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Review of 

 Gaussian Mixture Models 

 LDA 

 Random Forest 

 



Gaussian Mixture Models (GMMs) 

2 



Gaussian Mixture Models (GMM) 

 Gaussian Mixture Model: 

𝑓 𝑥; 𝑝, 𝜃 =   𝑝𝑗𝑔𝑗 𝑥; 𝜃𝑗
𝐾
𝑗=1   

K populations with different probability distributions 

 

 Find number of classes and parameters 𝑝𝑗 and 𝜃𝑗 given 

data 

 Assign observation x to cluster j, where estimated value of  

𝑃 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑗 𝑥 =  
𝑝𝑗𝑔𝑗(𝑥; 𝜃𝑗)

𝑓(𝑥; 𝑝, 𝜃)
 

is largest 
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Example (1/6): Size of ants in two populations 
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Suppose ants look the same apart from size:  

How can we learn about the two populations, if we can only observe a mixture of them ? 

Pop 1 encountered with prob 0.3 Pop 2 encountered with prob 0.7 

Sample of 1000 ants 

Observed 



Example (2/6): Someone might know, but… 
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N(4,1) N(6,0.52) 

P=0.7 

P=0.3 

I know the true parameters – 

but I’m busy; 

Figure them out from the data ! 



Example (3/6): We just see this 

6 

and we guess that there are two Normal populations involved 



Example (4/6): How likely is the observation? 

 Likelihood function for one observation x: 

 

 

 

    Parameters to estimate: 𝑝, 𝜇1 ,  𝜇2 ,  𝜎1 , 𝜎2 

 Likelihood function for n (independent) 

observations x1,…,xn: 

 

 

 For numerical reasons, compute log-Likelihood function: 
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f(x; p; µ) = p ¢ 1p
2¼¾21

exp(¡(x¡ ¹1)
2=2¾21) +

+ (1¡ p) ¢ 1p
2¼¾22

exp(¡(x¡ ¹2)
2=2¾22)

~f(x1; :::; xn;p; µ) =
Qn

i=1 f(xi;p; µ)

l(x1; :::; xn;p; µ) = log( ~f(x1; :::; xn;p; µ))



Example (5/6): Find the set of parameters under which 

the observation is most likely 

𝒑 𝝁𝟏 𝝁𝟐 𝝈𝟏 𝝈𝟐 Log-

Likelihood 

0.5 3 5 2 1 -1891 

0.4 3.5 5.5 1 0.5 -1723 

0.7 5 7 1 1 -1678 

Etc. 
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Guessing the parameters: 

Using some numerical optimization technique: 

𝒑 𝝁𝟏 𝝁𝟐 𝝈𝟏 𝝈𝟐 Log-

Likelihood 

0.35 4.18 6.03 1.05 0.47 -1365 

True parameters: 

𝒑 𝝁𝟏 𝝁𝟐 𝝈𝟏 𝝈𝟐 Log-

Likelihood 

0.3 4 6 1 0.5 -1366 



Example (6/6): Doing it with R 
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Vector with observations 

Optimized log-likelihood 

Probability of group 1 

Two groups were found 

Probability of group 2 

Mean of group 1 
Mean of group 2 

Variance of group 1 

Variance of group 2 



Revision: Multivariate Normal Distribution 
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f(x;¹;§) = 1p
2¼j§j

exp
¡
¡ 1

2
¢ (x¡ ¹)T§¡1(x¡ ¹)

¢



GMM: Example estimated manually 
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• 3 clusters 

• p1 = 0.7, p2 = 0.2, p3 = 0.1 

• Mean vector and cov. Matrix per cluster 

x 

x 

x 

p1 = 0.7 

p2 = 0.2 

p3 = 0.1 



Fitting GMMs 1/2 

 Maximum Likelihood Method 

Hard optimization problem 

 Simplification: Restrict Covariance matrices to certain 

patterns (e.g. diagonal) 
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Fitting GMMs 2/2 

 Problem: Fit will never get worse if you use more cluster or 

allow more complex covariance matrices 

→ How to choose optimal model ? 

