every row is the test case once, the rest in the training data

Measures for prediction error

Confusion matrix (e.g. 100 samples)

	Truth = 0	Truth = 1	Truth = 2
Estimate = 0	23	7	6
Estimate = 1	3	27	4
Estimate = 2	3	1	26

- Error rate:
 - 1 sum(diagonal entries) / (number of samples) =
 - = 1 76/100 = 0.24
- We expect that our classifier predicts 24% of new observations incorrectly (this is just a rough estimate)

Example: Digit recognition

- 7129 hand-written digits
- Each (centered) digit was put in a 16*16 grid
- Measure grey value in each part of the grid, i.e. 256 grey values

Concepts to know

- Idea of LDA / QDA
- Meaning of Linear Discriminants
- Cross Validation
- Confusion matrix, error rate

R functions to know

Ida