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Goals 

 Concept: Detecting outliers with (robustly) estimated 

Mahalanobis distance and QQ-plot 

 R: chisq.plot, pcout from package “mvoutlier” 
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Outlier in one dimension - easy 

 Look at scatterplots 

 Find dimensions of outliers 

 Find extreme samples just in these dimensions 

 Remove outlier 
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2d: More tricky 
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Outlier 

No outlier in x or y 



 True Mahalanobis distance: 

 

 

 Estimated Mahalanobis distance: 

 

Recap: Mahalanobis distance 
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MD(x) =
p
(x¡¹)T§¡1(x¡¹)

Sq. Mahalanobis Distance MD2(x)  

= 

Sq. distance from mean in  

standard deviations  

IN DIRECTION OF X 

M̂D(x) =

q
(x¡ ¹̂)T §̂¡1(x¡ ¹̂)



Mahalanobis distance: Example 
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Mahalanobis distance: Example 
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Mahalanobis distance: Example 
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Mahalanobis distance: Example 
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Theory of Mahalanobis Distance 

Assume data is multivariate normally distributed  

(d dimensions) 
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Mahalanobis distance of samples follows a Chi-Square distribution 

with d degrees of freedom 

(“By definition”: Sum of d standard normal random variables has  

Chi-Square distribution with d degrees of freedom.) 



Check for multivariate outlier 

 Are there samples with estimated Mahalanobis distance 

that don’t fit at all to a Chi-Square distribution? 

 Check with a QQ-Plot 

 Technical details: 

- Chi-Square distribution is still reasonably good for 

estimated Mahalanobis distance 
- use robust estimates for  
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Robust Estimates: Income of 7 people 

Robust Scatter 

Std. Dev. 



Robust 

Std. Dev. 



Robust 
Std. Dev. 



Robust Estimates for outlier detection 

 If scatter is estimated robustly, outlier “stick out” much 

more 

 Robust Mahalanobis distance:  

Mean and Covariance matrix estiamted robustly 
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Example - continued 
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Outlier easily detected ! 



Outliers in >2d can be well hidden ! 
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No outlier, 

right? 



Outliers in >2d can be well hidden ! 
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Wrong! 



Outliers in >2d can be well hidden ! 
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This outlier  

can’t be seen  

in the  

scatterplot- 

matrix 

(but in a 3d plot) 



Method 1: Quantile of Chi-Sqaure distribution 

 Compute for each sample (in d dimensions) the robustly 

estimated Mahalanobis distance MD(xi) 

 Compute the 97.5%-Quantile Q of the Chi-Square 

distribution with d degrees of freedom  

 All samples with MD(xi) > Q are declared outlier 
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Method 2: Adjusted Quantile 

 Adjusted Quantile for outlier:  Depends on distance 

between cdf of Chi-Square and ecdf of samples in tails 

 Simulate “normal” deviations in the tails 

 Outlier have “abnormally large” deviations in the tails 

(e.g. more than seen in 100 simulations without outliers) 
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Method 2: Adjusted Quantile 
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ECDF leaves “plausible” range 

Defines adaptive cutoff 



Method 2: Adjusted Quantile 

Function “aq.plot” 
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Method 3: State of the art - pcout 

 Complex method based on robust principal components 

 Pretty involved methodology 

 Very fast – good for high dimensions 

 

 R: Function “pcout” in package “mvoutlier” 

 $wfinal01: 0 is outlier 

 $wfinal: Small values are more severe outlier 

 

 P. Filzmoser, R. Maronna, M. Werner. Outlier identification 

in high dimensions, Computational Statistics and Data 

Analysis, 52, 1694-1711, 2008 
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Automatic outlier detection 

 It is always better to look at a QQ-plot to find outlier ! 

Just find points “sticking out”; no distributional assumption 

 If you can’t: Automatic outlier detection 

- finds usually too many or too few outlier depending on 

parameter settings 

- depends on distribution assumptions  

(e.g. multivariate normality) 

+ good for screening of large amounts of data 
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Concepts to know 

 Find multivariate outlier with robustly estimated 

Mahalanobis distance 

 Cutoff 

- by eye (best method) 

- quantile of Chi-Square distribution 
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R commands to know 

 chisq.plot, pcout in package “mvoutlier” 
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Next week 

 Missing values 
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