 Solution: Trade-off between model fit and model complexity 

 

BIC = log-likelihood – log(n)/2*(number of parameters) 

 

Find solution with maximal BIC 
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GMMs in R 

 Function “Mclust” in package “mclust” 
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Linear Discriminant Analysis (LDA) 
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P(CjT) = P (T jC)P(C)
P(T)

Conditional Probability 
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T 

C 

T: Med. Test positive 

C: Patient has cancer 

P(T|C) 

large 

P(C|T) 

small 

(Marginal) Probability:  

P(T), P(C) 

Conditional Probability: 

P(T|C), P(C|T) 

Sample space 

New sample space: 

People with cancer 

New sample space: 

People with pos. test 

Bayes Theorem: 

posterior 
prior 

Class conditional probability 



One approach to supervised learning 
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P(CjX) =
P(C)P(XjC)

P(X)
» P(C)P(XjC)

Bayes rule: 

 Choose class where P(C|X) is maximal 

(rule is “optimal” if all types of error are equally costly) 

 

Special case: Two classes (0/1) 

- choose c=1 if P(C=1|X) > 0.5 or 

- choose c=1 if posterior odds P(C=1|X)/P(C=0|X) > 1 

Prior / prevalence: 

Fraction of samples  

in that class 

Assume: 

XjC » N(¹c;§c)

Find some estimate 

In Practice: Estimate 𝑃 𝐶 , 𝜇𝐶 , Σ𝐶 



QDA: Doing the math… 

 𝑃 𝐶 𝑋  ~ 𝑃 𝐶 𝑃(𝑋|𝐶) 

 Use the fact: max𝑃 𝐶 𝑋   max(log 𝑃 𝐶 𝑋 )  

 𝛿𝑐 𝑥 = log 𝑃 𝐶 𝑋 = log 𝑃 𝐶 + log 𝑃 𝑋 𝐶 = 

 = log 𝑃 𝐶 −
1

2
log Σ𝐶 −

1

2
𝑥 − 𝜇𝐶

𝑇Σ𝐶
−1 𝑥 − 𝜇𝐶 + 𝑐 

 

 

 

 Choose class where 𝛿𝑐 𝑥  is maximal 

 Special case: Two classes 

Decision boundary: Values of x where 𝛿0 𝑥 = 𝛿1(𝑥) is quadratic in x 

 

 Quadratic Discriminant Analysis (QDA) 
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1p
(2¼)dj§Cj

exp
¡
¡1
2
(x¡ ¹c)

T§¡1
C (x¡ ¹c)

¢

Sq. Mahalanobis distance Prior Additional 

term 



Simplification 

 Assume same covariance matrix in all classes, i.e. 

𝑋|𝐶 ~ 𝑁(𝜇𝑐 , Σ) 

 𝛿𝑐 𝑥 = log 𝑃 𝐶 −
1

2
log Σ −

1

2
𝑥 − 𝜇𝐶

𝑇Σ−1 𝑥 − 𝜇𝐶 + 𝑐 = 

 = log 𝑃 𝐶 −
1

2
𝑥 − 𝜇𝐶

𝑇Σ−1 𝑥 − 𝜇𝐶 + 𝑑 = 

 (= log 𝑃 𝐶 + 𝑥𝑇Σ−1𝜇𝐶 −
1

2
 𝜇𝐶
𝑇 Σ−1𝜇𝐶) 

 

 

 Linear Discriminant Analysis (LDA) 
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Fix for all classes 

Sq. Mahalanobis distance Prior 

Decision boundary is linear in x 

0 

1 

Classify to which class (assume equal prior)? 

• Physical distance in space is equal 

• Classify to class 0, since Mahal. Dist. is smaller 



LDA   vs.    QDA 

+ Only few parameters to 

estimate; accurate estimates 

- Inflexible  

(linear decision boundary) 
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- Many parameters to estimate; 
less accurate 

+ More flexible 
(quadratic decision boundary) 



Fisher’s Discriminant Analysis: Idea 
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Find direction(s) in which groups are separated best 

1. Principal Component 

1. Linear Discriminant  

  = 

1. Canonical Variable 

• Class Y, predictors 𝑋 = 𝑋1, … , 𝑋𝑑  

   𝑈 = 𝑤𝑇𝑋 

• Find w so that groups are separated  

along U best 

• Measure of separation: Rayleigh coefficient 

 

