
JSS Journal of Statistical Software
December 2011, Volume 45, Issue 3. http://www.jstatsoft.org/

mice: Multivariate Imputation by Chained

Equations in R

Stef van Buuren
TNO

Karin Groothuis-Oudshoorn
University of Twente

Abstract

The R package mice imputes incomplete multivariate data by chained equations. The
software mice 1.0 appeared in the year 2000 as an S-PLUS library, and in 2001 as an
R package. mice 1.0 introduced predictor selection, passive imputation and automatic
pooling. This article documents mice 2.9, which extends the functionality of mice 1.0
in several ways. In mice 2.9, the analysis of imputed data is made completely general,
whereas the range of models under which pooling works is substantially extended. mice 2.9
adds new functionality for imputing multilevel data, automatic predictor selection, data
handling, post-processing imputed values, specialized pooling routines, model selection
tools, and diagnostic graphs. Imputation of categorical data is improved in order to bypass
problems caused by perfect prediction. Special attention is paid to transformations, sum
scores, indices and interactions using passive imputation, and to the proper setup of
the predictor matrix. mice 2.9 can be downloaded from the Comprehensive R Archive
Network. This article provides a hands-on, stepwise approach to solve applied incomplete
data problems.

Keywords: MICE, multiple imputation, chained equations, fully conditional specification,
Gibbs sampler, predictor selection, passive imputation, R.

1. Introduction

Multiple imputation (Rubin 1987, 1996) is the method of choice for complex incomplete data
problems. Missing data that occur in more than one variable presents a special challenge.
Two general approaches for imputing multivariate data have emerged: joint modeling (JM)
and fully conditional specification (FCS), also known as multivariate imputation by chained
equations (MICE). Schafer (1997) developed various JM techniques for imputation under the
multivariate normal, the log-linear, and the general location model. JM involves specifying a
multivariate distribution for the missing data, and drawing imputation from their conditional

http://www.jstatsoft.org/

2 mice: Multivariate Imputation by Chained Equations in R

distributions by Markov chain Monte Carlo (MCMC) techniques. This methodology is attrac-
tive if the multivariate distribution is a reasonable description of the data. FCS specifies the
multivariate imputation model on a variable-by-variable basis by a set of conditional densities,
one for each incomplete variable. Starting from an initial imputation, FCS draws imputations
by iterating over the conditional densities. A low number of iterations (say 10–20) is often
sufficient. FCS is attractive as an alternative to JM in cases where no suitable multivariate
distribution can be found. The basic idea of FCS is already quite old, and has been proposed
using a variety of names: stochastic relaxation (Kennickell 1991), variable-by-variable im-
putation (Brand 1999), regression switching (van Buuren et al. 1999), sequential regressions
(Raghunathan et al. 2001), ordered pseudo-Gibbs sampler (Heckerman et al. 2001), partially
incompatible MCMC (Rubin 2003), iterated univariate imputation (Gelman 2004), MICE
(van Buuren and Oudshoorn 2000; van Buuren and Groothuis-Oudshoorn 2011) and FCS
(van Buuren 2007).

Software implementations

Several authors have implemented fully conditionally specified models for imputation. mice 1.0
(van Buuren and Oudshoorn 2000) was released as an S-PLUS library in 2000, and was con-
verted by several users into R (R Development Core Team 2011). IVEware (Raghunathan
et al. 2001) is a SAS-based procedure that was independently developed by Raghunathan and
colleagues. The function aRegImpute in R and S-PLUS is part of the Hmisc package (Harrell
2001). The ice software (Royston 2004, 2005; Royston and White 2011) is a widely used
implementation in Stata. SOLAS 3.0 (Statistical Solutions 2001) is also based on conditional
specification, but does not iterate. WinMICE (Jacobusse 2005) is a Windows stand-alone
program for generating imputations under the hierarchical linear model. A recent addition
is the R package mi (Su et al. 2011). Furthermore, FCS is now widely available through
the multiple imputation procedure part of the SPSS 17 Missing Values Analysis add-on
module. See http://www.multiple-imputation.com/ for an overview.

Applications of chained equations

Applications of imputation by chained equations have now appeared in quite diverse fields:
addiction (Schnoll et al. 2006; MacLeod et al. 2008; Adamczyk and Palmer 2008; Caria et al.
2009; Morgenstern et al. 2009), arthritis and rheumatology (Wolfe et al. 2006; Rahman et al.
2008; van den Hout et al. 2009), atherosclerosis (Tiemeier et al. 2004; van Oijen et al. 2007;
McClelland et al. 2008), cardiovascular system (Ambler et al. 2005; van Buuren et al. 2006a;
Chase et al. 2008; Byrne et al. 2009; Klein et al. 2009), cancer (Clark et al. 2001, 2003; Clark
and Altman 2003; Royston et al. 2004; Barosi et al. 2007; Fernandes et al. 2008; Sharma et al.
2008; McCaul et al. 2008; Huo et al. 2008; Gerestein et al. 2009), epidemiology (Cummings
et al. 2006; Hindorff et al. 2008; Mueller et al. 2008; Ton et al. 2009), endocrinology (Rouxel
et al. 2004; Prompers et al. 2008), infectious diseases (Cottrell et al. 2005; Walker et al.
2006; Cottrell et al. 2007; Kekitiinwa et al. 2008; Nash et al. 2008; Sabin et al. 2008; Thein
et al. 2008; Garabed et al. 2008; Michel et al. 2009), genetics (Souverein et al. 2006), health
economics (Briggs et al. 2003; Burton et al. 2007; Klein et al. 2008; Marshall et al. 2009),
obesity and physical activity (Orsini et al. 2008a; Wiles et al. 2008; Orsini et al. 2008b; van
Vlierberghe et al. 2009), pediatrics and child development (Hill et al. 2004; Mumtaz et al.
2007; Deave et al. 2008; Samant et al. 2008; Butler and Heron 2008; Ramchandani et al.
2008; van Wouwe et al. 2009), rehabilitation (van der Hulst et al. 2008), behavior (Veenstra

http://www.multiple-imputation.com/

Journal of Statistical Software 3

et al. 2005; Melhem et al. 2007; Horwood et al. 2008; Rubin et al. 2008), quality of care (Sisk
et al. 2006; Roudsari et al. 2007; Ward and Franks 2007; Grote et al. 2007; Roudsari et al.
2008; Grote et al. 2008; Sommer et al. 2009), human reproduction (Smith et al. 2004a,b;
Hille et al. 2005; Alati et al. 2006; O’Callaghan et al. 2006; Hille et al. 2007; Hartog et al.
2008), management sciences (Jensen and Roy 2008), occupational health (Heymans et al.
2007; Brunner et al. 2007; Chamberlain et al. 2008), politics (Tanasoiu and Colonescu 2008),
psychology (Sundell et al. 2008) and sociology (Finke and Adamczyk 2008). All authors use
some form of chained equations to handle the missing data, but the details vary considerably.
The interested reader could check out articles from a familiar application area to see how
multiple imputation is done and reported.

Features

This paper describes the R package mice 2.9 for multiple imputation: generating multiple
imputation, analyzing imputed data, and for pooling analysis results. Specific features of the
software are:

� Columnwise specification of the imputation model (Section 3.2).

� Arbitrary patterns of missing data (Section 6.2).

� Passive imputation (Section 3.4).

� Subset selection of predictors (Section 3.3).

� Support of arbitrary complete-data methods (Section 5.1).

� Support pooling various types of statistics (Section 5.3).

� Diagnostics of imputations (Section 4.5).

� Callable user-written imputation functions (Section 6.1).

Package mice 2.9 replaces version mice 1.21, but is compatible with previous versions. This
document replaces the original manual (van Buuren and Oudshoorn 2000). The mice 2.9
package extends mice 1.0 in several ways. New features in mice 2.9 include:

� quickpred() for automatic generation of the predictor matrix (Section 3.3).

� mice.impute.2L.norm() for imputing multilevel data (Section 3.3).

� Stable imputation of categorical data (Section 4.4).

� Post-processing imputations through the post argument (Section 3.5).

� with.mids() for general data analysis on imputed data (Section 5.1).

� pool.scalar() and pool.r.squared() for specialized pooling (Section 5.3).

� pool.compare() for model testing on imputed data (Section 5.3).

� cbind.mids(), rbind.mids() and ibind() for combining imputed data (see help file
of these functions).

4 mice: Multivariate Imputation by Chained Equations in R

Furthermore, this document introduces a new strategy to specify the predictor matrix in
conjunction with passive imputation. The amount and scope of example code has been
expanded considerably. All programming code used in this paper is available in the file
v45i03.R along with the manuscript and as doc/JSScode.R in the mice package.

The intended audience of this paper consists of applied researchers who want to address prob-
lems caused by missing data by multiple imputation. The text assumes basic familiarity with
R. The document contains hands-on analysis using the mice package. We do not discuss prob-
lems of incomplete data in general. We refer to the excellent books by Little and Rubin (2002)
and Schafer (1997). Theory and applications of multiple imputation have been developed in
Rubin (1987) and Rubin (1996). van Buuren (2012) introduces multiple imputation from an
applied perspective.

Package mice 2.9 was written in pure R using old-style S3 classes and methods. mice 2.9 was
written and tested in R 2.12.2. The package has a simple architecture, is highly modular, and
allows easy access to all program code from within the R environment.

2. General framework

To the uninitiated, multiple imputation is a bewildering technique that differs substantially
from conventional statistical approaches. As a result, the first-time user may get lost in
a labyrinth of imputation models, missing data mechanisms, multiple versions of the data,
pooling, and so on. This section describes a modular approach to multiple imputation that
forms the basis of the architecture of mice. The philosophy behind the MICE methodology is
that multiple imputation is best done as a sequence of small steps, each of which may require
diagnostic checking. Our hope is that the framework will aid the user to map out the steps
needed in practical applications.

2.1. Notation

Let Yj with (j = 1, . . . , p) be one of p incomplete variables, where Y = (Y1, . . . , Yp). The
observed and missing parts of Yj are denoted by Y obs

j and Y mis
j , respectively, so Y obs =

(Y obs
1 , . . . , Y obs

p) and Y mis = (Y mis
1 , . . . , Y mis

p) stand for the observed and missing data in Y .

The number of imputation is equal to m ≥ 1. The hth imputed data sets is denoted as Y (h)

where h = 1, . . . ,m. Let Y−j = (Y1, . . . , Yj−1, Yj+1, . . . , Yp) denote the collection of the p− 1
variables in Y except Yj . Let Q denote the quantity of scientific interest (e.g., a regression
coefficient). In practice, Q is often a multivariate vector. More generally, Q encompasses any
model of scientific interest.

2.2. Modular approach to multiple imputation

Figure 1 illustrates the three main steps in multiple imputation: imputation, analysis and
pooling. The software stores the results of each step in a specific class: mids, mira and mipo.
We now explain each of these in more detail.

The leftmost side of the picture indicates that the analysis starts with an observed, incom-
plete data set Yobs. In general, the problem is that we cannot estimate Q from Yobs without
making unrealistic assumptions about the unobserved data. Multiple imputation is a general
framework that several imputed versions of the data by replacing the missing values by plau-

Journal of Statistical Software 5

incomplete data imputed data analysis results pooled results

data frame mids mira mipo

mice() with() pool()

Figure 1: Main steps used in multiple imputation.

sible data values. These plausible values are drawn from a distribution specifically modeled
for each missing entry. In mice this task is being done by the function mice(). Figure 1
portrays m = 3 imputed data sets Y (1), . . . , Y (3). The three imputed sets are identical for the
non-missing data entries, but differ in the imputed values. The magnitude of these difference
reflects our uncertainty about what value to impute. The package has a special class for
storing the imputed data: a multiply imputed dataset of class mids.

The second step is to estimate Q on each imputed data set, typically by the method we
would have used if the data had been complete. This is easy since all data are now com-
plete. The model applied to Y (1), . . . , Y (m) is the generally identical. mice 2.9 contains a
function with.mids() that perform this analysis. This function supersedes the lm.mids()

and glm.mids(). The estimates Q̂(1), . . . , Q̂(m) will differ from each other because their input
data differ. It is important to realize that these differences are caused because of our uncer-
tainty about what value to impute. In mice the analysis results are collectively stored as a
multiply imputed repeated analysis within an R object of class mira.

The last step is to pool the m estimates Q̂(1), . . . , Q̂(m) into one estimate Q̄ and estimate its
variance. For quantities Q that are approximately normally distributed, we can calculate the
mean over Q̂(1), . . . , Q̂(m) and sum the within- and between-imputation variance according
to the method outlined in Rubin (1987, pp. 76–77). The function pool() contains methods
for pooling quantities by Rubin’s rules. The results of the function is stored as a multiple
imputed pooled outcomes object of class mipo.

2.3. MICE algorithm

The imputation model should

� Account for the process that created the missing data.

� Preserve the relations in the data.

� Preserve the uncertainty about these relations.

The hope is that adherence to these principles will yield imputations that are statistically

6 mice: Multivariate Imputation by Chained Equations in R

correct as in Rubin (1987, Chapter 4) for a wide range in Q. Typical problems that may
surface while imputing multivariate missing data are

� For a given Yj , predictors Y−j used in the imputation model may themselves be incom-
plete.

� Circular dependence can occur, where Y1 depends on Y2 and Y2 depends on Y1 because
in general Y1 and Y2 are correlated, even given other variables.

� Especially with large p and small n, collinearity and empty cells may occur.

� Rows or columns can be ordered, e.g., as with longitudinal data.

� Variables can be of different types (e.g., binary, unordered, ordered, continuous), thereby
making the application of theoretically convenient models, such as the multivariate
normal, theoretically inappropriate.

� The relation between Yj and Y−j could be complex, e.g., nonlinear, or subject to cen-
soring processes.

� Imputation can create impossible combinations (e.g., pregnant fathers), or destroy de-
terministic relations in the data (e.g., sum scores).

� Imputations can be nonsensical (e.g., body temperature of the dead).

� Models for Q that will be applied to the imputed data may not (yet) be known.

This list is by no means exhaustive, and other complexities may appear for particular data.

In order to address the issues posed by the real-life complexities of the data, it is convenient
to specify the imputation model separately for each column in the data. This has led by to
the development of the technique of chained equations. Specification occurs on at a level that
is well understood by the user, i.e., at the variable level. Moreover, techniques for creating
univariate imputations have been well developed.

Let the hypothetically complete data Y be a partially observed random sample from the p-
variate multivariate distribution P (Y |θ). We assume that the multivariate distribution of Y
is completely specified by θ, a vector of unknown parameters. The problem is how to get the
multivariate distribution of θ, either explicitly or implicitly. The MICE algorithm obtains the
posterior distribution of θ by sampling iteratively from conditional distributions of the form

P (Y1|Y−1, θ1)

...

P (Yp|Y−p, θp).

The parameters θ1, . . . , θp are specific to the respective conditional densities and are not
necessarily the product of a factorization of the ‘true’ joint distribution P (Y |θ). Starting from
a simple draw from observed marginal distributions, the tth iteration of chained equations is
a Gibbs sampler that successively draws

θ
∗(t)
1 ∼ P (θ1|Y obs

1 , Y
(t−1)
2 , . . . , Y (t−1)

p)

Journal of Statistical Software 7

Y
∗(t)
1 ∼ P (Y1|Y obs

1 , Y
(t−1)
2 , . . . , Y (t−1)

p , θ
∗(t)
1)

...

θ∗(t)p ∼ P (θp|Y obs
p , Y

(t)
1 , . . . , Y

(t)
p−1)

Y ∗(t)
p ∼ P (Yp|Y obs

p , Y
(t)
1 , . . . , Y (t)

p , θ∗(t)p)

where Y
(t)
j = (Y obs

j , Y
∗(t)
j) is the jth imputed variable at iteration t. Observe that previous

imputations Y
∗(t−1)
j only enter Y

∗(t)
j through its relation with other variables, and not directly.

Convergence can therefore be quite fast, unlike many other MCMC methods. It is important
to monitor convergence, but in our experience the number of iterations can often be a small
number, say 10–20. The name chained equations refers to the fact that the MICE algorithm
can be easily implemented as a concatenation of univariate procedures to fill out the missing
data. The mice() function executes m streams in parallel, each of which generates one
imputed data set.

The MICE algorithm possesses a touch of magic. The method has been found to work well
in a variety of simulation studies (Brand 1999; Horton and Lipsitz 2001; Moons et al. 2006;
van Buuren et al. 2006b; Horton and Kleinman 2007; Yu et al. 2007; Schunk 2008; Drechsler
and Rassler 2008; Giorgi et al. 2008). Note that it is possible to specify models for which
no known joint distribution exits. Two linear regressions specify a joint multivariate normal
given specific regularity condition (Arnold and Press 1989). However, the joint distribution
of one linear and, say, one proportional odds regression model is unknown, yet very easy to
specify with the MICE framework. The conditionally specified model may be incompatible
in the sense that the joint distribution cannot exist. It is not yet clear what the consequences
of incompatibility are on the quality of the imputations. The little simulation work that is
available suggests that the problem is probably not serious in practice (van Buuren et al.
2006b; Drechsler and Rassler 2008). Compatible multivariate imputation models (Schafer
1997) have been found to work in a large variety of cases, but may lack flexibility to ad-
dress specific features of the data. Gelman and Raghunathan (2001) remark that “separate
regressions often make more sense than joint models”. In order to bypass the limitations
of joint models, Gelman (2004, pp. 541) concludes: “Thus we are suggesting the use of a
new class of models—inconsistent conditional distributions—that were initially motivated by
computational and analytical convenience.” As a safeguard to evade potential problems by
incompatibility, we suggest that the order in which variable are imputed should be sensible.
This ordering can be specified in mice (cf. Section 3.6). Existence and uniqueness theorems
for conditionally specified models have been derived (Arnold and Press 1989; Arnold et al.
1999; Ip and Wang 2009). More work along these lines would be useful in order to identify
the boundaries at which the MICE algorithm breaks down. Barring this, the method seems
to work well in many examples, is of great importance in practice, and is easily applied.

2.4. Simple example

The section presents a simple example incorporating all three steps. After installing the
R package mice from the Comprehensive R Archive Network (CRAN), load the package.

R> library("mice")

This paper uses the features of mice 2.9. The data frame nhanes contains data from Schafer

8 mice: Multivariate Imputation by Chained Equations in R

(1997, p. 237). The data contains four variables: age (age group), bmi (body mass index),
hyp (hypertension status) and chl (cholesterol level). The data are stored as a data frame.
Missing values are represented as NA.

R> nhanes

age bmi hyp chl

1 1 NA NA NA

2 2 22.7 1 187

3 1 NA 1 187

4 3 NA NA NA

5 1 20.4 1 113

...

