Selected topics for revision

Applied Multivariate Statistics – Spring 2012

Review of

- Gaussian Mixture Models
- LDA
- Random Forest

Gaussian Mixture Models (GMMs)

Gaussian Mixture Models (GMM)

- Gaussian Mixture Model:
 $f(x; p, \theta) = \sum_{j=1}^{K} p_j g_j(x; \theta_j)$ K populations with different probability distributions
- Find number of classes and parameters p_j and θ_j given data
- Assign observation x to cluster j, where estimated value of $P(cluster \ j | x) = \frac{p_j g_j(x; \theta_j)}{f(x; p, \theta)}$

is largest

Example (1/6): Size of ants in two populations

Suppose ants *look the same apart from size*:

How can we learn about the two populations, if we can only observe a mixture of them ?

Example (2/6): Someone might know, but...

I know the true parameters – but I'm busy;

Figure them out from the data !

horacek

Example (3/6): We just see this

and we guess that there are two Normal populations involved

Example (4/6): How likely is the observation?

Likelihood function for one observation x:

$$f(x; p, \theta) = p \cdot \frac{1}{\sqrt{2\pi\sigma_1^2}} \exp(-(x - \mu_1)^2 / 2\sigma_1^2) + (1 - p) \cdot \frac{1}{\sqrt{2\pi\sigma_2^2}} \exp(-(x - \mu_2)^2 / 2\sigma_2^2)$$

Parameters to estimate: p, μ_1 , μ_2 , σ_1 , σ_2

 Likelihood function for n (independent) observations x₁,...,x_n:

$$\tilde{f}(x_1, ..., x_n; p, \theta) = \prod_{i=1}^n f(x_i; p; \theta)$$

For numerical reasons, compute log-Likelihood function:

$$l(x_1, ..., x_n; p, \theta) = \log(\tilde{f}(x_1, ..., x_n; p, \theta))$$

Example (5/6): Find the set of parameters under which the observation is most likely

Guessing the parameters:

р	μ_1	μ_2	σ_1	σ_2	Log- Likelihood
0.5	3	5	2	1	-1891
0.4	3.5	5.5	1	0.5	-1723
0.7	5	7	1	1	-1678
Etc.					

Using some numerical optimization technique:

р	μ_1	μ_2	σ_1	σ_2	Log- Likelihood
0.35	4.18	6.03	1.05	0.47	-1365

True parameters:

р	μ_1	μ 2	σ_1	σ_2	Log- Likelihood
0.3	4	6	1	0.5	-1366

8

Example (6/6): Doing it with R

Revision: Multivariate Normal Distribution

$$f(x;\mu,\Sigma) = \frac{1}{\sqrt{2\pi|\Sigma|}} \exp\left(-\frac{1}{2} \cdot (x-\mu)^T \Sigma^{-1} (x-\mu)\right)$$

GMM: Example estimated manually

- 3 clusters
- $p_1 = 0.7, p_2 = 0.2, p_3 = 0.1$
- Mean vector and cov. Matrix per cluster

dat[,1]

Fitting GMMs 1/2

- Maximum Likelihood Method Hard optimization problem
- Simplification: Restrict Covariance matrices to certain patterns (e.g. diagonal)

identifier	Model	HC	EM	Distribution	Volume	Shape	Orientation
Е		•	•	(univariate)	equal		
V		•	•	(univariate)	variable	\downarrow /	/
EII	λI	•	•	Spherical	equal	equal	NA /
VII	$\lambda_k I$	•	•	Spherical	variable	equa	NA /
EEI	λA		•	Diagonal	equal	equal	coordinate axes
VEI	$\lambda_k A$		•	Diagonal	variable	equal	coordinate axes
EVI	λA_k		•	Diagonal	equal	variable	coordinate/axes
VVI	$\lambda_k A_k$		•	Diagonal	variable	variable	coordinate axes
EEE	λDAD^T	•	•	Ellipsoidal	equal	equal	equal
EEV	$\lambda D_k A D_k^T$		•	Ellipsoidal	equal	equal	variable
VEV	$\lambda_k D_k A D_k^T$		•	Ellipsoidal	variable	equal	variable
VVV	$\lambda_k D_k A_k D_k^T$	•	•	Ellipsoidal	variable	variable	variable

Fitting GMMs 2/2

- Problem: Fit will never get worse if you use more cluster or allow more complex covariance matrices
 → How to choose optimal model ?
- Solution: Trade-off between model fit and model complexity

 $BIC = log-likelihood - log(n)/2^{*}(number of parameters)$

Find solution with maximal BIC

GMMs in R

Function "Mclust" in package "mclust"

Linear Discriminant Analysis (LDA)

Conditional Probability

One approach to supervised learning

Bayes rule:

Choose class where P(C|X) is maximal

(rule is "optimal" if all types of error are equally costly)

Special case: Two classes (0/1)