𝐽 𝑤 =  
𝐷(𝑈)

𝑉𝑎𝑟(𝑈)
 

where 𝐷 𝑈 = 𝐸 𝑈 𝑌 = 0 − 𝐸 𝑈 𝑌 = 1
2
 

• 𝐸 𝑋 𝑌 = 𝑗 = 𝜇𝑗 , 𝑉𝑎𝑟 𝑋 𝑌 = 𝑗 = Σ 

  𝐸 𝑈 𝑌 = 𝑗 = 𝑤𝑇𝜇𝑗 , 𝑉 𝑈 = 𝑤
𝑇Σw 

• Concept extendable to many groups 

 

D(U) 

Var(U) 

𝐽 𝑤  large 

D(U) 

Var(U) 

𝐽 𝑤  small 



LDA and Linear Discriminants  

 - Direction with largest J(w): 1. Linear Discriminant (LD 1) 

- orthogonal to LD1, again largest J(w): LD 2 

- etc. 

 At most: min(Nmb. dimensions, Nmb. Groups -1) LD’s 

e.g.: 3 groups in 10 dimensions – need 2 LD’s 

 

 R: Function «lda» in package MASS does LDA and 

computes linear discriminants (also «qda» available) 
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Random Forest 
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Random Forest 

 Intuition of Random Forest 

 The Random Forest Algorithm 

 De-correlation gives better accuracy 

 

 Out-of-bag error (OOB-error) 

 Variable importance 
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Diseased 

Diseased 

Healthy 

Healthy 

Diseased 



Intuition of Random Forest 
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young old 

short tall 

healthy diseased 

young old 

diseased 

female male 

healthy healthy 

working retired 

healthy 

short tall 

healthy diseased 

New sample: 

old, retired, male, short 

Tree predictions: 

diseased, healthy, diseased 

  

Majority rule: 

diseased 

healthy 

healthy 

diseased healthy 

Tree 1 

Tree 3 

Tree 2 



The Random Forest Algorithm 
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Differences to standard tree 

 Train each tree on bootstrap resample of data 
(Bootstrap resample of data set with N samples:  

Make new data set by drawing with replacement N samples; i.e., some samples will 

probably occur multiple times in new data set) 

 For each split, consider only m randomly selected variables 

 

 Don’t prune 

 

 Fit B trees in such a way and use average or majority 

voting to aggregate results 
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Why Random Forest works 1/2 

 Mean Squared Error = Variance + Bias2   

 If trees are sufficiently deep, they have very small bias 

 

 How could we improve the variance over that of a single 

tree? 
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Why Random Forest works 2/2 
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i=j 

Decreases, if number of trees B  

increases (irrespective of 𝜌) 

Decreaes, if  

𝜌 decreases, i.e., if  

m decreases  

De-correlation gives  

better accuracy 



Estimating generalization error: 

Out-of bag (OOB) error 

 Similar to leave-one-out cross-validation, but almost 

without any additional computational burden 
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young old 

short tall 

healthy diseased 

diseased healthy 

Resampled Data: 

old, tall – healthy 

old, tall – healthy 

old, short – diseased 

old, short – diseased 

young, tall – healthy 

young, tall – healthy 

young, short - healthy 

Out of bag samples: 

young, short – diseased  

young, tall– healthy 

old, short – diseased 

Out of bag (OOB) error rate: 

1/3 = 0.33 

Data: 

old, tall – healthy 

old, short – diseased 

young, tall – healthy 

young, short – healthy  

young, short – diseased 

young, tall – healthy 

old, short– diseased 



Variable Importance for variable i 

using Permutations 
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Data 

… 

Resampled 

Dataset 1 OOB 

Data 1 

Resampled 

Dataset m 
OOB 

Data m 

Tree 1 Tree m 

OOB error e1 OOB error em 

Permute values of  

variable i in OOB  

data set 

OOB error p1 OOB error pm 

d = 1
m

Pm

i=1 di

d1 = e1–p1 dm =em-pm 

s2d =
1

m¡1
Pm

i=1(di ¡ d)2
vi =

d
sd



Thank you for your attention 

and  

all the best for the exams! 
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