Inspecting the missing data

The number of the missing values can be counted and visualized as follows:

R> md.pattern(nhanes)

age hyp bmi chl

13 1 1 1 1 0

1 1 1 0 1 1

3 1 1 1 0 1

1 1 0 0 1 2

7 1 0 0 0 3

0 8 9 10 27

There are 13 (out of 25) rows that are complete. There is one row for which only bmi is
missing, and there are seven rows for which only age is known. The total number of missing
values is equal to (7× 3) + (1× 2) + (3× 1) + (1× 1) = 27. Most missing values (10) occur
in chl.

Another way to study the pattern involves calculating the number of observations per patterns
for all pairs of variables. A pair of variables can have exactly four missingness patterns: both
variables are observed (pattern rr), the first variable is observed and the second variable is
missing (pattern rm), the first variable is missing and the second variable is observed (pattern
mr), and both are missing (pattern mm). We can use the md.pairs() function to calculate the
frequency in each pattern for all variable pairs as

R> p <- md.pairs(nhanes)

R> p

$rr

age bmi hyp chl

age 25 16 17 15

bmi 16 16 16 13

Journal of Statistical Software 9

hyp 17 16 17 14

chl 15 13 14 15

$rm

age bmi hyp chl

age 0 9 8 10

bmi 0 0 0 3

hyp 0 1 0 3

chl 0 2 1 0

$mr

age bmi hyp chl

age 0 0 0 0

bmi 9 0 1 2

hyp 8 0 0 1

chl 10 3 3 0

$mm

age bmi hyp chl

age 0 0 0 0

bmi 0 9 8 7

hyp 0 8 8 7

chl 0 7 7 10

Thus, for pair (bmi,chl) there are 13 completely observed pairs, 3 pairs for which bmi is
observed but hyp not, 2 pairs for which bmi is missing but with hyp observed, and 7 pairs
with both missing bmi and hyp. Note that these numbers add up to the total sample size.

The R package VIM (Templ et al. 2011) contains functions for plotting incomplete data. The
margin plot of the pair (bmi,chl) can be plotted by

R> library("VIM")

R> marginplot(nhanes[, c("chl", "bmi")], col = mdc(1:2), cex = 1.2,

+ cex.lab = 1.2, cex.numbers = 1.3, pch = 19)

Figure 2 displays the result. The data area holds 13 blue points for which both bmi and chl

were observed. The plot in Figure 2 requires a graphic device that supports transparent
colors, e.g., pdf(). To create the plot in other devices, change the col = mdc(1:2) argument
to col = mdc(1:2, trans = FALSE). The three red dots in the left margin correspond to
the records for which bmi is observed and chl is missing. The points are drawn at the known
values of bmi at 24.9, 25.5 and 29.6. Likewise, the bottom margin contain two red points with
observed chl and missing bmi. The red dot at the intersection of the bottom and left margin
indicates that there are records for which both bmi and chl are missing. The three numbers
at the lower left corner indicate the number of incomplete records for various combinations.
There are 9 records in which bmi is missing, 10 records in which chl is missing, and 7 records
in which both are missing. Furthermore, the left margin contain two box plots, a blue and
a red one. The blue box plot in the left margin summarizes the marginal distribution of bmi
of the 13 blue points. The red box plot summarizes the distribution of the three bmi values

10 mice: Multivariate Imputation by Chained Equations in R

● ● ●●

9

7

150 200 250

2
0

2
5

3
0

3
5

chl

b
m
i

Figure 2: Margin plot of bmi versus chl as drawn by the marginplot() function in the VIM
package. Observed data in blue, missing data in red.

with missing chl. Under MCAR, these distribution are expected to be identical. Likewise,
the two colored box plots in the bottom margin summarize the respective distributions for
chl.

Creating imputations

Creating imputations can be done with a call to mice() as follows:

R> imp <- mice(nhanes, seed = 23109)

iter imp variable

1 1 bmi hyp chl

1 2 bmi hyp chl

1 3 bmi hyp chl

1 4 bmi hyp chl

1 5 bmi hyp chl

2 1 bmi hyp chl

2 2 bmi hyp chl

...

where the multiply imputed data set is stored in the object imp of class mids. Inspect what
the result looks like

R> print(imp)

Journal of Statistical Software 11

Multiply imputed data set

Call:

mice(data = nhanes, seed = 23109)

Number of multiple imputations: 5

Missing cells per column:

age bmi hyp chl

0 9 8 10

Imputation methods:

age bmi hyp chl

"" "pmm" "pmm" "pmm"

VisitSequence:

bmi hyp chl

2 3 4

PredictorMatrix:

age bmi hyp chl

age 0 0 0 0

bmi 1 0 1 1

hyp 1 1 0 1

chl 1 1 1 0

Random generator seed value: 23109

Imputations are generated according to the default method, which is, for numerical data, pre-
dictive mean matching (pmm). The entries imp$VisitSequence and imp$PredictorMatrix

are algorithmic options that will be discusses later. The default number of multiple imputa-
tions is equal to m = 5.

Diagnostic checking

An important step in multiple imputation is to assess whether imputations are plausible.
Imputations should be values that could have been obtained had they not been missing.
Imputations should be close to the data. Data values that are clearly impossible (e.g., negative
counts, pregnant fathers) should not occur in the imputed data. Imputations should respect
relations between variables, and reflect the appropriate amount of uncertainty about their
‘true’ values. Diagnostic checks on the imputed data provide a way to check the plausibility
of the imputations. The imputations for bmi are stored as

R> impimpbmi

1 2 3 4 5

1 29.6 27.2 29.6 27.5 29.6

3 29.6 26.3 29.6 30.1 28.7

4 20.4 29.6 27.2 24.9 21.7

6 21.7 25.5 27.4 21.7 21.7

10 20.4 22.0 28.7 29.6 22.5

11 22.0 35.3 35.3 30.1 29.6

12 20.4 28.7 27.2 27.5 25.5

16 22.0 35.3 30.1 29.6 28.7

21 27.5 33.2 22.0 35.3 22.0

12 mice: Multivariate Imputation by Chained Equations in R

Each row corresponds to a missing entry in bmi. The columns contain the multiple impu-
tations. The completed data set combines the observed and imputed values. The (first)
completed data set can be obtained as

R> complete(imp)

age bmi hyp chl

1 1 29.6 1 238

2 2 22.7 1 187

3 1 29.6 1 187

4 3 20.4 1 186

5 1 20.4 1 113

...

The complete() function extracts the five imputed data sets from the imp object as a long
(row-stacked) matrix with 125 records. The missing entries in nhanes have now been filled by
the values from the first (of five) imputation. The second completed data set can be obtained
by complete(imp, 2). For the observed data, it is identical to the first completed data set,
but it may differ in the imputed data.

It is often useful to inspect the distributions of original and the imputed data. One way of
doing this is to use the function stripplot() in mice 2.9, an adapted version of the same
function in the package lattice (Sarkar 2008). The stripplot in Figure 3 is created as

R> stripplot(imp, pch = 20, cex = 1.2)

The figure shows the distributions of the four variables as individual points. Blue points are
observed, the red points are imputed. The panel for age contains blue points only because
age is complete. Furthermore, note that the red points follow the blue points reasonably well,
including the gaps in the distribution, e.g., for chl.

The scatterplot of chl and bmi for each imputed data set in Figure 4 is created by

R> xyplot(imp, bmi ~ chl | .imp, pch = 20, cex = 1.4)

The figure redraws figure 2, but now for the observed and imputed data. Imputations are
plotted in red. The blue points are the same across different panels, but the red point vary.
The red points have more or less the same shape as blue data, which indicates that they could
have been plausible measurements if they had not been missing. The differences between the
red points represents our uncertainty about the true (but unknown) values.

Under MCAR, univariate distributions of the observed and imputed data are expected to
be identical. Under MAR, they can be different, both in location and spread, but their
multivariate distribution is assumed to be identical. There are many other ways to look at
the completed data, but we defer of a discussion of those to Section 4.5.

Analysis of imputed data

Suppose that the complete-data analysis of interest is a linear regression of chl on age and
bmi. For this purpose, we can use the function with.mids(), a wrapper function that applies
the complete data model to each of the imputed data sets:

Journal of Statistical Software 13

Imputation number

1
.0

1
.5

2
.0

2
.5

3
.0

0 1 2 3 4 5

age

2
0

2
5

3
0

3
5

0 1 2 3 4 5

bmi

1
.0

1
.2

1
.4

1
.6

1
.8

2
.0

0 1 2 3 4 5

hyp

1
5

0
2

0
0

2
5

0

0 1 2 3 4 5

chl

Figure 3: Stripplot of four variables in the original data and in the five imputed data sets.
Points are slightly jittered. Observed data in blue, imputed data in red.

R> fit <- with(imp, lm(chl ~ age + bmi))

The fit object has class mira and contains the results of five complete-data analyses. These
can be pooled as follows:

R> print(pool(fit))

Call: pool(object = fit)

Pooled coefficients:

(Intercept) age bmi

-34.158914 34.330666 6.212025

Fraction of information about the coefficients missing due to nonresponse:

(Intercept) age bmi

0.5747265 0.7501284 0.4795427

More detailed output can be obtained, as usual, with the summary() function, i.e.,

R> round(summary(pool(fit)), 2)

14 mice: Multivariate Imputation by Chained Equations in R

chl

b
m
i 20

25

30

35

0

150 200 250

1 2

150 200 250

3 4

150 200 250

20

25

30

35

5

Figure 4: Scatterplot of cholesterol (chl) and body mass index (bmi) in the original data
(panel 0), and five imputed data sets. Observed data in blue, imputed data in red.

est se t df Pr(>|t|) lo 95 hi 95 nmis fmi

(Intercept) -34.16 76.07 -0.45 6.81 0.67 -215.05 146.73 NA 0.57

age 34.33 14.86 2.31 4.04 0.08 -6.76 75.42 0 0.75

bmi 6.21 2.21 2.81 8.80 0.02 1.20 11.23 9 0.48

lambda

(Intercept) 0.47

age 0.65

bmi 0.37

After multiple imputation, we find a significant effect bmi. The column fmi contains the
fraction of missing information as defined in Rubin (1987), and the column lambda is the
proportion of the total variance that is attributable to the missing data (λ = (B+B/m)/T).

The pooled results are subject to simulation error and therefore depend on the seed argument
of the mice() function. In order to minimize simulation error, we can use a higher number
of imputations, for example m=50. It is easy to do this as

R> imp50 <- mice(nhanes, m = 50, seed = 23109)

R> fit <- with(imp50, lm(chl ~ age + bmi))

R> round(summary(pool(fit)), 2)

est se t df Pr(>|t|) lo 95 hi 95 nmis

(Intercept) -35.53 63.61 -0.56 14.46 0.58 -171.55 100.49 NA

age 35.90 10.48 3.42 12.76 0.00 13.21 58.58 0

bmi 6.15 1.97 3.13 15.13 0.01 1.96 10.35 9

Journal of Statistical Software 15

fmi lambda

(Intercept) 0.35 0.27

age 0.43 0.35

bmi 0.32 0.24

We find that actually both age and chl are significant effects. This is the result that can be
reported.

3. Imputation models

3.1. Seven choices

The specification of the imputation model is the most challenging step in multiple imputation.
What are the choices that we need to make, and in what order? There are seven main choices:

1. First, we should decide whether the missing at random (MAR) assumption (Rubin 1976)
is plausible. The MAR assumption is a suitable starting point in many practical cases,
but there are also cases where the assumption is suspect. Schafer (1997, pp. 20–23)
provides a good set of practical examples. MICE can handle both MAR and missing not
at random (MNAR). Multiple imputation under MNAR requires additional modeling
assumptions that influence the generated imputations. There are many ways to do this.
We refer to Section 6.2 for an example of how that could be realized.

2. The second choice refers to the form of the imputation model. The form encompasses
both the structural part and the assumed error distribution. Within MICE the form
needs to be specified for each incomplete column in the data. The choice will be steered
by the scale of the dependent variable (i.e., the variable to be imputed), and preferably
incorporates knowledge about the relation between the variables. Section 3.2 describes
the possibilities within mice 2.9.

3. Our third choice concerns the set of variables to include as predictors into the imputation
model. The general advice is to include as many relevant variables as possible including
their interactions (Collins et al. 2001). This may however lead to unwieldy model
specifications that could easily get out of hand. Section 3.3 describes the facilities
within mice 2.9 for selecting the predictor set.

4. The fourth choice is whether we should impute variables that are functions of other
(incomplete) variables. Many data sets contain transformed variables, sum scores, in-
teraction variables, ratio’s, and so on. It can be useful to incorporate the transformed
variables into the multiple imputation algorithm. Section 3.4 describes how mice 2.9
deals with this situation using passive imputation.

5. The fifth choice concerns the order in which variables should be imputed. Several
strategies are possible, each with their respective pro’s and cons. Section 3.6 shows how
the visitation scheme of the MICE algorithm within mice 2.9 is under control of the
user.

16 mice: Multivariate Imputation by Chained Equations in R

Method Description Scale type Default

pmm Predictive mean matching numeric Y
norm Bayesian linear regression numeric
norm.nob Linear regression, non-Bayesian numeric
mean Unconditional mean imputation numeric
2L.norm Two-level linear model numeric
logreg Logistic regression factor, 2 levels Y
polyreg Multinomial logit model factor, >2 levels Y
polr Ordered logit model ordered, >2 levels Y
lda Linear discriminant analysis factor
sample Random sample from the observed data any

Table 1: Built-in univariate imputation techniques. The techniques are coded as functions
named mice.impute.pmm(), and so on.

6. The sixth choice concerns the setup of the starting imputations and the number of
iterations. The convergence of the MICE algorithm can be monitored in many ways.
Section 4.3 outlines some techniques in mice 2.9 that assist in this task.

7. The seventh choice is m, the number of multiply imputed data sets. Setting m too low
may result in large simulation error, especially if the fraction of missing information is
high.

Please realize that these choices are always needed. The analysis in Section 2.4 imputed the
nhanes data using just a minimum of specifications and relied on mice defaults. However,
these default choices are not necessarily the best for your data. There is no magical setting
that produces appropriate imputations in every problem. Real problems need tailoring. It is
our hope that the software will invite you to go beyond the default settings.

3.2. Univariate imputation methods

In MICE one specifies a univariate imputation model of each incomplete variable. Both
the structural part of the imputation model and the error distribution need to be specified.
The choice will depend on, amongst others, the scale of the variable to be imputed. The
univariate imputation method takes a set of (at that moment) complete predictors, and returns
a single imputation for each missing entry in the incomplete target column. The mice 2.9
package supplies a number of built-in univariate imputation models. These all have names
mice.impute.name, where name identifies the univariate imputation method.

Table 1 contains the list of built-in imputation functions. The default methods are indicated.
The method argument of mice() specifies the imputation method per column and overrides
the default. If method is specified as one string, then all visited data columns (cf. Section 3.6)
will be imputed by the univariate function indicated by this string. So

R> imp <- mice(nhanes, method = "norm")

specifies that the function mice.impute.norm() is called for all columns. Alternatively,
method can be a vector of strings of length ncol(data) specifying the function that is applied
to each column. Columns that need not be imputed have method "". For example,

Journal of Statistical Software 17

R> imp <- mice(nhanes, meth = c("", "norm", "pmm", "mean"))

applies different methods for different columns. The nhanes2 data frame contains one poly-
tomous, one binary and two numeric variables.

R> str(nhanes2)

'data.frame': 25 obs. of 4 variables:

$ age: Factor w/ 3 levels "20-39","40-59",..: 1 2 1 3 1 3 1 1 2 2 ...

$ bmi: num NA 22.7 NA NA 20.4 NA 22.5 30.1 22 NA ...

$ hyp: Factor w/ 2 levels "no","yes": NA 1 1 NA 1 NA 1 1 1 NA ...

$ chl: num NA 187 187 NA 113 184 118 187 238 NA ...

Imputations can be created as

R> imp <- mice(nhanes2, me = c("polyreg", "pmm", "logreg", "norm"))

where function mice.impute.polyreg() is used to impute the first (categorical) variable age,
mice.impute.ppm() for the second numeric variable bmi, function mice.impute.logreg()

for the third binary variable hyp and function mice.impute.norm() for the numeric variable
chl. The me parameter is a legal abbreviation of the method argument.

Empty imputation method

The mice() function will automatically skip imputation of variables that are complete. One
of the problems in previous versions this function was that all incomplete data needed to
be imputed. In mice 2.9 it is possible to skip imputation of selected incomplete variables by
specifying the empty method "". This works as long as the incomplete variable that is skipped
is not being used as a predictor for imputing other variables. The mice() function will detect
this case, and automatically remove the variable from the predictor list. For example, suppose
that we do not want to impute bmi, but still want to retain in it the imputed data. We can
run the following

R> imp <- mice(nhanes2, meth = c("", "", "logreg", "norm"))

This statement runs because bmi is removed from the predictor list. When removal is not
possible, the program aborts with an error message like

Error in check.predictorMatrix(predictorMatrix, method, varnames,

nmis, : Variable bmi is used, has missing values, but is not imputed

Section 3.3 explains how to solve this problem.

Perfect prediction

Previous versions produced warnings like fitted probabilities numerically 0 or 1

occurred and algorithm did not converge on these data. These warnings are caused by
the sample size of 25 relative to the number of parameters. mice 2.9 implements more stable

18 mice: Multivariate Imputation by Chained Equations in R

algorithms into mice.impute.logreg() and mice.impute.polyreg() based on augmenting
the rows prior to imputation (White et al. 2010).

Default imputation method

The mice package distinguishes between four types of variables: numeric, binary (factor with
2 levels), and unordered (factor with more than 2 levels) and ordered (ordered factor with
more than 2 levels). Each type has a default imputation method, which are indicated in
Table 1. These defaults can be changed by the defaultMethod argument to the mice()

function. For example

R> mice(nhanes2, defaultMethod = c("norm", "logreg", "polyreg", "polr"))

applies the function mice.impute.norm() to each numeric variable in nhanes instead of
mice.impute.pmm(). It leaves the defaults for binary and categorical data unchanged. The
mice() function checks the type of the variable against the specified imputation method, and
produces a warning if a type mismatch is found.

Overview of imputation methods

The function mice.impute.pmm() implements predictive mean matching (Little 1988), a gen-
eral purpose semi-parametric imputation method. Its main virtues are that imputations are
restricted to the observed values and that it can preserve non-linear relations even if the
structural part of the imputation model is wrong. It is a good overall imputation method.
The functions mice.impute.norm() and mice.impute.norm.nob() impute according to a
linear imputation model, and are fast and efficient if the model residuals are close to normal.
The second model ignores any sampling uncertainty of the imputation model, so it is only
appropriate for very large samples. The method mice.impute.mean() simply imputes the
mean of the observed data. Mean imputation is known to be a bad strategy, and the user
should be aware of the implications.