- choose c=1 if P(C=1|X) > 0.5 or

- choose c=1 if posterior odds P(C=1|X)/P(C=0|X) > 1

In Practice: Estimate P(C), μ_C , Σ_C

QDA: Doing the math... $\frac{1}{\sqrt{(2\pi)^d |\Sigma_C|}} \exp\left(-\frac{1}{2}(x-\mu_c)^T \Sigma_C^{-1}(x-\mu_c)\right)$

- Choose class where $\delta_c(x)$ is maximal
- Special case: Two classes Decision boundary: Values of x where $\delta_0(x) = \delta_1(x)$ is quadratic in x
- Quadratic Discriminant Analysis (QDA)

Simplification

- Assume same covariance matrix in all classes, i.e. $X|C \sim N(\mu_C \Sigma)$ Fix for all classes
- $\delta_c(x) = \log(P(C)) \frac{1}{2}\log(|\Sigma|) \frac{1}{2}(x \mu_C)^T \Sigma^{-1}(x \mu_C) + c =$ Prior $= \log(P(C)) - \frac{1}{2}(x - \mu_C)^T \Sigma^{-1}(x - \mu_C) + d =$ Sq. Mahalanobis distance $(= \log(P(C)) + x^T \Sigma^{-1} \mu_C - \frac{1}{2} \mu_C^T \Sigma^{-1} \mu_C)$

Decision boundary is linear in x

Linear Discriminant Analysis (LDA)

Classify to which class (assume equal prior)?

- Physical distance in space is equal
- Classify to class 0, since Mahal. Dist. is smaller

LDA V

VS.

- + Only few parameters to estimate; accurate estimates
- Inflexible

(linear decision boundary)

QDA

- Many parameters to estimate; less accurate
- + More flexible
- (quadratic decision boundary)

Fisher's Discriminant Analysis: Idea

Find direction(s) in which groups are separated best

- Class Y, predictors $X = (X_1, ..., X_d)$ $\rightarrow U = w^T X$
- Find w so that groups are separated along U best
- Measure of separation: Rayleigh coefficient

$$J(w) = \frac{D(U)}{Var(U)}$$

where $D(U) = (E(U|Y=0) - E(U|Y=1))^2$

•
$$E[X|Y = j] = \mu_j, Var(X|Y = j) = \Sigma$$

 $\Rightarrow E[U|Y = j] = w^T \mu_j, V(U) = w^T \Sigma w$

Concept extendable to many groups

LDA and Linear Discriminants

- Direction with largest J(w): 1. Linear Discriminant (LD 1)
 - orthogonal to LD1, again largest J(w): LD 2

- etc.

- At most: min(Nmb. dimensions, Nmb. Groups -1) LD's e.g.: 3 groups in 10 dimensions – need 2 LD's
- R: Function «Ida» in package MASS does LDA and computes linear discriminants (also «qda» available)

Random Forest

Random Forest

- Intuition of Random Forest
- The Random Forest Algorithm
- De-correlation gives better accuracy

The Random Forest Algorithm

1. For b = 1 to B:

- (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
- (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression: $\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^{B} T_b(x).$

Classification: Let $\hat{C}_b(x)$ be the class prediction of the *b*th random-forest tree. Then $\hat{C}^B_{\rm rf}(x) = majority \ vote \ \{\hat{C}_b(x)\}_1^B$.

Differences to standard tree

- Train each tree on bootstrap resample of data
 (Bootstrap resample of data set with N samples:
 Make new data set by drawing with replacement N samples; i.e., some samples will probably occur multiple times in new data set)
- For each split, consider only m randomly selected variables
- Don't prune
- Fit B trees in such a way and use average or majority voting to aggregate results

Why Random Forest works 1/2

- Mean Squared Error = Variance + Bias²
- If trees are sufficiently deep, they have very small bias
- How could we improve the variance over that of a single tree?

Why Random Forest works 2/2

$$Var\left(\frac{1}{B}\sum_{i=1}^{B}T_{i}(c)\right) = \frac{1}{B^{2}}\sum_{i=1}^{B}\sum_{j=1}^{B}Cov(T_{i}(x), T_{j}(x))$$

$$= \frac{1}{B^{2}}\sum_{i=1}^{B}\left(\sum_{j\neq i}^{B}Cov(T_{i}(x), T_{j}(x)) + Var(T_{i}(x))\right)$$

$$= \frac{1}{B^{2}}\sum_{i=1}^{B}\left((B-1)\sigma^{2} \cdot \rho + \sigma^{2}\right)$$

$$= \frac{B(B-1)\rho\sigma^{2} + B\sigma^{2}}{B^{2}}$$

$$= \frac{(B-1)\rho\sigma^{2}}{B} + \frac{\sigma^{2}}{B}$$

$$= \rho\sigma^{2} - \frac{\rho\sigma^{2}}{B} + \frac{\sigma^{2}}{B}$$
Decreases, if number of trees B increases (irrespective of ρ)

Estimating generalization error: Out-of bag (OOB) error

 Similar to leave-one-out cross-validation, but almost without any additional computational burden

Variable Importance for variable i

Thank you for your attention and all the best for the exams!