The function mice.impute.2L.norm() imputes according to the heteroscedastic linear two-
level model by a Gibbs sampler (Note: Interpret ‘2L’ as ‘two levels’, not as ‘twenty-one’). It
is new in mice 2.9. The method considerably improves upon standard methods that ignore
the clustering structure, or that model the clustering as fixed effects (van Buuren 2010). See
multilevel imputation in Section 3.3 for an example.

The function mice.impute.polyreg() imputes factor with two or more levels by the multi-
nomial model using the multinom() function in nnet (Venables and Ripley 2002) for the hard
work. The function mice.impute.polr() implements the ordered logit model, also known
as the proportional odds model. It calls polr from MASS (Venables and Ripley 2002). The
function mice.impute.lda() uses the MASS function lda() for linear discriminant analysis
to compute posterior probabilities for each incomplete case, and subsequently draws impu-
tations from these posteriors. This statistical properties of this method are not as good as
mice.impute.polyreg()(Brand 1999), but it is a bit faster and uses fewer resources. The
maximum number of categories these function handle is set to 50. Finally, the function
mice.impute.sample() just takes a random draw from the observed data, and imputes these
into missing cells. This function does not condition on any other variable. mice() calls
mice.impute.sample() for initialization.

Journal of Statistical Software 19

The univariate imputation functions are designed to be called from the main function mice(),
and this is by far the easiest way to invoke them. It is however possible to call them directly,
assuming that the arguments are all properly specified. See the documentation for more
details.

3.3. Predictor selection

One of the most useful features of the MICE algorithm is the ability to specify the set of
predictors to be used for each incomplete variable. The basic specification is made through
the predictorMatrix argument, which is a square matrix of size ncol(data) containing 0/1
data. Each row in predictorMatrix identifies which predictors are to be used for the variable
in the row name. If diagnostics = TRUE (the default), then mice() returns a mids object
containing a predictorMatrix entry. For example, type

R> imp <- mice(nhanes, print = FALSE)

R> imp$predictorMatrix

age bmi hyp chl

age 0 0 0 0

bmi 1 0 1 1

hyp 1 1 0 1

chl 1 1 1 0

The row correspond to incomplete target variables, in the sequence as they appear in data.
Row and column names of the predictorMatrix are ignored on input, and overwritten by
mice() on output. A value of 1 indicates that the column variable is used as a predictor
to impute the target (row) variable, and a 0 means that it is not used. Thus, in the above
example, bmi is predicted from age, hyp and chl. Note that the diagonal is 0 since a variable
cannot predict itself. Since age contains no missing data, mice() silently sets all values in
the row to 0. The default setting of the predictorMatrix specifies that all variables predict
all others.

Removing a predictor

The user can specify a custom predictorMatrix, thereby effectively regulating the number of
predictors per variable. For example, suppose that bmi is considered irrelevant as a predictor.
Setting all entries within the bmi column to zero effectively removes it from the predictor set,
e.g.,

R> pred <- imp$predictorMatrix

R> pred[, "bmi"] <- 0

R> pred

age bmi hyp chl

age 0 0 0 0

bmi 1 0 1 1

hyp 1 0 0 1

chl 1 0 1 0

20 mice: Multivariate Imputation by Chained Equations in R

will not use bmi as a predictor, but still impute it. Using this new specification, we create
imputations as

R> imp <- mice(nhanes, pred = pred, pri = FALSE)

This imputes the incomplete variables hyp and chl without using bmi as a predictor.

Skipping imputation

Suppose that we want to skip imputation of bmi, and leave it as it is. This can be achieved
by 1) eliminating bmi from the predictor set, and 2) setting the imputation method to "".
More specifically

R> ini <- mice(nhanes2, maxit = 0, pri = FALSE)

R> pred <- ini$pred

R> pred[, "bmi"] <- 0

R> meth <- ini$meth

R> meth["bmi"] <- ""

R> imp <- mice(nhanes2, meth = meth, pred = pred, pri = FALSE)

R> impimpbmi

1 2 3 4 5

1 NA NA NA NA NA

3 NA NA NA NA NA

4 NA NA NA NA NA

6 NA NA NA NA NA

10 NA NA NA NA NA

11 NA NA NA NA NA

12 NA NA NA NA NA

16 NA NA NA NA NA

21 NA NA NA NA NA

The first statement calls mice() with the maximum number of iterations maxit set to zero.
This is a fast way to create the mids object called ini containing the default settings. It
is then easy to copy and edit the predictorMatrix and method arguments of the mice()

function. Now mice() will impute NA into the missing values of bmi. In effect, the original
bmi (with the missing values included) is copied into the multiply imputed data set. This
technique is not only useful for ‘keeping all the data together’, but also opens up ways to
performs imputation by nested blocks of variables. For examples where this could be useful,
see Shen (2000) and Rubin (2003).

Intercept imputation

Eliminating all predictors for bmi can be done by

R> pred <- ini$pred

R> pred["bmi",] <- 0

R> imp <- mice(nhanes2, pred = pred, pri = FALSE, seed = 51162)

R> impimpbmi

Journal of Statistical Software 21

1 2 3 4 5

1 20.4 27.2 22.0 25.5 27.4

3 27.4 22.5 24.9 22.7 33.2

4 20.4 20.4 24.9 27.2 27.5

6 22.5 27.5 26.3 20.4 24.9

10 27.2 20.4 27.2 26.3 22.7

11 22.7 22.5 22.7 29.6 25.5

12 29.6 28.7 22.5 33.2 27.4

16 27.4 22.5 35.3 22.7 20.4

21 30.1 27.4 24.9 20.4 27.2

Imputations for bmi are now sampled (by mice.impute.pmm()) under the intercept-only
model. Note that these imputations are appropriate only under the MCAR assumption.

Multilevel imputation

Imputation of multilevel data poses special problems. Most techniques have been developed
under the joint modeling perspective (Schafer and Yucel 2002; Yucel 2008; Goldstein et al.
2009). Some work within the context of FCS has been done (Jacobusse 2005), but this is still
an open research area. The mice 2.9 package include the mice.impute.2L.norm() function,
which can be used to impute missing data under a linear multilevel model. The function
was contributed by Roel de Jong, and implements the Gibbs sampler for the linear multilevel
model where the within-class error variance is allowed to vary (Kasim and Raudenbush 1998).
Heterogeneity in the variances is essential for getting good imputations in multilevel data.
The method is an improvement over simpler methods like flat-file imputation or per-group
imputation (van Buuren 2010).

Using mice.impute.2L.norm() (or equivalently mice.impute.2l.norm()) deviates from other
univariate imputation functions in mice 2.9 in two respects. It requires the specification of
the fixed effects, the random effects and the class variable. Furthermore, it assumes that the
predictors contain a column of ones representing the intercept. Random effects are coded
in the predictor matrix as a ‘2’. The class variable (only one is allowed) is coded by a ‘-2’.
The example below uses the popularity data of (Hox 2002). The dependent variable is pupil
popularity, which contains 848 missing values. There are two random effects: const (in-
tercept) and sex (slope), one fixed effect, teacher experience (texp), and one class variable
(school). Imputations can be generated as

R> popmis[1:3,]

pupil school popular sex texp const teachpop

1 1 1 NA 1 24 1 7

2 2 1 NA 0 24 1 7

3 3 1 7 1 24 1 6

R> ini <- mice(popmis, maxit = 0)

R> pred <- ini$pred

R> pred["popular",] <- c(0, -2, 0, 2, 1, 2, 0)

R> imp <- mice(popmis, meth = c("", "", "2l.norm", "", "",

+ "", ""), pred = pred, maxit = 1, seed = 71152)

22 mice: Multivariate Imputation by Chained Equations in R

iter imp variable

1 1 popular

1 2 popular

1 3 popular

1 4 popular

1 5 popular

The extension to the multivariate case will be obvious, but relatively little is known about
the statistical properties.

Advice on predictor selection

The predictorMatrix argument is especially useful when dealing with data sets with a large
number of variables. We now provide some advice regarding the selection of predictors for
large data, especially with many incomplete data.

As a general rule, using every bit of available information yields multiple imputations that
have minimal bias and maximal certainty (Meng 1995; Collins et al. 2001). This principle
implies that the number of predictors should be chosen as large as possible. Including as many
predictors as possible tends to make the MAR assumption more plausible, thus reducing the
need to make special adjustments for NMAR mechanisms (Schafer 1997).

However, data sets often contain several hundreds of variables, all of which can potentially
be used to generate imputations. It is not feasible (because of multicollinearity and computa-
tional problems) to include all these variables. It is also not necessary. In our experience, the
increase in explained variance in linear regression is typically negligible after the best, say,
15 variables have been included. For imputation purposes, it is expedient to select a suitable
subset of data that contains no more than 15 to 25 variables. van Buuren et al. (1999) provide
the following strategy for selecting predictor variables from a large data base:

1. Include all variables that appear in the complete-data model, i.e., the model that will
be applied to the data after imputation. Failure to do so may bias the complete-
data analysis, especially if the complete-data model contains strong predictive relations.
Note that this step is somewhat counter-intuitive, as it may seem that imputation
would artificially strengthen the relations of the complete-data model, which is clearly
undesirable. If done properly however, this is not the case. On the contrary, not
including the complete-data model variables will tend to bias the results towards zero.
Note that interactions of scientific interest also need to be included into the imputation
model.

2. In addition, include the variables that are related to the nonresponse. Factors that
are known to have influenced the occurrence of missing data (stratification, reasons for
nonresponse) are to be included on substantive grounds. Others variables of interest are
those for which the distributions differ between the response and nonresponse groups.
These can be found by inspecting their correlations with the response indicator of the
variable to be imputed. If the magnitude of this correlation exceeds a certain level, then
the variable is included.

3. In addition, include variables that explain a considerable amount of variance. Such

Journal of Statistical Software 23

predictors help to reduce the uncertainty of the imputations. They are crudely identified
by their correlation with the target variable.

4. Remove from the variables selected in steps 2 and 3 those variables that have too
many missing values within the subgroup of incomplete cases. A simple indicator is the
percentage of observed cases within this subgroup, the percentage of usable cases.

Most predictors used for imputation are incomplete themselves. In principle, one could apply
the above modeling steps for each incomplete predictor in turn, but this may lead to a cascade
of auxiliary imputation problems. In doing so, one runs the risk that every variable needs to be
included after all. In practice, there is often a small set of key variables, for which imputations
are needed, which suggests that steps 1 through 4 are to be performed for key variables only.
This was the approach taken in van Buuren et al. (1999), but it may miss important predictors
of predictors. A safer and more efficient, though more laborious, strategy is to perform the
modeling steps also for the predictors of predictors of key variables. This is done in Oudshoorn
et al. (1999). We expect that it is rarely necessary to go beyond predictors of predictors. At
the terminal node, we can apply a simply method like mice.impute.sample() that does not
need any predictors for itself.

Quick predictor selection

Correlations for the strategy outlined above can be calculated with the standard function
cor(). For example,

R> round(cor(nhanes, use = "pair"), 3)

age bmi hyp chl

age 1.000 -0.372 0.506 0.507

bmi -0.372 1.000 0.051 0.373

hyp 0.506 0.051 1.000 0.429

chl 0.507 0.373 0.429 1.000

calculates Pearson correlations using all available cases in each pair of variables. Similarly,

R> round(cor(y = nhanes, x = !is.na(nhanes), use = "pair"),

+ 3)

age bmi hyp chl

age NA NA NA NA

bmi 0.086 NA 0.139 0.053

hyp 0.008 NA NA 0.045

chl -0.040 -0.012 -0.107 NA

calculates the mutual correlations between the data and the response indicators. The warning
can be safely ignored and is caused by the fact that age contains no missing data.

The proportion of usable cases measures how many cases with missing data on the target
variable actually have observed values on the predictor. The proportion will be low if both

24 mice: Multivariate Imputation by Chained Equations in R

target and predictor are missing on the same cases. If so, the predictor contains only little
information to impute the target variable, and could be dropped from the model, especially
if the bivariate relation is not primary scientific interest. The proportion of usable cases can
be calculated as

R> p <- md.pairs(nhanes)

R> round(p$mr/(p$mr + p$mm), 3)

age bmi hyp chl

age NaN NaN NaN NaN

bmi 1 0.0 0.111 0.222

hyp 1 0.0 0.000 0.125

chl 1 0.3 0.300 0.000

For imputing hyp only 1 out of 8 cases was observed in predictor chl. Thus, predictor chl

does not contain much information to impute hyp, despite the substantial correlation of 0.42.
If the relation is of no further scientific interest, omitting predictor chl from the model to
impute hyp will only have a small effect. Note that proportion of usable cases is asymmetric.

mice 2.9 contains a new function quickpred() that calculates these quantities, and combines
them automatically in a predictorMatrix that can be used to call mice(). The quickpred()
function assumes that the correlation is a sensible measure for the data at hand (e.g., order
of factor levels should be reasonable). For example,

R> quickpred(nhanes)

age bmi hyp chl

age 0 0 0 0

bmi 1 0 1 1

hyp 1 0 0 1

chl 1 1 1 0

yields a predictorMatrix for a model that includes all predictors with an absolute correlation
with the target or with the response indicator of at least 0.1 (the default value of the mincor

argument). Observe that the predictor matrix need not always be symmetric. In particular,
bmi is not a predictor of hyp, but hyp is a predictor of bmi here. This can occur because the
correlation of hyp with the response indicator of bmi (0.139) exceeds the threshold.

The quickpred() function has arguments that change the minimum correlation, that allow
to select predictor based on their proportion of usable cases, and that can specify variables
that should always be included or excluded. It is also possible to specify thresholds per target
variable, or even per target-predictor combination. See the help files for more details.

It is easy to use the function in conjunction with mice(). For example,

R> imp <- mice(nhanes, pred = quickpred(nhanes, minpuc = 0.25,

+ include = "age"))

imputes the data from a model where the minimum proportion of usable cases is at least 0.25
and that always includes age as a predictor.

Journal of Statistical Software 25

Any interactions of interest need to be appended to the data before using quickpred(). For
large data, the user can experiment with the mincor, minpuc, include and exclude argu-
ments to trim the imputation problem to a reasonable size. The application of quickpred()
can substantially cut down the time needed to specify the imputation model for data with
many variables.

3.4. Passive imputation

There is often a need for transformed, combined or recoded versions of the data. In the
case of incomplete data, one could impute the original, and transform the completed original
afterwards, or transform the incomplete original and impute the transformed version. If,
however, both the original and the transform are needed within the imputation algorithm,
neither of these approaches work because one cannot be sure that the transformation holds
between the imputed values of the original and transformed versions.

mice implements a special mechanism, called passive imputation, to deal with such situ-
ations. Passive imputation maintains the consistency among different transformations of
the same data. The method can be used to ensure that the transform always depends
on the most recently generated imputations in the original untransformed data. Passive
imputation is invoked by specifying a ~ (tilde) as the first character of the imputation
method. The entire string, including the ~ is interpreted as the formula argument in a
call to model.frame(formula, data[!r[,j],]). This provides a simple method for spec-
ifying a large variety of dependencies among the variables, such as transformed variables,
recodes, interactions, sum scores, and so on, that may themselves be needed in other parts of
the algorithm.

Preserving a transformation

As an example, suppose that previous research suggested that bmi is better imputed from
log(chl) than from chl. We may thus want to add an extra column to the data with
log(chl), and impute bmi from log(chl). Any missing values in chl will also be present
in log(chl). The problem is to keep imputations in chl and log(chl) consistent with each
other, i.e., the imputations should respect their relationship. The following code will take
care of this:

R> nhanes2.ext <- cbind(nhanes2, lchl = log(nhanes2$chl))

R> ini <- mice(nhanes2.ext, max = 0, print = FALSE)

R> meth <- ini$meth

R> meth["lchl"] <- "~log(chl)"

R> pred <- ini$pred

R> pred[c("hyp", "chl"), "lchl"] <- 0

R> pred["bmi", "chl"] <- 0

R> pred

age bmi hyp chl lchl

age 0 0 0 0 0

bmi 1 0 1 0 1

hyp 1 1 0 1 0

26 mice: Multivariate Imputation by Chained Equations in R

chl 1 1 1 0 0

lchl 1 1 1 1 0

R> imp <- mice(nhanes2.ext, meth = meth, pred = pred, seed = 38788,

+ print = FALSE)

R> head(complete(imp))

age bmi hyp chl lchl

1 20-39 35.3 no 218 5.384495

2 40-59 22.7 no 187 5.231109

3 20-39 30.1 no 187 5.231109

4 60-99 22.5 yes 218 5.384495

5 20-39 20.4 no 113 4.727388

6 60-99 22.7 no 184 5.214936

We defined the predictor matrix such that either chl or log(chl) is a predictor, but not both
at the same time, primarily to avoid collinearity. Moreover, we do not want to predict chl

from lchl. Doing so would immobilize the MICE algorithm at the starting imputation. It
is thus important to set the entry pred["chl", "lchl"] equal to zero to avoid this. After
running mice() we find imputations for both chl and lchl that respect the relation.

Note: A slightly easier way to create nhanes2.ext is to specify

R> nhanes2.ext <- cbind(nhanes2, lchl = NA)

followed by the same commands. This has the advantage that the transform needs to be
specified only once. Since all values in lchl are now treated as missing, the size of imp will
generally become (much) larger however. The first method is generally more efficient, but the
second is easier.

Index of two variables

The idea can be extended to two or more columns. This is useful to create derived variables
that should remain synchronized. As an example, we consider imputation of body mass index
(bmi), which is defined as weight divided by height*height. It is impossible to calculate bmi
if either weight or height is missing. Consider the data boys in mice.

R> md.pattern(boys[, c("hgt", "wgt", "bmi")])

wgt hgt bmi

727 1 1 1 0

17 1 0 0 2

1 0 1 0 2

3 0 0 0 3

4 20 21 45

Data on weight and height are missing for 4 and 20 cases, respectively, resulting in 21 cases
for which bmi could not be calculated. Using passive imputation, we can impute bmi from
height and weight by means of the I() operator.

Journal of Statistical Software 27

R> ini <- mice(boys, max = 0, print = FALSE)

R> meth <- ini$meth

R> meth["bmi"] <- "~I(wgt/(hgt/100)^2)"

R> pred <- ini$pred

R> pred[c("wgt", "hgt", "hc", "reg"), "bmi"] <- 0

R> pred[c("gen", "phb", "tv"), c("hgt", "wgt", "hc")] <- 0

R> pred

age hgt wgt bmi hc gen phb tv reg

age 0 0 0 0 0 0 0 0 0

hgt 1 0 1 0 1 1 1 1 1

wgt 1 1 0 0 1 1 1 1 1

bmi 1 1 1 0 1 1 1 1 1

hc 1 1 1 0 0 1 1 1 1

gen 1 0 0 1 0 0 1 1 1

phb 1 0 0 1 0 1 0 1 1

tv 1 0 0 1 0 1 1 0 1

reg 1 1 1 0 1 1 1 1 0

The predictor matrix prevents that hgt or wgt are imputed from bmi, and takes care that
there are no cases where hgt, wgt and bmi are simultaneous predictors. Passive imputation
overrules the selection of variables specified in the predictorMatrix argument. Thus, in
the above case, we might have well set pred["bmi",] <- 0 and obtain identical results.
Imputations can now be created by

R> imp.idx <- mice(boys, pred = pred, meth = meth, maxit = 20,

+ seed = 9212, print = FALSE)

R> head(complete(imp.idx)[is.na(boys$bmi),], 3)

age hgt wgt bmi hc gen phb tv reg

103 0.087 60.0 4.54 12.61111 39.0 G1 P1 3 west

366 0.177 57.5 4.20 12.70321 40.4 G1 P1 1 west

1617 1.481 85.5 12.04 16.47002 47.5 G1 P1 1 north

Observe than the imputed values for bmi are consistent with (imputed) values of hgt and wgt.

Note: The values of bmi in the original data have been rounded to two decimals. If desired,
one can get that also in the imputed values by setting

R> meth["bmi"] <- "~round(wgt/(hgt/100)^2,dig=2)"

Sum scores

The sum score is undefined if one of the variables to be added is missing. We can use
sum scores of imputed variables within the MICE algorithm to economize on the number
of predictors. For example, suppose we create a summary maturation score of the pubertal
measurements gen, phb and tv, and use that score to impute the other variables instead of
the three original pubertal measurements. We can achieve that by

28 mice: Multivariate Imputation by Chained Equations in R

R> ini <- mice(cbind(boys, mat = NA), max = 0, print = FALSE)

R> meth <- ini$meth

R> meth["mat"] <- "~I(as.integer(gen) + as.integer(phb) +\n

+ + as.integer(cut(tv,breaks=c(0,3,6,10,15,20,25))))"

R> meth["bmi"] <- "~I(wgt/(hgt/100)^2)"

R> pred <- ini$pred

R> pred[c("bmi", "gen", "phb", "tv"), "mat"] <- 0

R> pred[c("hgt", "wgt", "hc", "reg"), "mat"] <- 1

R> pred[c("hgt", "wgt", "hc", "reg"), c("gen", "phb", "tv")] <- 0

R> pred[c("wgt", "hgt", "hc", "reg"), "bmi"] <- 0

R> pred[c("gen", "phb", "tv"), c("hgt", "wgt", "hc")] <- 0

R> pred

age hgt wgt bmi hc gen phb tv reg mat

age 0 0 0 0 0 0 0 0 0 0

hgt 1 0 1 0 1 0 0 0 1 1

wgt 1 1 0 0 1 0 0 0 1 1

bmi 1 1 1 0 1 1 1 1 1 0

hc 1 1 1 0 0 0 0 0 1 1

gen 1 0 0 1 0 0 1 1 1 0

phb 1 0 0 1 0 1 0 1 1 0

tv 1 0 0 1 0 1 1 0 1 0

reg 1 1 1 0 1 0 0 0 0 1

mat 0 0 0 0 0 0 0 0 0 0

The maturation score mat is composed of the sum of gen, phb and tv. Since the first two are
factors, we need the as.integer() function to get the internal numerical codes. Furthermore,
we recoded tv into 6 ordered categories by calling the cut() function, and use the category
number to calculate the sum score. The predictor matrix is set up so that either the set of
(gen,phb,tv) or mat are predictors, but never at the same time. The number of predictors
for say, hgt, has now dropped from 8 to 5, but imputation still incorporates the main relations
of interest. Imputations can now be generated and plotted by

R> imp.sum <- mice(cbind(boys, mat = NA), pred = pred, meth = meth,

+ maxit = 20, seed = 10948, print = FALSE)

R> xyplot(imp.sum, mat ~ age | .imp, na = gen | phb | tv,

+ subset = .imp == 1, ylab = "Maturation score", xlab = "Age (years)")

Figure 5 plots the derived maturation scores against age. Since no measurements were made
before the age of 8 years, all scores on the left side are sums of three imputed values for
gen, phb and tv. Note that imputation relies on extreme extrapolation outside the range of
the data. Though quite a few anomalies are present (many babies score a ‘4’ or higher), the
overall pattern is as expected. Section 3.5 discusses ways to improve the imputations.

Interaction terms

In some cases scientific interest focusses on interactions terms. For example, in experimental
studies we may be interested in assessing whether the rate of change differs between two

Journal of Statistical Software 29

Age (years)

M
a
tu

ra
tio

n
sc

o
re

5

10

15

0 5 10 15 20

1

Figure 5: Observed (blue) and (partially) imputed (red) maturation scores plotted against
age.

treatment groups. In such cases, the primary goal is to get an unbiased estimate of the time
by group interaction. In general imputations should be conditional upon the interactions
of interest. However, interaction terms will be incomplete if the variables that make up
the interaction are incomplete. It is straightforward to solve this problem using passive
imputation.

Interactions between two continuous variables are often defined by subtracting the mean and
taking the product. In mice 2.9 we may say

R> nhanes2.ext <- cbind(nhanes2, bmi.chl = NA)

R> ini <- mice(nhanes2.ext, max = 0, print = FALSE)

R> meth <- ini$meth

R> meth["bmi.chl"] <- "~I((bmi-25)*(chl-200))"

R> pred <- ini$pred

R> pred[c("bmi", "chl"), "bmi.chl"] <- 0

R> imp <- mice(nhanes2.ext, meth = meth, pred = pred, seed = 51600,

+ print = FALSE)

Imputations created in this way preserve the interaction of bmi with chl. This would be
useful if the complete-data model is to predict, for example, hyp from bmi and chl and their
interaction.

Interactions involving categorical variables need a representation using dummy variables. The

30 mice: Multivariate Imputation by Chained Equations in R

mice() function internally creates dummy variables for any factor that are being used as a
predictor. The data and names of these dummy variables can be accessed from imppaddata.
In the above example, we find

R> head(inipaddata, 3)

age bmi hyp chl bmi.chl age.1 age.2 hyp.1

1 20-39 NA <NA> NA NA 0 0 NA

2 40-59 22.7 no 187 NA 1 0 0

3 20-39 NA no 187 NA 0 0 0

The factors age and hyp are internally represented by dummy variables age.1, age.2 and
hyp.1. The interaction between age and bmi can be added as

R> nhanes2.ext <- cbind(nhanes2, age.1.bmi = NA, age.2.bmi = NA)

R> ini <- mice(nhanes2.ext, max = 0, print = FALSE)

R> meth <- ini$meth

R> meth["age.1.bmi"] <- "~I(age.1*(bmi-25))"

R> meth["age.2.bmi"] <- "~I(age.2*(bmi-25))"

R> pred <- ini$pred

R> pred[c("age", "bmi"), c("age.1.bmi", "age.2.bmi")] <- 0

R> imp <- mice(nhanes2.ext, meth = meth, pred = pred, maxit = 10)

Imputation of hyp and chl will now respect the interaction between age and bmi.

Squeeze

Imputed values that are implausible or impossible should not be accepted. For example,
mice.impute.norm() can generate values outside the data range. Positive-valued variables
could occasionally receive negative values. For example, the following code produces a crash:

R> nhanes2.ext <- cbind(nhanes2, lchl = NA)

R> ini <- mice(nhanes2.ext, max = 0, pri = FALSE)

R> meth <- ini$meth

R> meth[c("lchl", "chl")] <- c("~log(chl)", "norm")

R> pred <- ini$pred

R> pred[c("hyp", "chl"), "lchl"] <- 0

R> pred["bmi", "chl"] <- 0

R> imp <- mice(nhanes2.ext, meth = meth, pred = pred, seed = 1,

+ maxit = 100)

...

27 3 bmi hyp chl lchl

27 4 bmi hyp chl lchl

Error in `[<-.data.frame`(`*tmp*`, , i, value = list

(`log(chl)` = c(4.09912613113127, :

replacement element 1 has 24 rows, need 25

In addition: Warning message:

In log(chl) : NaNs produced

Journal of Statistical Software 31

The problem here is that one of the imputed values in chl is negative. Negative values can
occur when imputing under the normal model, but leads here to a fatal error. One way to
prevent this error is to squeeze the imputations into an allowable range. The squeeze()

function in mice 2.9 recodes any outlying values in the tail of the distribution to the nearest
allowed value. Using

R> meth["lchl"] <- "~log(squeeze(chl, bounds=c(100,300)))"

R> imp <- mice(nhanes2.ext, meth = meth, pred = pred, seed = 1, maxit = 100)

will squeeze all imputed values into the range 100–300 before taking the log. This trick will
solve the problem, but does not store any squeezed values in chl, so lchl and chl become
inconsistent. Depending on the situation, this may or may not be a problem. One way to
ensure consistency is to create an intermediate variable schl by passive imputation. Thus,
schl contains the squeezed values, and takes over the role of chl within the algorithm. We
will see an alternative in Section 3.5.

Cautious remarks

There are some specific points that need attention when using passive imputation through
the ~ mechanism. Deterministic relations between columns remain only synchronized if the
passively imputed variable is updated immediately after any of its predictors are imputed. So
in the last example variables age.1.bmi and age.2.bmi should be updated each time after age
or bmi is imputed in order to stay synchronized. This can be done by changing the sequence
in which the algorithm visits the columns. The mice() function does not automatically
change the visiting sequence if passive variables are added. Section 3.6 provides techniques
for setting the visiting sequence. Whether synchronization is really worthwhile will depend
on the specific data at hand, but it is a healthy general strategy to pursue.

The ~ mechanism may easily lead to highly correlated variables or linear dependencies among
predictors. Sometimes we want this behavior on purpose, for example if we want to impute
using both X and X2. However, linear dependencies among predictors will produce a fatal
error during imputation. In this section, our strategy has been to avoid this by requiring that
either the original or the passive variable can be a predictor. This strategy may not always
be desired or feasible however.

Another point is that passive imputation may easily lock up the algorithm when it is not done
properly. Suppose that we make a copy bmi2 of bmi by passive imputation, and subsequently
use bmi2 to impute missing data in bmi. Re-imputing bmi from bmi2 will fix the imputations
to the starting imputations. This situation is easy to diagnose and correct (cf. Section 4.3).

The mice algorithm internally uses passive imputation to create dummy variables of factors.
These dummy variables are created automatically and discarded within the main algorithm,
and are always kept in sync with the original by passive imputation. The relevant data and
settings are stored within the list imp$pad. Normally, the user will not have to deal with this,
but in case of running problems it could be useful to be aware of this. Section 4 provides
more details.

3.5. Post-processing imputations

It can be useful to post-process imputations generated by univariate methods. For example,
we may require imputation to be bounded within a certain range, or we may wish to exclude

32 mice: Multivariate Imputation by Chained Equations in R

implausible or impossible combinations. The mice() function has an argument post that
takes a vector of strings of R commands. These commands are parsed and evaluated just
after the univariate imputation function returns, and thus provide a way to post-process the
imputed values. For example, a way to ensure positive imputations for chl under normal
imputation (cf. Section 3.4 on the squeeze() function) is:

R> nhanes2.ext <- cbind(nhanes2, lchl = NA)

R> ini <- mice(nhanes2.ext, max = 0, print = FALSE)

R> meth <- ini$meth

R> meth[c("lchl", "chl")] <- c("~log(chl)", "norm")

R> pred <- ini$pred

R> pred[c("hyp", "chl"), "lchl"] <- 0

R> pred["bmi", "chl"] <- 0

R> post <- ini$post

R> post["chl"] <- "imp[[j]][,i] <- squeeze(imp[[j]][,i],c(100,300))"

R> imp <- mice(nhanes2.ext, meth = meth, pred = pred, post = post,

+ seed = 30031, maxit = 10, print = FALSE)

R> impimpchl

1 2 3 4 5

1 141.9775 100.0000 215.5944 167.4770 132.2074

4 175.9424 197.7750 252.6138 270.0522 162.9603

10 203.5916 138.0413 190.6631 188.8077 160.8818

11 232.7851 100.0000 100.0000 171.7716 151.0727

12 210.0065 139.1416 199.3788 238.3034 128.7681

15 215.4298 160.8284 148.6562 197.7282 178.2769

16 172.3431 168.2527 161.2586 207.1777 140.7590

20 212.0838 226.3953 258.8964 213.4481 160.4901

21 203.1200 184.1227 123.5391 175.1849 126.5748

24 231.2208 255.7083 137.7759 260.2423 222.0734

The expression imp[[j]][,i] in the definition of post["chl"] refers to a vector that is used
to store the i-th imputation (i = 1, . . . ,m) for the j-th column in p$data, a padded version
of the input data, here nhanes2.ext. Expression(s) are evaluated within the sampler()

function. Any expressions that are valid within that context can be executed, but be careful
not the introduce any NA’s if the variable is to be used as a predictor for another variable. The
output shows that several imputed values have been constrained to lie within the specified
range.

Another example refers to Figure 5. Puberty can already start at the age of 3 years in clinical
populations of American girls (Herman-Giddens et al. 1997). For our data of healthy Dutch
boys we assume that puberty will not start before the age of 5 years. We thus want to restrict
any imputations of gen, phb and tv to the lowest possible category for children younger than
5 years. This can be achieved by using the post argument. The code below first repeats the
setting of meth and pred from Section 3.4.

R> ini <- mice(cbind(boys, mat = NA), max = 0, print = FALSE)

R> meth <- ini$meth

Journal of Statistical Software 33

R> meth["mat"] <- "~I(as.integer(gen) + as.integer(phb) +\n

+ + as.integer(cut(tv,breaks=c(0,3,6,10,15,20,25))))"

R> meth["bmi"] <- "~I(wgt/(hgt/100)^2)"

R> pred <- ini$pred

R> pred[c("bmi", "gen", "phb", "tv"), "mat"] <- 0

R> pred[c("hgt", "wgt", "hc", "reg"), "mat"] <- 1

R> pred[c("hgt", "wgt", "hc", "reg"), c("gen", "phb", "tv")] <- 0

R> pred[c("wgt", "hgt", "hc", "reg"), "bmi"] <- 0

R> pred[c("gen", "phb", "tv"), c("hgt", "wgt", "hc")] <- 0

R> pred

age hgt wgt bmi hc gen phb tv reg mat

age 0 0 0 0 0 0 0 0 0 0

hgt 1 0 1 0 1 0 0 0 1 1

wgt 1 1 0 0 1 0 0 0 1 1

bmi 1 1 1 0 1 1 1 1 1 0

hc 1 1 1 0 0 0 0 0 1 1

gen 1 0 0 1 0 0 1 1 1 0

phb 1 0 0 1 0 1 0 1 1 0

tv 1 0 0 1 0 1 1 0 1 0

reg 1 1 1 0 1 0 0 0 0 1

mat 0 0 0 0 0 0 0 0 0 0

R> post <- ini$post

R> post["gen"] <- "imp[[j]][p$data$age[!r[,j]]<5,i] <- levels(boys$gen)[1]"

R> post["phb"] <- "imp[[j]][p$data$age[!r[,j]]<5,i] <- levels(boys$phb)[1]"

R> post["tv"] <- "imp[[j]][p$data$age[!r[,j]]<5,i] <- 1"

R> imp <- mice(cbind(boys, mat = NA), pred = pred, meth = meth, post = post,

+ maxit = 10, print = FALSE)

The expression p$data$age[!r[,j]]<5 will find the ages of the children for whom the current
(j-th) variable was imputed. The maturation score mat now always takes it lowest value before
the age of 5 years (cf. Figure 6). Section 6.2 contains another application of post-processing.
You can write your own post-processing functions, and call these from within the MICE
algorithm.

3.6. Visiting scheme

The default MICE algorithm imputes incomplete columns in the data from left to right.
Theoretically, the visiting scheme is irrelevant as long as each column is visited often enough,
but some schemes are more efficient than others. In particular, for monotonically missing data,
convergence is immediate if variables are ordered according to their number of missing cases.
Rather than reordering the data itself, it is more convenient to change the visiting scheme
of the algorithm by the visitSequence argument. In its basic form, the visitSequence

argument is a vector of integers in the range 1:ncol(data) of arbitrary length, specifying
the sequence of column numbers for one iteration of the algorithm. Any given column may
be visited more than once within the same iteration, which can be useful to ensure proper

34 mice: Multivariate Imputation by Chained Equations in R

Age (years)

M
a
tu

ra
tio

n
sc

o
re

5

10

15

0 5 10 15 20

1

Figure 6: Observed (blue) and (partially) imputed (red) maturation scores plotted against
age, where the imputed values for gen, phb and tv are constrained before the age of 5 years.

synchronization among variables. It is mandatory that all columns with missing data that
are being used as predictors are visited, or else the function will stop with an error.

As an example, rerun the code of the Section 3.4, to obtain imputed data imp that allow for
the interaction bmi.chl. The visiting scheme is

R> imp$vis

bmi hyp chl bmi.chl

2 3 4 5

If visitSequence is not specified, the mice() function imputes the data from left to right. In
this case, bmi.chl is calculated after chl is imputed, so at point bmi.chl is synchronized with
both bmi and chl. Note however that bmi.chl is not synchronized with bmi when imputing
hyp, so bmi.chl is not representing the current interaction effect. This could result in wrong
imputations. We can correct this by including an extra visit to bmi.chl after bmi has been
imputed:

R> vis <- imp$vis

R> vis <- append(vis, vis[4], 1)

R> vis

R> imp <- mice(nhanes2.ext, meth = meth, pred = pred, vis = vis)

Journal of Statistical Software 35

iter imp variable

1 1 bmi bmi.chl hyp chl bmi.chl

1 2 bmi bmi.chl hyp chl bmi.chl

1 3 bmi bmi.chl hyp chl bmi.chl

...

The effect is that bmi.chl is now properly updated. By the way, a more efficient ordering of
the variables is

R> imp <- mice(nhanes2.ext, meth = meth, pred = pred, vis = c(2, 4, 5, 3))

iter imp variable

1 1 bmi chl bmi.chl hyp

1 2 bmi chl bmi.chl hyp

1 3 bmi chl bmi.chl hyp

...

When the missing data pattern is close to monotone, convergence may be speeded by visiting
the columns in increasing order of the number of missing data. We can specify this order by
the "monotone" keyword as

R> imp <- mice(nhanes2.ext, meth = meth, pred = pred, vis = "monotone")

iter imp variable

1 1 hyp bmi chl bmi.chl

1 2 hyp bmi chl bmi.chl

1 3 hyp bmi chl bmi.chl

...

4. Running MICE

4.1. Dry run

A dry run is a call to mice() with the maximum number of iterations maxit set to zero by

R> ini <- mice(nhanes2, maxit = 0)

A dry run is a fast way to create the mids object ini containing the default settings. The
default settings of the attributes of this mids object, like ini$method, ini$predictorMatrix,
ini$post, and ini$visitSequence can be used to define user-specific settings. Especially
for datasets with many variables this is easier than defining these settings from scratch. This
technique was already used in many examples in Section 3.

A mids object obtained with a dry run can also be used to include manually imputations
obtained from other software. It is essential that external imputations are stored in the
proper format of the mids object. For example, the matrix import contains two imputations
for nine missing values in bmi generated by other software. It can be assigned to the mids

object imp by

36 mice: Multivariate Imputation by Chained Equations in R

R> import <- matrix(c(30, 30, 30, 29, 25, 21, 25, 25, 22, 33, 27, 22, 27,

+ 35, 27, 20, 27, 30), byrow = TRUE, nr = 9)

R> imp <- mice(nhanes, print = FALSE, seed = 77172)

R> impimpbmi[, 1:2] <- import

R> impimpbmi

1 2 3 4 5

1 30 30 22.0 33.2 29.6

3 30 29 28.7 22.0 27.4

4 25 21 22.5 24.9 22.0

6 25 25 24.9 24.9 24.9

10 22 33 27.2 28.7 24.9

11 27 22 35.3 29.6 22.5

12 27 35 27.4 26.3 30.1

16 27 20 35.3 22.0 25.5

21 27 30 33.2 29.6 20.4

It is important to realize that this technique assumes that the order of imputed values across
software systems is identical. Section 7 shows some alternative ways to interact with other
software.

The altered mids object can now be used as input for the MICE algorithm by calling the
mice.mids function (see Section 4.2). Note that this requires all empty cells to be imputed,
otherwise the sampler will get stuck on empty cells. Also, the altered mids object can be used
for repeated complete data analyses by calling the with.mids function. For this use, empty
cells in the imputation can be encoded by NA. The complete data method should then be able
to handle the missing data correctly.

4.2. Step by step

The function mice.mids() takes a mids object as input, iterates maxit iterations and produces
another mids object as output. This function enables the user to split up the computations of
the MICE algorithm into smaller parts by providing a stopping point after every full iteration.
There are various circumstances in which this might be useful:

� For large data, RAM memory may become exhausted if the number of iterations is
large. Returning to prompt/session level may alleviate these problems.

� The user wants to compute special convergence statistics at intermediate points, e.g.,
after each iteration, for monitoring convergence.

� For computing a ‘few extra iterations’.

The imputation model itself is specified in the mice() function and cannot be changed with
mice.mids (Well actually you can by tweaking the mids object directly, but this is not rec-
ommended). The state of the random generator is saved with the mids object.

As a simple example, calculate two mids objects imp2 and imp as

Journal of Statistical Software 37

R> imp <- mice(nhanes, maxit = 4, seed = 44612, print = FALSE)

R> imp1 <- mice(nhanes, maxit = 1, seed = 44612, print = FALSE)

R> a <- runif(10)

R> imp2 <- mice.mids(imp1, maxit = 3, print = FALSE)

Imputations in imp and imp2 are identical so

R> all(impimpbmi == imp2impbmi)

[1] TRUE

should yield TRUE.

4.3. Assessing convergence

There is no clear-cut method for determining whether the MICE algorithm has converged.
What is often done is to plot one or more parameters against the iteration number. The
mice() function produces m parallel imputation streams. The mids object contains compo-
nents chainMean and chainVar with the mean and variance of the imputations per stream,
respectively. These can be plotted by the plot.mids object. On convergence, the different
streams should be freely intermingled with each other, without showing any definite trends.
Convergence is diagnosed when the variance between different sequences is no larger than the
variance with each individual sequence.

Inspection of the stream may reveal particular problems of the imputation model. Section 3.4
shows that passive imputation should carefully set the predictor matrix. The code below is a
pathological example where the MICE algorithm is stuck at the initial imputation.

R> ini <- mice(boys, max = 0, print = FALSE)

R> meth <- ini$meth

R> meth["bmi"] <- "~I(wgt/(hgt/100)^2)"

R> meth["wgt"] <- "~I(bmi*(hgt/100)^2)"

R> meth["hgt"] <- "~I(100*sqrt(wgt/bmi))"

R> imp1 <- mice(boys, meth = meth, maxit = 20, print = FALSE, seed = 9212)

Variables hgt, wgt and bmi have an exact nonlinear relationships. The above code simulta-
neously specifies all relationships between them. The net effect is that the sampler locks up.
Figure 7 is created by

R> plot(imp1, c("hgt", "wgt", "bmi"))

and indicates that the mean (on the left) and the standard deviation (on the right) of the
imputation for the three variables remain constant.

A less extreme but still pathological case of non-convergence occurs with the following code:

R> ini <- mice(boys, max = 0, print = FALSE)

R> meth <- ini$meth

R> meth["bmi"] <- "~I(wgt/(hgt/100)^2)"

R> imp2 <- mice(boys, meth = meth, maxit = 20, print = FALSE, seed = 9212)

38 mice: Multivariate Imputation by Chained Equations in R

Iteration

8
8

9
0

9
2

9
4

9
6

mean hgt

2
5

3
0

3
5

4
0

sd hgt
2
0

2
5

3
0

3
5

4
0

mean wgt

2
0

2
5

3
0

3
5 sd wgt

1
7
.0

1
7
.5

1
8
.0

5 10 15 20

mean bmi

2
.5

3
.0

5 10 15 20

sd bmi

Figure 7: Pathological example of non-convergence of the MICE algorithm. Plotted are the
means and standard deviations per iteration of the imputed values of hgt, wgt and bmi. The
values are locked to the starting imputation.

Iteration

8
0

8
5

9
0

9
5

mean hgt

2
5

3
0

3
5

4
0

sd hgt

4
0

6
0

8
0

1
0
0 mean wgt

1
0

2
0

3
0

4
0

5
0

6
0

sd wgt

2
0

3
0

4
0

5
0

5 10 15 20

mean bmi

2
0

4
0

6
0

8
0
1
0
0

5 10 15 20

sd bmi

Figure 8: Non-convergence of the MICE algorithm. Imputations for hgt, wgt and bmi hardly
mix and resolve into a steady state.

Journal of Statistical Software 39

Iteration

9
2

9
4

9
6

mean hgt

2
6

2
8

3
0

3
2

sd hgt
3
0

3
5

4
0

mean wgt

2
5

3
0

3
5

4
0

sd wgt

1
6

1
7

1
8

1
9

5 10 15 20

mean bmi

2
3

4
5

5 10 15 20

sd bmi

Figure 9: Healthy convergence of the MICE algorithm for hgt, wgt and bmi, where feedback
loop of bmi into hgt and wgt is broken (solution imp.idx).

Iteration

5
3
.0

5
3
.5

5
4
.0

5
4
.5

mean hc

4
.5

5
.0

5
.5

sd hc

2
.2

2
.4

2
.6

mean gen

1
.3
5

1
.4
5

1
.5
5

1
.6
5 sd gen

2
.1
0

2
.2
0

2
.3
0

2
.4
0

5 10 15 20

mean phb

1
.6

1
.7

1
.8

1
.9

5 10 15 20

sd phb

Figure 10: Healthy convergence of the MICE algorithm for hc, gen and phb showing a strong
initial trend for the latter two (solution imp.idx).

40 mice: Multivariate Imputation by Chained Equations in R

Convergence is bad because imputations of bmi feed back into hgt and wgt. Figure 8 shows
that the streams hardly mix and slowly resolve into a steady state.

By comparison, Figure 9 is an example of healthy convergence of the same three variables.
The model fitted here is the imp.idx solution from Section 3.4, where bmi is passively imputed
without feedback into hgt and wgt. There is very little trend and the streams mingle very
well right from the start.

Figure 10 shows the convergence plot for hc, gen and phb from the same solution. There is a
strong initial trend for gen and phb). The MICE algorithm initializes the solution by taking
a random draw from the observed data. For gen and phb these values are far too high. The
algorithm quickly picks up the strong relation between age, gen and phb, and has more or less
reached the appropriate level within about five iterations. This demonstrates that convergence
can be very fast, even if the starting imputations are clearly off-target. Plotting somewhat
longer iteration sequences will generally convey a good idea whether the between-imputation
variability has stabilized and whether the estimates are free of trend.

Note that one iteration of the MICE algorithm involves a lot of work. For each variable and
each repeated imputation a statistical model is fitted, imputations are drawn and the data
are updated. Fortunately, the needed number of main iterations is typically much lower than
is common in modern MCMC techniques, which often require thousands of iterations. The
key to fast convergence is to achieve independence in the imputations themselves. Univariate
imputation procedures create imputations that are already statistically independent for a
given value of the regression parameters. The number of iterations should be large enough
to stabilize the distributions of these parameters. Simulation work using moderate amounts
of missing data yields satisfactory performance with just 5 or 10 iterations (Brand 1999; van
Buuren et al. 2006b). In many cases, we can obtain good results with as few iterations, but it
does not hurt to calculate some extra iterations to assess convergence over longer stretches. For
large amounts of missing data or for remotely connected data (e.g., file matching) convergence
can be slower.

The default plot of the mids object plots the mean and variance of the imputations. This
may not correspond to the parameter of most interest. To check convergence of an arbitrary
parameter of interest, one could write a function that loops over mice.mids, that extracts
imputed data with the complete function, and that recomputes the parameter after each
iteration using the current imputations. More in particular, one could set maxit to 1, generate
imputations, compute the statistic of interest on the completed data, save the result, compute
the second iteration using mice.mids, and so on.

As a example, suppose that we are interested in the association between gen and phb as
measured by Kendall’s τ . We can monitor convergence of the MICE algorithm with respect
to Kendall’s τ by the following lines:

R> m <- 5

R> T <- 20

R> imp.kendall <- mice(boys, m = m, meth = imp.idx$meth,

+ pred = imp.idx$pred, maxit = 0, print = FALSE)

R> tau <- matrix(NA, nrow = T, ncol = m)

R> for (i in 1:T) {

+ if (i == 1) set.seed(9212)

+ imp.kendall <- mice.mids(imp.kendall, maxit = 1, print = FALSE)

Journal of Statistical Software 41

5 10 15 20

0
.7
0

0
.7
5

0
.8
0

0
.8
5

Iteration

ta
u

Figure 11: Convergence of the MICE algorithm with respect to Kendall’s τ between gen and
phb.

+ x <- complete(imp.kendall, "repeated")[, paste("gen", 1:m, sep = ".")]

+ y <- complete(imp.kendall, "repeated")[, paste("phb", 1:m, sep = ".")]

+ xn <- as.data.frame(lapply(x, as.numeric))

+ yn <- as.data.frame(lapply(y, as.numeric))

+ tau[i,] <- diag(cor(xn, yn, method = "kendall"))

+ }

The development of τ can now be plotted by:

R> matplot(x = 1:T, y = tau, xlab = "Iteration", type = "l")

Figure 11 shows that diagnostic convergence plot for the association between gen and phb.
In general, the pattern is comparable to that in Figure 10 where 5–10 iterations are needed
to be free of trend.

4.4. Solving problems with the data

The MICE algorithm performs checks on the data before: missing data should be present,
the data consists of at least two columns, and constant predictors are not allowed. Version
V2.0 implements more stable algorithms for imputing categorical data, which caused a lot of
warnings in previous versions.

One source of confusion is that the mice() function chooses the imputation method according
to the type of the variable. Categorical variables should be coded as factors in order to invoke
polyreg, otherwise pmm will be selected. Variables with many categories (> 20) are often
problematic. Internally, the mice() function will create a dummy variable for each category,
which can produce very large matrices, time consuming calculations, introduce empty cell

42 mice: Multivariate Imputation by Chained Equations in R

problems and cause instability problems of the algorithm. For variable with many categories,
we therefore recommend pmm.

The mice() function was programmed for flexibility, and not to minimize the use of time or
resources. Combined with the greedy nature of R in general and the fact that the method does
not use compiled functions, this poses some limits to the size of the data sets and the type
of data that can be analyzed. The excution time of mice() depends primarily on the choice
of the univariate imputation methods. Methods like pmm and norm are fast, while others,
logreg and polyreg, can be slow. If there are many categorical variables, each with many
categories, one can speed up the algorithm considerably by imputing (some of the) variables
as numerical variables with pmm instead of polyreg. Since pmm imputes only values that are
observed, the original categories of the variable are preserved.

A frequent source of problems is caused by predictors that are (almost) linearly related. For
example, if one predictor can be written as a linear combination of some others, then this
results in messages like Error in Solve.default(t(xobs) %*% xobs) : system is com-

putationally singular: reciprocal condition number = 2.87491e-20 or Error in

solve.default(t(xobs) %*% xobs) : Lapack routine dgesv: system is exactly

singular. The solution to collinearity is to eliminate duplicate information, for example
by specifying a reduced set of predictors via the predictorMatrix argument. Sometimes the
source of the problem is obvious, for example if there are sum scores. However, finding the
sets of nearly dependent variables can prove to be difficult and laborious. One trick that we
use in practice is to study the last eigenvector of the covariance matrix of the incomplete data
(after listwise deletion). Variables with high values on that factor often cause the problems.
Alternatively, one could revert to collinearity diagnostics like the VIF (Kleinbaum et al. 1988)
or graphical displays (Cook and Weisberg 1999). Pedhazur (1973) provided a good discussion
on multicollinearity. Version 2.5 incorporated new functions for trapping multicollinearity, so
these problems should be things of the past.

If all fails, use the debugger. Functions in mice are all full R. This allows you to trace every
detail of your calculations, and eventually track down the source of the problem. This is your
last resort, and requires you to understand our code, which can be difficult at times, even for
us. Use traceback() to find out what R was doing at the time the error occurred. In order
to use the debugger set options(error = dump.frames) before the error occurs, and then
type debugger(). This will get you to choose the local frame where the error, and inspect
the current value of local variables. If you have suggestions for improvement, please let us
know.

4.5. Checking your imputations

Once the algorithm has converged, it is important to inspect the imputations. In general, a
good imputed value is a value that could have been observed had it not been missing. In this
phase, it is often useful to report results to the investigator who understands the science behind
the data. Since there are some many aspects that we could look at, we have refrained from
implemented specific tools. It is however not difficult with the powerful graphical functions
in lattice to make diagnostic plots for checking the imputations. We will give some examples
below, following the ideas of Raghunathan and Bondarenko (2007).

The MAR assumption can never be tested from the observed data. One can however check
whether the imputations created by MICE algorithm are plausible. As a first step one can

Journal of Statistical Software 43
D
en

si
ty

0.00

0.05

0.10

0.15

50 100 150 200

hgt

−50 0 50 100

wgt

10 15 20 25 30

bmi

30 40 50 60 70

hc

0 10 20 30

tv

Figure 12: Kernel density estimates for the marginal distributions of the observed data (blue)
and the m = 5 densities per variable calcuted from the imputed data (thin red lines).

plot densities of both the observed and imputed values of all variables to see whether the
imputations are reasonable. Differences in the densities between the observed and imputed
values may suggest a problem that needs to be further checked. The densityplot() function
from the lattice package can be used on mids objects to produce Figure 12 as

R> densityplot(imp.kendall, scales = list(x = list(relation = "free")),

+ layout = c(5, 1))

Figure 12 shows that the imputed values can be quite different from the observed data. For
example, the imputed heights are around 90 cm, which is due to the fact the some of the values
of the two-year olds were missing. The same holds for testicular volume (tv), which was not
measured below the age of 8 years. Reversely, the imputed values for head circumference (hc)
are higher since hc was not measured in the older boys. In general, plots like this are useful
to detect interesting differences between the observed and imputed data.

Another diagnostic tool involves comparing the distributions of observed and imputed data
conditional on the propensity score (Raghunathan and Bondarenko 2007). The idea is that
the conditional distributions should be similar if the assumed model for creating multiple
imputations is a good fit. The following statements create the missing data indicator hc.na

of hc in the global environment, and calculate propensity scores:

R> hc.na <- is.na(boys$hc)

R> fit.hc <- with(imp.kendall, glm(hc.na ~ age + wgt + hgt + reg,

+ family = binomial))

R> ps <- rep(rowMeans(sapply(fit.hc$analyses, fitted.values)), 6)

Figure 13 is plotted by

R> xyplot(imp.kendall, hc ~ ps | .imp, pch = c(1, 20), cex = c(0.8, 1.2),

+ xlab = "Probability that head circumference is missing",

+ ylab = "Head circumference (cm)", scales = list(tick.number = 3))

44 mice: Multivariate Imputation by Chained Equations in R

Probability that head circumference is missing

H
ea

d
ci

rc
um

fe
re

nc
e

(c
m

)

40

50

60

0

0.0 0.1 0.2 0.3

1 2

0.0 0.1 0.2 0.3

3 4

0.0 0.1 0.2 0.3

40

50

60

5

Figure 13: Head circumference against its (pooled) propensity score for observed and imputed
values.

The figure plots head circumference (observed and imputed) against the propensity score,
where the propensity score is equal to the average over the imputations. By definition, there
are more imputed values on the right hand side of the display than on the left hand side.
The striped pattern in the distribution of the propensity score is related to region (variable
reg). More missing data appear in the city and in the western part of the country. If the
imputation model fits well, we expect that for a given propensity score, the distribution of
the observed and imputed data conform well. This appears to be the case here, so this plot
provides evidence that the imputations are reasonable. Realize however that the comparison
is as good as the propensity score. If important predictors are omitted from the nonresponse
model, then we cannot see the potential misfit related to these.

It is also useful to study the residual of the relation depicted in Figure 13. Under MAR we
expect that the spread of the residuals will be similar (but not identical) for observed and
imputed data, so their distributions should overlap. The relation between the propensity
score and head circumference is clearly not linear, so we added polynomial terms to account
for the nonlinearity.

R> hc <- complete(imp.kendall, "long", TRUE)$hc

R> fit <- lm(hc ~ poly(ps, 4))

Journal of Statistical Software 45

Residuals of regression of hc on propensity score

D
en

si
ty

−20 −10 0 10

Figure 14: Distributions of the residuals of the missing data model.

Figure 14 is created by

R> densityplot(~residuals(fit), group = hc.na, plot.points = FALSE,

+ ref = TRUE, scales = list(y = list(draw = FALSE)),

+ par.settings = simpleTheme(col.line = rep(mdc(1:2))),

+ xlab = "Residuals of regression of hc on propensity score", lwd = 2)

The figure displays the distributions of the residuals in the observed and imputed data. The
amount of overlap is large, lending credit to the notion that the spread of imputations is
appropriate.

More methods for diagnostic checking can be found in Section 2.4. Also consult methods for
checking multiply imputed values by Abayomi et al. (2008). These are also easily implemented
using standard tools.

5. After MICE

Imputations are stored in an object of class mids. The next step is to analyze the multiply
imputed data by the model of scientific interest. The function with.mids() takes imputed
data, fits the model to each of the m imputed data sets, and returns an object of type mira.
Section 5.1 deals with this step. The result is m analysis instead of one, so the last task is
to combine these analyses into one final final result. The function pool() takes an object of
class mira and produces a combined result in an object of class mipo. Section 5.3 provides
the details.

5.1. Repeated data analysis

Performing the desired analysis repeatedly for each imputed copy of the data can be done
with the function with.mids. This function evaluates an expression in each multiply imputed
dataset and creates an object of class mira. We impute nhanes2 and apply a linear regression
on the imputed data to predict chl as follows:

R> imp <- mice(nhanes2, seed = 99210, print = FALSE)

46 mice: Multivariate Imputation by Chained Equations in R

R> fit <- with(imp, lm(chl ~ age + bmi))

R> summary(pool(fit))

est se t df Pr(>|t|)

(Intercept) -19.671875 54.092442 -0.3636714 16.14412 0.720822014

age2 50.381076 17.928842 2.8100575 16.83937 0.012127888

age3 68.702368 19.868766 3.4578076 13.61617 0.003988504

bmi 6.777794 1.927845 3.5157357 14.26303 0.003340391

lo 95 hi 95 nmis fmi lambda

(Intercept) -134.25959 94.91584 NA 0.2070037 0.11449428

age2 12.52702 88.23513 NA 0.1840057 0.09252328

age3 25.97513 111.42961 NA 0.2889235 0.19162353

bmi 2.65012 10.90547 9 0.2677970 0.17185238

We can access the results of the third imputation by fit$ana[[3]]. The with.mids()

function is called by just with(). The function accepts a valid R expression as its second
argument, and applies it to each completed data set. For example, to calculate the contingency
table of overweight by age per imputation, we can use the following:

R> expr <- expression(ov <- cut(bmi, c(10, 25, 50)), table(age, ov))

R> fit <- with(imp, eval(expr))

The contingency tables corresponding to the imputed data sets 2 and 5 are obtained as:

R> fit$an[c(2, 5)]

[[1]]

ov

age (10,25] (25,50]

20-39 4 8

40-59 2 5

60-99 2 4

[[2]]

ov

age (10,25] (25,50]

20-39 3 9

40-59 3 4

60-99 2 4

The function with.mids() is completely general, and replaces lm.mids() and glm.mids().
For compatibility reasons, the latter two functions remain available.

5.2. Extracting imputed data

An alternative is to export the imputed data into a conventional rectangular form, followed
by the analysis of the imputed data. The complete() function extracts imputed data sets
from a mids object, and returns the completed data as a data frame. For example,

Journal of Statistical Software 47

R> com <- complete(imp, 3)

extracts the third complete data set from the multiply imputed data in imp. Specifying

R> com <- complete(imp, "long")

produces a long matrix com where the m completed data matrices are vertically stacked and
padded with the imputation number in a column called .imp. This form is convenient for
making point estimates and for exporting multiply imputed data to other software. Other
options are broad and repeated, which produce complete data in formats that are convenient
for investigating between-imputation patterns. One could also optionally include the original
incomplete data.

An alternative way of creating the above contingency tables using complete() is:

R> com <- complete(imp, "long", include = TRUE)

R> by(cbind(age = com$age, ov = cut(com$bmi, c(10, 25, 50))),

+ com$.imp, table)

INDICES: 0

ov

age 1 2

1 2 5

2 2 3

3 2 2

--

INDICES: 1

ov

age 1 2

1 3 9

2 4 3

3 2 4

--

INDICES: 2

ov

age 1 2

1 4 8

2 2 5

3 2 4

...

The first contingency table labeled INDICES: 0 corresponds to the original data, the table
labeled INDICES: 1 to the first imputed data set, and so on.

5.3. Pooling

Rubin (1987) developed a set of rules for combining the separate estimates and standard
errors from each of the m imputed datasets into an overall estimate with standard error,

48 mice: Multivariate Imputation by Chained Equations in R

confidence intervals and p values. These rules are based on asymptotic theory on the normal
distribution, and are implemented in the functions pool() and pool.scalar().

mira objects

The function pool() take an object of class mira and creates an object of class mipo (multiple
imputed pooled outcomes). For example,

R> fit <- with(imp, lm(chl ~ age + bmi))

R> est <- pool(fit)

Call: pool(object = fit)

Pooled coefficients:

(Intercept) age2 age3 bmi

-19.671875 50.381076 68.702368 6.777794

Fraction of information about the coefficients missing due to nonresponse:

(Intercept) age2 age3 bmi

0.2070037 0.1840057 0.2889235 0.2677970

More detailed output can be obtained by summary(pool(fit)).

The function pool() works for any object having both coef() and vcov() methods. The
function tests for this, and aborts if it fails to find an appropriate method. A list of methods
for which coef() and vcov() exists can be obtained by

R> methods(coef)

[1] coef.Arima* coef.aov* coef.default*

[4] coef.fitdistr* coef.lda* coef.listof*

[7] coef.loglm* coef.multinom* coef.nls*

[10] coef.nnet* coef.powerTransform* coef.ridgelm*

Non-visible functions are asterisked

R> methods(vcov)

[1] vcov.Arima* vcov.cch* vcov.coxph*

[4] vcov.fitdistr* vcov.glm* vcov.glmrob*

[7] vcov.lm* vcov.lmrob* vcov.mlm*

[10] vcov.multinom* vcov.negbin* vcov.nls*

[13] vcov.polr* vcov.powerTransform* vcov.rlm*

[16] vcov.survreg*

Non-visible functions are asterisked

Journal of Statistical Software 49

In addition, the pool() function will also work for objects of class lme defined in the package
nlme. It is possible to pool the fixed coefficients from a linear mixed model according to
Rubin’s rules. By default the number of degrees of freedom is calculated using the method of
Barnard and Rubin (1999).

Scalars

The function pool.scalar pools univariate estimates of m repeated complete data analysis
according to Rubin’s rules. The arguments of the function are two vectors containing the m
repeated complete data estimates and their corresponding m variances. The function returns
a list containing the pooled estimate, the between, within and total variance, the relative
increase in variance due to nonresponse, the degrees of freedom for the t reference distribution
and the fraction of missing information due to nonresponse. This function is useful when the
estimated parameters are not obtained through one of the regular R modeling functions.

Explained variance R2

For combining estimates of R2 and adjusted R2 one can use the function pool.r.squared.
The method is based on the familiar Fisher z transformation for correlations. Its properties
in the context of multiple imputation were studied by Harel (2009).

Model testing

The function pool.compare() compares two nested models fitted on multiply imputed data.
The function implements the Wald test and the likelihood ratio test. The function can be used
to test whether one or more variables should be present in the complete-data model. Variable
selection in the context of multiple imputation is somewhat different. Several strategies
have been proposed that count the number of times that variable is in the model (Brand
1999; Heymans et al. 2007; Wood et al. 2008). The pool.compare() function provides an
alternative that takes the between-imputation variability into account.

The Wald test can be used when the completed-data estimates and their covariance matrices
are known (e.g., for estimates obtained with lm), and when the dimensionality of the estimates
is not too high. The pool.compare() function with the argument method = "Wald" pools
the p values for comparing the nested models using the method of Li et al. (1991).

R> imp <- mice(nhanes2, print = FALSE, m = 50, seed = 219)

R> fit0 <- with(data = imp, expr = lm(bmi ~ age + hyp))

R> fit1 <- with(data = imp, expr = lm(bmi ~ age + hyp + chl))

R> stat <- pool.compare(fit1, fit0, method = "Wald")

R> stat$p

[,1]

[1,] 0.005015501

Meng and Rubin (1992) provide a procedure for testing nested hypotheses by likelihood ratio
tests from multiple imputed data. The likelihood function needs to be fully specified in
order to calculate the likelihood ratio statistics at the average over the imputations of the
parameter estimates under both the null and alternative hypotheses. The current version of

50 mice: Multivariate Imputation by Chained Equations in R

pool.compare() implements the likelihood function for logistic regression, i.e., complete-data
models obtained with glm(family = "binomial"). The example below illustrates the use of
the method in the boys data. The question is whether the factor reg (region, with five levels)
should be included in the logistic regression model for onset of puberty.

R> imp <- mice(boys, print = FALSE, seed = 60019)

R> fit0 <- with(data = imp,

+ expr = glm(I(gen > levels(gen)[1]) ~ hgt + hc, family = binomial))

R> fit1 <- with(data = imp,

+ expr = glm(I(gen > levels(gen)[1]) ~ hgt + hc + reg, family = binomial))

R> stat <- pool.compare(fit1, fit0, method = "likelihood", data = imp)

R> stat$p

[1] 0.2022771

The difference as measured by the likelihood ratio statistic is not significant. The number of
imputation is a bit low for this problem. Rerunning the imputations with m = 50 yields a
p value of 0.1293, so the contribution of reg is not statistically significant.

6. Miscellaneous topics

6.1. Adding your own imputation functions

Some organizations have made considerable investments to develop procedures for imputing
key variables, like income or family size, whose values are subject to all kinds of subtle
constraints. Using one of the built-in imputation methods could be a waste of this investment,
and may fail to produce what is needed.

It is possible to write your own univariate imputation function, and call this function from
within the MICE algorithm. The easiest way to write such a function is to copy and mod-
ify an existing mice.impute.xxx() function, for example mice.impute.norm(). Most uni-
variate imputation functions have just three arguments: the variable to be imputed y, the
response indicator ry and the matrix of predictors x (without intercept). The function
should return a vector of length(y)-sum(ry) imputations of the correct type. Consult
mice.impute.norm() or mice.impute.polyreg() for inspiration. Your new function can
be called from within the MICE algorithm by the method argument. For example, calling
your function mice.impute.myfunc() for each column can be done by typing

R> mice(nhanes, method = "myfunc")

Using this procedure enables you to speed up the algorithm by including pre-compiled Fortran
or C code, or to dump imputation models for closer inspection.

6.2. Sensitivity analysis under MNAR

A common misunderstanding about multiple imputation is that it is restricted to MAR.
While it is certainly true that imputation techniques commonly assume MAR, the theory
of multiple imputation is completely general and also applies to MNAR. Under MNAR, the
model fitted to the complete cases is incorrect for the missing cases, and thus cannot be used

Journal of Statistical Software 51

for imputation. Unless we have external data, there is no way of estimating the amount of
error.

A sensible alternative is to set up a number of plausible scenarios, and investigate the conse-
quences of each of them on the final inferences. Chapter 6 in Rubin (1987) contains a number
of basic techniques. Up-to-date overviews of specialized MNAR models can be found in Little
(2009b) and Albert and Follmann (2009). If the influence under these scenarios is small, then
the analysis is said to be robust against the investigated violations of the MAR mechanism.

Suppose that we have reason to believe that our imputations made under the MAR assumption
are too low, even after accounting for the predictive information in the available data. One
simple trick is to multiply the imputations by a factor. With mice(), this is easily achieved
by post-processing imputations through the post argument. The scenario involves increasing
imputations for chl by 0% (MAR), 10%, 20%, 30%, 40% and 50% (MNAR).

R> ini <- mice(nhanes2, maxit = 0, print = FALSE)

R> post <- ini$post

R> k <- seq(1, 1.5, 0.1)

R> est <- vector("list", length(k))

R> for (i in 1:length(k)) {

+ post["chl"] <- paste("imp[[j]][,i] <-", k[i], "* imp[[j]][,i]")

+ imp <- mice(nhanes2, post = post, seed = 10, print = FALSE, maxit = 20)

+ fit <- with(imp, lm(bmi ~ age + chl))

+ est[[i]] <- summary(pool(fit)) }

The parameters of interest under these six scenarios are stored in the list est. Inspection of
these solutions reveals that the size of k primarily increases the intercept term. There is a
slightly trend that moves the model estimates towards zero if k goes up. Note that we used
fixed seed value, so all differences between scenarios are strictly due to k.

Carefully monitor convergence if variables are highly correlated. A higher imputed value in
chl will produce a higher than average imputation in bmi and hyp. If relations are strong,
these higher average will feedback into a higher imputations for chl, which is then multiplied
by k, and so on. Such feedback could result in explosive behavior of the MICE algorithm that
should be diagnosed and prevented. A remedy is to remove the strongest predictors from the
imputation model.

Little (2009a) stresses that all MNAR models are subject to a fundamental lack of identifica-
tion. More fancy models do not make this problem go away. He therefore advocates the use
of simple models, like multiplying by a factor (Rubin 1987, pp. 203) or adding offsets (van
Buuren et al. 1999). Both are basic forms of pattern-mixture models. Little (2009a, pp. 49)
writes: “The idea of adding offsets is simple, transparent, and can be readily accomplished
with existing software.”

7. Interacting with other software

7.1. Microsoft Excel

Microsoft’s Excel is the most widely tool to store and manipulate data. Excel has strong
facilities for interactive data editing. We use the software in combination with mice to specify

52 mice: Multivariate Imputation by Chained Equations in R

Figure 15: A predictor matrix in Excel for an imputation model of longitudinal data.

to predictor matrix for imputation problems that involve many variables. Figure 15 shows
an example for an imputation problem for longitudinal data, where we have used to Excel’s
conditional formatting option for automatic coloring. It is straightforward to transfer the
predictor matrix between Excel and R by simple tab-delimited files.

7.2. SPSS

SPSS 17 (now called PASW Statistics 17) implements the FCS approach to multiple im-
putation. See the documentation on the new MULTIPLE IMPUTATION procedure (SPSS Inc.
2008b,a) for details. The procedure is largely based on FCS, and the functionality of mice
and the MULTIPLE IMPUTATION procedure has many overlaps. A difference is that SPSS has
no support for passive imputation or post-processing, though it is possible to specify bounds.

The procedure in SPSS produces a long data set that is recognized by other procedures in
SPSS as a multiply imputed data set. Application of general regression models like linear,
logistic, GEE analysis, mixed model, Cox regression and general linear models automatically

Journal of Statistical Software 53

gives pooled estimates of the coefficients, standard errors and p values. Diagnostics like R2,
comparison of models using the likelihood ratio, are not pooled. It is also possible to import a
multiply imputed data set into SPSS so that SPSS recognizes it as such. The key to importing
data is to create a variable named Imputation_, and use this as split variable. The function
mids2spss() in mice 2.9 converts a mids object into a format recognized by SPSS, and writes
the data and the SPSS syntax files. Multiply imputed data can exported from SPSS to R.
Converting this data set into a mids object has not yet been automated.

SPSS and R form a strong combination. SPSS has superior data handling and documentation
functions, whereas R is free, extensible and flexible. Starting from SPSS 16.0, it is possible to
integrate both software packages by the SPSS Integration Plug-In. A small program to impute
data stored in SPSS with mice() looks like this (run this from the SPSS syntax window).

BEGIN PROGRAM R.

dict <- spssdictionary.GetDictionaryFromSPSS()

data <- spssdata.GetDataFromSPSS()

library("mice")

imp <- mice(data, maxit = 10)

com <- complete(imp, "long", inc = TRUE)

com <- cbind(com, Imputation_ = as.integer(com$.imp) - 1)

spssdictionary.SetDictionaryToSPSS("com", dict)

spssdata.SetDataToSPSS("com", com)

spssdictionary.EndDataStep()

END PROGRAM.

The code instructs R to import the data and the dictionary from SPSS. Subsequently mice is
loaded, the data are imputed. Finally, the stacked imputed data and its dictionary is exported
back from R into SPSS.

7.3. mitools

mitools 2.0.1 is a small R package available from CRAN written by Lumley (2010) containing
tools for analyzing and pooling multiply imputed data. The multiply imputed data should
be of class ImputationList. A mids object (imp) can be transformed into an object of class
ImputationList object as follows:

R> library("mitools")

R> mydata <- imputationList(lapply(1:5, complete, x = imp))

Statistical analyses on these data can be done by with():

R> fit <- with(mydata, expr = lm(chl ~ age + bmi))

The pooled outcomes are obtained with summary(MIcombine(fit)). MIcombine() can be
used for all fit objects for which a vcov() function exists, like our function pool(). Since
this function does not exists for objects of class lme, pooling of mixed models is not possible
with mitools. The package itself has no functions for creating imputations.

54 mice: Multivariate Imputation by Chained Equations in R

7.4. Zelig

The package Zelig 3.4-6 (Imai et al. 2008) offers a framework with a simple structure and
syntax that encompasses a number of existing statistical methods. One of the functions of
Zelig is mi() which makes a list of imputed data sets of class mi. Zelig does not contain
functions for generating multiple imputations. When a data set of class mi is passed to the
general modeling function zelig(), it is recognized as an imputed data set. For a number
of modeling functions in Zelig the outcomes are then automatically pooled when the data is
such a list of imputed data sets. It is however not clear for which modeling function this
works (ls.mixed() does not seem to be supported). The code for estimating the propensity
score model for hc (cf. Section 4.5) with zelig() is as follows:

R> library("Zelig")

R> imp <- cbind.mids(imp.idx, data.frame(r.hc = is.na(boys$hc)))

R> mydata2 <- mi(complete(imp, 1), complete(imp, 2), complete(imp, 3),

+ complete(imp, 4), complete(imp, 5))

R> fit <- zelig(r.hc ~ age + wgt + hgt + bmi + gen + phb + tv + reg,

+ model = "logit", data = mydata2)

R> summary(fit)

Model: logit

Number of multiply imputed data sets: 5

Combined results:

Call:

zelig(formula = r.hc ~ age + wgt + hgt + bmi + gen + phb + tv +

reg, model = "logit", data = mydata2)

Coefficients:

Value Std. Error t-stat p-value

(Intercept) -4.166824779 3.61385156 -1.15301492 0.24971471

age 0.075074606 0.15218856 0.49329992 0.62512416

wgt -0.007125900 0.04740758 -0.15031140 0.88064148

....

The result of zelig() is not as detailed as pool(). The confidence intervals of the estimates
and the fraction of missing information are not printed.

7.5. mi

mi 0.09-14 is an R package for multiple imputation (Su et al. 2011). The imputation method
used in mi is also based on the FCS principle, and as in Zelig is called mi(). The package con-
tains modeling functions that pull together the estimates (point estimates and their standard
errors) from multiply imputed data sets for several models like lm(), glm() and lmer(). The
package is quite extensive, and complements our package in some aspects, e.g., other facilities
for diagnostic checking. The internal structure of class mi and class mids is different, but it

Journal of Statistical Software 55

would certainly be useful to have conversion functions mi2mids() and mids2mi() in order to
be able to combine the strengths of both packages.

8. Conclusion

The principle of fully conditional specification (FCS) has now gained wide acceptance. Good
software is now available. Many applications using FCS have appeared, and many more will
follow. This paper documents a major update of MICE. FCS has recently been adopted and
implemented by SPSS, and was advertised by SPSS as the major methodological improvement
of SPSS Statistics 17.

In the years to come, attention will shift from computational issues to the question how we
can apply the methodology in a responsible way. We need guidelines on how to report MI, we
need a better understanding of the dangers and limitations of the technique, we need pooling
methods for special distributions, and we need entry-level texts that explain the idea and that
demonstrate how to use the techniques in practice. Assuming that this all happens, multiple
imputation using FCS will prove to be a great addition to our statistical tool chest.

Acknowledgements

Many people have been helpful in converting the original S-PLUS library into the R package
mice. We thank Jason Turner, Peter Malewski, Frank E. Harrell, John Fox and Roel de Jong
for their valuable contributions.

References

Abayomi K, Gelman A, Levy M (2008). “Diagnostics for Multivariate Imputations.” Journal
of the Royal Statistical Society C, 57(3), 273–291.

Adamczyk A, Palmer I (2008). “Religion and Initiation Into Marijuana Use: The Deterring
Role of Religious Friends.” Journal of Drug Issues, 38(3), 717–741.

Alati R, Mamun AA, Williams GM, O’callaghan M, Najman JM, Bor W (2006). “In Utero
Alcohol Exposure and Prediction of Alcohol Disorders in Early Adulthood: A Birth Cohort
Study.” Archives of General Psychiatry, 63(9), 1009–1016.

Albert PS, Follmann D (2009). “Shared-Parameter Models.” In G Fitzmaurice, M Davidian,
G Verbeke, G Molenberghs (eds.), Longitudinal Data Analysis, chapter 18, pp. 433–452.
CRC Press, Boca Raton, FL.

Ambler G, Omar RZ, Royston P, Kinsman R, Keogh BE, Taylor KM (2005). “Generic, Simple
Risk Stratification Model for Heart Valve Surgery.” Circulation, 112(2), 224–231.

Arnold BC, Castillo E, Sarabia JM (1999). Conditional Specification of Statistical Models.
Springer-Verlag, New York.

Arnold BC, Press SJ (1989). “Compatible Conditional Distributions.” Journal of the American
Statistical Association, 84, 152–156.

56 mice: Multivariate Imputation by Chained Equations in R

Barnard J, Rubin DB (1999). “Small Sample Degrees of Freedom with Multiple Imputation.”
Biometrika, 86, 948–955.

Barosi G, Bergamaschi G, Marchetti M, Vannucchi AM, Guglielmelli P, Antonioli E, Massa
M, Rosti V, Campanelli R, Villani L, Viarengo G, Gattoni E, Gerli G, Specchia G, Tinelli
C, Rambaldi A, Barbui T (2007). “JAK2 V617F Mutational Status Predicts Progression
to Large Splenomegaly and Leukemic Transformation in Primary Myelofibrosis.” Blood,
110(12), 4030–4036.

Brand JPL (1999). Development, Implementation and Evaluation of Multiple Imputation
Strategies for the Statistical Analysis of Incomplete Data Sets. Ph.D. thesis, Erasmus Uni-
versity, Rotterdam.

Briggs A, Clark T, Wolstenholme J, Clarke P (2003). “Missing. . . Presumed at Random:
Cost-Analysis of Incomplete Data.” Health Economics, 12(5), 377–392.

Brunner EJ, Chandola T, Marmot MG (2007). “Prospective Effect of Job Strain on General
and Central Obesity in the Whitehall II Study.” American Journal of Epidemiology, 165(7),
828–837.

Burton A, Billingham LJ, Bryan S (2007). “Cost-Effectiveness in Clinical Trials: Using Mul-
tiple Imputation to Deal with Incomplete Cost Data.” Clinical Trials, 4(2), 154–161.

Butler RJ, Heron J (2008). “The Prevalence of Infrequent Bedwetting and Nocturnal Enuresis
in Childhood.” Scandinavian Journal of Urology and Nephrology, 42(3), 257–264.

Byrne J, Spence MS, Fretz E, Mildenberger R, Chase A, Berry B, Pi D, Janssen C, Klinke P,
Hilton D (2009). “Body Mass Index, Periprocedural Bleeding, and Outcome Following Per-
cutaneous Coronary Intervention (from the British Columbia Cardiac Registry).” American
Journal of Cardiology, 103(4), 507–511.

Caria MP, Bellocco R, Zambon A, Horton NJ, Galanti MR (2009). “Overweight and Percep-
tion of Overweight as Predictors of Smokeless Tobacco Use and of Cigarette Smoking in a
Cohort of Swedish Adolescents.” Addiction, 104(4), 661–668.

Chamberlain LJ, Crowley M, Tope D, Hodson R (2008). “Sexual Harassment in Organizational
Context.” Work and Occupations, 35(3), 262–295.

Chase AJ, Fretz EB, Warburton WP, Klinke WP, Carere RG, Pi D, Berry B, Hilton JD (2008).
“Association of the Arterial Access Site at Angioplasty with Transfusion and Mortality:
The M.O.R.T.A.L Study (Mortality Benefit of Reduced Transfusion after Percutaneous
Coronary Intervention via the Arm or Leg).” Heart, 94(8), 1019–1025.

Clark TG, Altman DG (2003). “Developing a Prognostic Model in the Presence of Missing
Data: An Ovarian Cancer Case Study.” Journal of Clinical Epidemiology, 56(1), 28–37.

Clark TG, Bradburn MJ, Love SB, Altman DG (2003). “Survival Analysis Part IV: Further
Concepts and Methods in Survival Analysis.” British Journal of Cancer, 89(5), 781–786.

Clark TG, Stewart ME, Altman DG, Gabra H, Smyth JF (2001). “A Prognostic Model for
Ovarian Cancer.” British Journal of Cancer, 85(7), 944–952.

Journal of Statistical Software 57

Collins LM, Schafer JL, Kam CM (2001). “A Comparison of Inclusive and Restrictive Strate-
gies in Modern Missing Data Procedures.” Psychological Methods, 6(3), 330–351.

Cook RD, Weisberg S (1999). Applied Regression Including Computing and Graphics. John
Wiley & Sons, New York.

Cottrell G, Mary JY, Barro D, Cot M (2005). “Is Malarial Placental Infection Related to
Peripheral Infection at Any Time of Pregnancy?” American Journal of Tropical Medicine
and Hygiene, 73(6), 1112–1118.

Cottrell G, Mary JY, Barro D, Cot M (2007). “The Importance of the Period of Malarial
Infection During Pregnancy on Birth Weight in Tropical Africa.” American Journal of
Tropical Medicine and Hygiene, 76(5), 849–854.

Cummings P, Rivara FP, Olson CM, Smith KM (2006). “Changes in Traffic Crash Mortality
Rates Attributed to Use of Alcohol, or Lack of a Seat Belt, Air Bag, Motorcycle Helmet,
or Bicycle Helmet, United States, 1982-2001.” Injury Prevention, 12(3), 148–154.

Deave T, Heron J, Evans J, Emond A (2008). “The Impact of Maternal Depression in Preg-
nancy on Early Child Development.” BJOG: An International Journal of Obstetrics and
Gynaecology, 115(8), 1043–1051.

Drechsler J, Rassler S (2008). “Does Convergence Really Matter?” In Shalabh, C Heumann
(eds.), Recent Advances in Linear Models and Related Areas – Essays in Honour of Helge
Toutenburg, pp. 341–355. Springer-Verlag, Berlin.

Fernandes AS, Jarman IH, Etchells TA, Fonseca JM, Biganzoli E, Bajdik C, Lisboa PJG
(2008). “Missing Data Imputation in Longitudinal Cohort Studies – Application of Plann-
Ard in Breast Cancer Survival.” In Proceedings – 7th International Conference on Machine
Learning and Applications, ICMLA 2008, pp. 644–649.

Finke R, Adamczyk A (2008). “Cross-National Moral Beliefs: The Influence of National
Religious Context.” Sociological Quarterly, 49(4), 617–652.

Garabed RB, Johnson WO, Gill J, Perez AM, Thurmond MC (2008). “Exploration of Asso-
ciations Between Governance and Economics and Country Level Foot-and-Mouth Disease
Status by Using Bayesian Model Averaging.” Journal of the Royal Statistical Society A,
171(3), 699–722.

Gelman A (2004). “Parameterization and Bayesian Modeling.” Journal of the American
Statistical Association, 99(466), 537–545.

Gelman A, Raghunathan TE (2001). “Discussion of Arnold et al. ‘Conditionally Specified
Distributions’.” Statistical Science, 16, 249–274.

Gerestein CG, Eijkemans MJC, Jong DD, van der Burg MEL, Dykgraaf RHM, Kooi GS,
Baalbergen A, Burger CW, Ansink, C A (2009). “The Prediction of Progression-Free and
Overall Survival in Women with an Advanced Stage of Epithelial Ovarian Carcinoma.”
BJOG: An International Journal of Obstetrics and Gynaecology, 116(3), 372–380.

58 mice: Multivariate Imputation by Chained Equations in R

Giorgi R, Belot A, Gaudart J, Launoy G, the French Network of Cancer Registries FRANCIM
(2008). “The Performance of Multiple Imputation for Missing Covariate Data within the
Context of Regression Relative Survival Analysis.” Statistics in Medicine, 27(30), 6310–
6331.

Goldstein H, Carpenter JR, Kenward MG, Levin KA (2009). “Multilevel Models with Multi-
variate Mixed Response Types.” Statistical Modelling, 9(3), 173–179.

Grote FK, Oostdijk W, Keizer-Schrama SMM, Dekker FW, van Dommelen P, van Buuren
S, van der Kooij AML, Verkerk, H P, Wit JM (2007). “Referral Patterns of Children with
Poor Growth in Primary Health Care.” BMC Public Health, 7, 77.

Grote FK, van Dommelen P, Oostdijk W, Keizer-Schrama SMM, Verkerk PH, Wit JM, van
Buuren S (2008). “Developing Evidence-Based Guidelines for Referral for Short Stature.”
Archives of Disease in Childhood, 93(3), 212–217.

Harel O (2009). “The Estimation of R2 and Adjusted R2 in Incomplete Data Sets Using
Multiple Imputation.” Journal of Applied Statistics, 36(10), 1109–1118.

Harrell FE (2001). Regression Modeling Strategies, with Applications to Linear Models, Lo-
gistic Regression, and Survival Analysis. Springer-Verlag, New York.

Hartog JED, Lardenoije CMJG, Severens JL, Land JA, Evers JLH, Kessels AGH (2008).
“Screening Strategies for Tubal Factor Subfertility.” Human Reproduction, 23(8), 1840–
1848.

Heckerman D, Chickering DM, Meek C, Rounthwaite R, Kadie C (2001). “Dependency Net-
works for Inference, Collaborative Filtering, and Data Visualisation.” Journal of Machine
Learning Research, 1, 49–75.

Herman-Giddens ME, Slora EJ, Wasserman RC, Bourdony CJ, Bhapkar MV, Koch CG, Hase-
meier CM (1997). “Secondary Sexual Characteristics and Menses in Young Girls Seen in
Office Practice: A Study from the Pediatric Research in Office Settings Network.” Pedi-
atrics, 99(4), 505–512.

Heymans MW, van Buuren S, Knol DL, van Mechelen W, Vet HCWD (2007). “Variable
Selection under Multiple Imputation Using the Bootstrap in a Prognostic Study.” BMC
Medical Research Methodology, 7, 33.

Hill JL, Reiter JP, Zanutto EL (2004). “A Comparison of Experimental and Observational
Data Analyses.” In A Gelman, XL Meng (eds.), Applied Bayesian Modeling and Causal
Inference from Incomplete-Data Perspectives, chapter 5, pp. 49–60. John Wiley & Sons,
New York.

Hille ETM, Elbertse L, Gravenhorst JN, Brand R, Verloove-Vanhorick SP (2005). “Nonre-
sponse Bias in a Follow-Up Study of 19-Year-Old Adolescents Born as Preterm Infants.”
Pediatrics, 116(5).

Hille ETM, Weisglas-Kuperus N, van Goudoever JB, Jacobusse GW, Ens-Dokkum MH, Groot
LD, Wit JM, Geven WB, Kok JH, Kleine MJKD, KollÉE LAA, Mulder ALM, van Straaten

Journal of Statistical Software 59

HLM, Vries LSD, van Weissenbruch MM, Verloove-Vanhorick SP (2007). “Functional Out-
comes and Participation in Young Adulthood for Very Preterm and Very Low Birth Weight
Infants: The Dutch Project on Preterm and Small for Gestational Age Infants at 19 Years
of Age.” Pediatrics, 120(3).

Hindorff LA, Rice KM, Lange LA, Diehr P, Halder I, Walston J, Kwok P, Ziv E, Nievergelt C,
Cummings SR, Newman AB, Tracy RP, Psaty BM, Reiner AP (2008). “Common Variants
in the CRP Gene in Relation to Longevity and Cause-Specific Mortality in Older Adults:
The Cardiovascular Health Study.” Atherosclerosis, 197(2), 922–930.

Horton NJ, Kleinman KP (2007). “Much Ado About Nothing: A Comparison of Missing
Data Methods and Software to Fit Incomplete Data Regression Models.” The American
Statistician, 61(1), 79–90.

Horton NJ, Lipsitz SR (2001). “Multiple Imputation in Practice: Comparison of Software
Packages for Regression Models with Missing Variables.” The American Statistician, 55,
244–254.

Horwood J, Salvi G, Thomas K, Duffy L, Gunnell D, Hollis C, Lewis G, Menezes P, Thompson
A, Wolke D, Zammit S, Harrison G (2008). “Iq and Non-Clinical Psychotic Symptoms in 12-
Year-Olds: Results from the Alspac Birth Cohort.” British Journal of Psychiatry, 193(3),
185–191.

Hox JJ (2002). Multilevel Analysis. Techniques and Applications. Lawrence Erlbaum Asso-
ciates, Mahwah, NJ.

Huo D, Adebamowo CA, Ogundiran TO, Akang EE, Campbell O, Adenipekun A, Cummings
S, Fackenthal J, Ademuyiwa F, Ahsan H, Olopade OI (2008). “Parity and Breastfeeding
Are Protective Against Breast Cancer in Nigerian Women.” British Journal of Cancer,
98(5), 992–996.

Imai K, King G, Lau O (2008). “Toward a Common Framework for Statistical Analysis and
Development.” Journal of Computational and Graphical Statistics, 17(4), 1–22.

Ip EH, Wang YJ (2009). “Canonical Representation of Conditionally Specified Multivariate
Discrete Distributions.” Journal of Multivariate Analysis, 100(6), 1282–1290.

Jacobusse GW (2005). WinMICE User’s Manual. TNO Quality of Life, Leiden. URL
http://www.multiple-imputation.com/.

Jensen M, Roy A (2008). “Staging Exchange Partner Choices: When Do Status and Reputa-
tion Matter?” Academy of Management Journal, 51(3), 495–516.

Kasim RM, Raudenbush SW (1998). “Application of Gibbs Sampling to Nested Variance
Components Models with Heterogeneous Within-Group Variance.” Journal of Educational
and Behavioral Statistics, 23(2), 93–116.

Kekitiinwa A, Lee KJ, Walker AS, Maganda A, Doerholt K, Kitaka SB, Asiimwe A, Judd
A, Musoke P, Gibb DM (2008). “Differences in Factors Associated with Initial Growth,
Cd4, and Viral Load Responses to Art in HIV-Infected Children in Kampala, Uganda, and
the United Kingdom/Ireland.” Journal of Acquired Immune Deficiency Syndromes, 49(4),
384–392.

http://www.multiple-imputation.com/

60 mice: Multivariate Imputation by Chained Equations in R

Kennickell AB (1991). “Imputation of the 1989 Survey of Consumer Finances: Stochastic
Relaxation and Multiple Imputation.” ASA 1991 Proceedings of the Section on Survey
Research Methods, pp. 1–10.

Klein LW, Kolm P, Xu X, Krone RJ, Anderson HV, Rumsfeld JS, Brindis RG, Weintraub
WS (2009). “A Longitudinal Assessment of Coronary Interventional Program Quality – A
Report from the American College of Cardiology-National Cardiovascular Data Registry.”
JACC: Cardiovascular Interventions, 2(2), 136–143.

Klein MB, Mack CD, Kramer CB, Heimbach DM, Gibran NS, Rivara FP (2008). “Influence
of Injury Characteristics and Payer Status on Burn Treatment Location in Washington
State.” Journal of Burn Care and Research, 29(3), 435–440.

Kleinbaum DG, Kupper LL, Muller KE (1988). Applied Regression Analysis and other Mul-
tivariate Methods. 2nd edition. PWS-Kent, Boston.

Li KH, Meng XL, Raghunathan TE, Rubin DB (1991). “Significance Levels from Repeated
p-values with Multiply-Imputed Data.” Statistica Sinica, 1, 65–92.

Little RJA (1988). “Missing Data Adjustments in Large Surveys.” Journal of Business
Economics and Statistics, 6, 287–301.

Little RJA (2009a). “Comments on: Missing Data Methods in Longitudinal Studies: A
Review.” Test, 18, 47–50.

Little RJA (2009b). “Selection and Pattern-Mixture Models.” In G Fitzmaurice, M Davidian,
G Verbeke, G Molenberghs (eds.), Longitudinal Data Analysis, chapter 18, pp. 409–431.
CRC Press, Boca Raton, Fl.

Little RJA, Rubin DB (2002). Statistical Analysis with Missing Data. 2nd edition. John
Wiley & Sons, New York.

Lumley T (2010). mitools: Tools for Multiple Imputation of Missing Data. R package
version 2.0.1, URL http://CRAN.R-project.org/package=mitools.

MacLeod J, Hickman M, Bowen E, Alati R, Tilling K, Smith GD (2008). “Parental Drug Use,
Early Adversities, Later Childhood Problems and Children’s Use of Tobacco and Alcohol
at Age 10: Birth Cohort Study.” Addiction, 103(10), 1731–1743.

Marshall A, Billingham LJ, Bryan S (2009). “Can We Afford to Ignore Missing Data in
Cost-Effectiveness Analyses?” European Journal of Health Economics, 10(1), 1–3.

McCaul KA, Fritschi L, Baade P, Coory M (2008). “The Incidence of Second Primary Invasive
Melanoma in Queensland, 1982–2003.” Cancer Causes and Control, 19(5), 451–458.

McClelland RL, Kronmal RA, Haessler J, Blumenthal RS, Goff J (2008). “Estimation of Risk
Factor Associations when the Response Is Influenced by Medication Use: An Imputation
Approach.” Statistics in Medicine, 27(24), 5039–5053.

Melhem NM, Brent DA, Ziegler M, Iyengar S, Kolko D, Oquendo M, Birmaher B, Burke
A, Zelazny J, Stanley B, Mann, J J (2007). “Familial Pathways to Early-Onset Suicidal
Behavior: Familial and Individual Antecedents of Suicidal Behavior.” American Journal of
Psychiatry, 164(9), 1364–1370.

http://CRAN.R-project.org/package=mitools

Journal of Statistical Software 61

Meng XL (1995). “Multiple Imputation with Uncongenial Sources of Input.” Statistical Sci-
ence, 10, 538–573.

Meng XL, Rubin DB (1992). “Performing Likelihood Ratio Tests with Multiple-Imputed Data
Sets.” Biometrika, 79(1), 103–111.

Michel L, Giorgi R, Villes V, Poizot-Martin I, Dellamonica P, Spire B, Protopopescu C,
Carrieri MP (2009). “Withdrawal Symptoms as a Predictor of Mortality in Patients HIV-
Infected Through Drug Use and Receiving Highly Active Antiretroviral Therapy (Haart).”
Drug and Alcohol Dependence, 99(1-3), 96–104.

Moons KGM, Donders R, Stijnen T, Harrell FJ (2006). “Using the Outcome for Imputation of
Missing Predictor Values was Preferred.” Journal of Clinical Epidemiology, 59(10), 1092–
1101.

Morgenstern M, Wiborg G, Isensee B, Hanewinkel R (2009). “School-Based Alcohol Educa-
tion: Results of a Cluster-Randomized Controlled Trial.” Addiction, 104(3), 402–412.

Mueller BA, Cummings P, Rivara FP, Brooks MA, Terasaki RD (2008). “Injuries of the Head,
Face, and Neck in Relation to Ski Helmet Use.” Epidemiology, 19(2), 270–276.

Mumtaz G, Tamim H, Kanaan M, Khawaja M, Khogali M, Wakim G, Yunis KA (2007).
“Effect of Consanguinity on Birth Weight for Gestational Age in a Developing Country.”
American Journal of Epidemiology, 165(7), 742–752.

Nash D, Katyal M, Brinkhof MWG, Keiser O, May M, Hughes R, Dabis F, Wood R, Sprinz
E, Schechter M, Egger M (2008). “Long-Term Immunologic Response to Antiretroviral
Therapy in Low-Income Countries: A Collaborative Analysis of Prospective Studies.” Aids,
22(17), 2291–2302.

O’Callaghan FV, O’Callaghan M, Najman JM, Williams GM, Bor W, Alati R (2006). “Predic-
tion of Adolescent Smoking from Family and Social Risk Factors at 5 Years, and Maternal
Smoking in Pregnancy and at 5 and 14 Years.” Addiction, 101(2), 282–290.

Orsini N, Bellocco R, Bottai M, Pagano M, Michaelsson K, Wolk A (2008a). “Combined
Effects of Obesity and Physical Activity in Predicting Mortality among Men.” Journal of
Internal Medicine, 264(5), 442–451.

Orsini N, Mantzoros CS, Wolk A (2008b). “Association of Physical Activity with Cancer
Incidence, Mortality, and Survival: A Population-Based Study of Men.” British Journal of
Cancer, 98(11), 1864–1869.

Oudshoorn K, van Buuren S, van Rijckevorsel JLA (1999). Flexible Multiple Imputation
by Chained Equations of the AVO-95 Survey, volume PG/VGZ/00.045. TNO Preven-
tion and Health, Leiden. URL http://www.stefvanbuuren.nl/publications/Flexible%

20multiple%20-%20TNO99045%201999.pdf.

Pedhazur EJ (1973). Multiple Regression in Behavioral Research. 2nd edition. Holt, Rinehart
and Winston, New York.

http://www.stefvanbuuren.nl/publications/Flexible%20multiple%20-%20TNO99045%201999.pdf
http://www.stefvanbuuren.nl/publications/Flexible%20multiple%20-%20TNO99045%201999.pdf

62 mice: Multivariate Imputation by Chained Equations in R

Prompers L, Schaper N, Apelqvist J, Edmonds M, Jude E, Mauricio D, Uccioli L, Urbancic
V, Bakker K, Holstein P, Jirkovska A, Piaggesi A, Ragnarson-Tennvall G, Reike H, Spraul
M, van Acker K, van Baal J, van Merode F, Ferreira I, Huijberts M (2008). “Prediction of
Outcome in Individuals with Diabetic Foot Ulcers: Focus on the Differences Between Indi-
viduals with and without Peripheral Arterial Disease. the Eurodiale Study.” Diabetologia,
51(5), 747–755.

Raghunathan T, Bondarenko I (2007). “Diagnostics for Multiple Imputations.” SSRN. URL
http://ssrn.com/abstract=1031750.

Raghunathan TE, Lepkowski JM, van Hoewyk J, Solenberger P (2001). “A Multivariate
Technique for Multiply Imputing Missing Values Using a Sequence of Regression Models.”
Survey Methodology, 27, 85–95.

Rahman A, Reed E, Underwood M, Shipley, E M, Omar RZ (2008). “Factors Affecting
Self-Efficacy and Pain Intensity in Patients with Chronic Musculoskeletal Pain Seen in a
Specialist Rheumatology Pain Clinic.” Rheumatology, 47(12), 1803–1808.

Ramchandani PG, Stein A, O’Connor TG, Heron J, Murray L, Evans J (2008). “Depression
in Men in the Postnatal Period and Later Child Psychopathology: A Population Cohort
Study.” Journal of the American Academy of Child and Adolescent Psychiatry, 47(4),
390–398.

R Development Core Team (2011). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

Roudsari B, Field C, Caetano R (2008). “Clustered and Missing Data in the Us National
Trauma Data Bank: Implications for Analysis.” Injury Prevention, 14(2), 96–100.

Roudsari BS, Nathens AB, Cameron P, Civil I, Gruen RL, Koepsell TD, Lecky FE, Lefering
RL, Liberman M, Mock CN, Oestern HJ, Schildhauer TA, Waydhas C, Rivara FP (2007).
“International Comparison of Prehospital Trauma Care Systems.” Injury, 38(9), 993–1000.

Rouxel A, Hejblum G, Bernier MO, Boëlle PY, Ménégaux F, Mansour G, Hoang C, Au-
rengo A, Leenhardt L (2004). “Prognostic Factors Associated with the Survival of Patients
Developing Loco-Regional Recurrences of Differentiated Thyroid Carcinomas.” Journal of
Clinical Endocrinology and Metabolism, 89(11), 5362–5368.

Royston P (2004). “Multiple Imputation of Missing Values.” The Stata Journal, 4, 227–241.

Royston P (2005). “Multiple Imputation of Missing Values: Update.” The Stata Journal,
5(2), 188–201.

Royston P, Parmar MKB, Sylvester R (2004). “Construction and Validation of a Prognostic
Model Across Several Studies, with an Application in Superficial Bladder Cancer.” Statistics
in Medicine, 23(6), 907–926.

Royston P, White IR (2011). “Multiple Imputation by Chained Equations (MICE): Implemen-
tation in Stata.” Journal of Statistical Software, 45(4), 1–20. URL http://www.jstatsoft.

org/v45/i04/.

http://ssrn.com/abstract=1031750
http://www.R-project.org/
http://www.R-project.org/
http://www.jstatsoft.org/v45/i04/
http://www.jstatsoft.org/v45/i04/

Journal of Statistical Software 63

Rubin DB (1976). “Inference and Missing Data.” Biometrika, 63, 581–590.

Rubin DB (1987). Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons, New
York.

Rubin DB (1996). “Multiple Imputation after 18+ Years.” Journal of the American Statistical
Association, 91(434), 473–489.

Rubin DB (2003). “Nested Multiple Imputation of Nmes via Partially Incompatible MCMC.”
Statistica Neerlandica, 57(1), 3–18.

Rubin DM, Downes KJ, O’reilly ALR, Mekonnen R, Luan X, Localio R (2008). “Impact of
Kinship Care on Behavioral Well-Being for Children in Out-of-Home Care.” Archives of
Pediatrics and Adolescent Medicine, 162(6), 550–556.

Sabin CA, Lee KJ, Dunn D, Porter K, Bansi RGL, Hill T, Phillips AN, Schwenk A, Leen
C, Delpech V, Anderson J, Gazzard B, Johnson M, Easterbrook P, Walsh J, Fisher M,
Orkin C (2008). “Treatment Switches after Viral Rebound in HIV-Infected Adults Starting
Antiretroviral Therapy: Multicentre Cohort Study: The United Kingdom Collaborative
HIV Cohort (CHIC) Study.” Aids, 22(15), 1943–1950.

Samant UB, Mack CD, Koepsell T, Rivara FP, Vavilala MS (2008). “Time of Hypotension
and Discharge Outcome in Children with Severe Traumatic Brain Injury.” Journal of Neu-
rotrauma, 25(5), 495–502.

Sarkar D (2008). lattice: Multivariate Data Visualization with R. Springer-Verlag, New York.

Schafer JL (1997). Analysis of Incomplete Multivariate Data. Chapman & Hall, London.

Schafer JL, Yucel RM (2002). “Computational Strategies for Multivariate Linear Mixed-
Effects Models with Missing Values.” Journal of Computational and Graphical Statistics,
11(2), 437–457.

Schnoll RA, Rukstalis M, Wileyto EP, Shields AE (2006). “Smoking Cessation Treatment
by Primary Care Physicians. an Update and Call for Training.” American Journal of
Preventive Medicine, 31(3), 233–239.

Schunk D (2008). “A Markov Chain Monte Carlo Algorithm for Multiple Imputation in Large
Surveys.” Advances in Statistical Analysis, 92(1), 101–114.

Sharma R, Zucknick M, London R, Kacevska M, Liddle C, Clarke SJ (2008). “Systemic
Inflammatory Response Predicts Prognosis in Patients with Advanced-Stage Colorectal
Cancer.” Clinical Colorectal Cancer, 7(5), 331–337.

Shen Z (2000). Nested Multiple Imputation. Ph.D. thesis, Harvard University, Department of
Statistics.

Sisk JE, Hebert PL, Horowitz CR, McLaughlin MA, Wang JJ, Chassin MR (2006). “Effects
of Nurse Management on the Quality of Heart Failure Care in Minority Communities: A
Randomized Trial.” Annals of Internal Medicine, 145(4), 273–283.

64 mice: Multivariate Imputation by Chained Equations in R

Smith GCS, Crossley JA, Aitken DA, Pell JP, Cameron AD, Connor JM, Dobbie R (2004a).
“First-Trimester Placentation and the Risk of Antepartum Stillbirth.” Journal of the Amer-
ican Medical Association, 292(18), 2249–2254.

Smith GCS, Wood AM, Pell JP, White IR, Crossley JA, Dobbie R (2004b). “Second-Trimester
Maternal Serum Levels of Alpha-Fetoprotein and the Subsequent Risk of Sudden Infant
Death Syndrome.” New England Journal of Medicine, 351(10), 978–986.

Sommer M, Geurts JWJM, Stessel B, Kessels AGH, Peters ML, Patijn J, van Kleef M, Kremer
B, Marcus MAE (2009). “Prevalence and Predictors of Postoperative Pain after Ear, Nose,
and Throat Surgery.” Archives of Otolaryngology – Head and Neck Surgery, 135(2), 124–
130.

Souverein OW, Zwinderman AH, Tanck, T MW (2006). “Multiple Imputation of Missing
Genotype Data for Unrelated Individuals.” Annals of Human Genetics, 70(3), 372–381.

SPSS Inc (2008a). SPSS 17 Algorithms. SPSS Inc., Chicago, IL.

SPSS Inc (2008b). SPSS 17 Missing Values. SPSS Inc., Chicago, IL.

Statistical Solutions (2001). SOLAS for Missing Data Analysis. Statistical Solutions, Cork,
Ireland. URL http://www.solasmissingdata.com/.

Su YS, Gelman A, Hill J, Yajima M (2011). “Multiple Imputation with Diagnostics (mi) in R:
Opening Windows into the Black Box.” Journal of Statistical Software, 45(2), 1–31. URL
http://www.jstatsoft.org/v45/i02/.

Sundell K, Hansson K, Löfholm CA, Olsson T, Gustle LH, Kadesjö C (2008). “The Trans-
portability of Multisystemic Therapy to Sweden: Short-Term Results from a Randomized
Trial of Conduct-Disordered Youths.” Journal of Family Psychology, 22(4), 550–560.

Tanasoiu C, Colonescu C (2008). “Determinants of Support for European Integration: The
Case of Bulgaria.” European Union Politics, 9(3), 363–377.

Templ M, Alfons A, Kowarik A (2011). VIM: Visualization of Imputation of Missing Values.
R package version 2.0.3, URL http://CRAN.R-project.org/package=VIM.

Thein HH, Yi Q, Dore GJ, Krahn MD (2008). “Natural History of Hepatitis C Virus In-
fection in HIV-Infected Individuals and the Impact of HIV in the Era of Highly Active
Antiretroviral Therapy: A Meta-Analysis.” Aids, 22(15), 1979–1991.

Tiemeier H, van Dijck W, Hofman A, Witteman JCM, Stijnen T, Breteler MMB (2004).
“Relationship Between Atherosclerosis and Late-Life Depression: The Rotterdam Study.”
Archives of General Psychiatry, 61(4), 369–376.

Ton TGN, Longstreth J, Koepsell T (2009). “Active and Passive Smoking and Risk of Nar-
colepsy in People with Hla Dqb1*0602: A Population-Based Case-Control Study.” Neu-
roepidemiology, 32(2), 114–121.

van Buuren S (2007). “Multiple Imputation of Discrete and Continuous Data by Fully Con-
ditional Specification.” Statistical Methods in Medical Research, 16(3), 219–242.

http://www.solasmissingdata.com/
http://www.jstatsoft.org/v45/i02/
http://CRAN.R-project.org/package=VIM

Journal of Statistical Software 65

van Buuren S (2010). “Multiple Imputation of Multilevel Data.” In JJ Hox, K Roberts (eds.),
The Handbook of Advanced Multilevel Analysis, chapter 10, pp. 173–196. Routledge, Milton
Park, UK.

van Buuren S (2012). Flexible Imputation of Missing Data. Chapman & Hall/CRC, Boca
Raton, FL.

van Buuren S, Boshuizen HC, Knook DL (1999). “Multiple Imputation of Missing Blood
Pressure Covariates in Survival Analysis.” Statistics in Medicine, 18(6), 681–694.

van Buuren S, Boshuizen HC, Reijneveld, A S (2006a). “Toward Targeted Hypertension
Screening Guidelines.” Medical Decision Making, 26(2), 145–153.

van Buuren S, Brand JPL, Groothuis-Oudshoorn CGM, Rubin DB (2006b). “Fully Condi-
tional Specification in Multivariate Imputation.” Journal of Statistical Computation and
Simulation, 76(12), 1049–1064.

van Buuren S, Groothuis-Oudshoorn K (2011). mice: Multivariate Imputation by Chained
Equations. R package version 2.9, URL http://CRAN.R-project.org/package=mice.

van Buuren S, Oudshoorn K (2000). Multivariate Imputation by Chained Equations:
MICE V1.0 User’s Manual, volume Pg/Vgz/00.038. TNO Prevention and Health,
Leiden. URL http://www.stefvanbuuren.nl/publications/mice%20v1.0%20manual%

20tno00038%202000.pdf.

van den Hout WB, Goekoop-Ruiterman YPM, Allaart CF, Vries-Bouwstra JKD, Hazes, M
JM, Kerstens PJSM, van Zeben D, Hulsmans HMJ, Jonge-Bok JMD, Sonnaville PBJD,
Dijkmans BAC, Breedveld FC (2009). “Cost-Utility Analysis of Treatment Strategies in
Patients with Recent-Onset Rheumatoid Arthritis.” Arthritis Care and Research, 61(3),
291–299.

van der Hulst M, Vollenbroek-Hutten MMR, Groothuis-Oudshoorn KG, Hermens HJ (2008).
“Multidisciplinary Rehabilitation Treatment of Patients with Chronic Low Back Pain: A
Prognostic Model for Its Outcome.” Clinical Journal of Pain, 24(5), 421–430.

van Oijen M, Jong FJD, Witteman JCM, Hofman A, Koudstaal PJ, Breteler, B MM (2007).
“Atherosclerosis and Risk for Dementia.” Annals of Neurology, 61(5), 403–410.

van Vlierberghe L, Braet C, Goossens L, Rosseel Y, Mels S (2009). “Psychological Disorder,
Symptom Severity and Weight Loss in Inpatient Adolescent Obesity Treatment.” Interna-
tional Journal of Pediatric Obesity, 4(1), 36–44.

van Wouwe JP, Lanting CI, van Dommelen P, Treffers PE, van Buuren S (2009). “Breastfeed-
ing Duration Related to Practised Contraception in The Netherlands.” Acta Paediatrica,
International Journal of Paediatrics, 98(1), 86–90.

Veenstra R, Lindenberg S, Winter AFD, Oldehinkel AJ, Verhulst FC, Ormel J (2005).
“Bullying and Victimization in Elementary Schools: A Comparison of Bullies, Victims,
Bully/Victims, and Uninvolved Preadolescents.” Developmental Psychology, 41(4), 672–
682.

http://CRAN.R-project.org/package=mice
http://www.stefvanbuuren.nl/publications/mice%20v1.0%20manual%20tno00038%202000.pdf
http://www.stefvanbuuren.nl/publications/mice%20v1.0%20manual%20tno00038%202000.pdf

66 mice: Multivariate Imputation by Chained Equations in R

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. 4th edition. Springer-
Verlag, New York.

Walker AS, Mulenga V, Sinyinza F, Lishimpi K, Nunn A, Chintu C, Gibb DM (2006). “Deter-
minants of Survival without Antiretroviral Therapy after Infancy in HIV-1-Infected Zam-
bian Children in the Chap Trial.” Journal of Acquired Immune Deficiency Syndromes,
42(5), 637–645.

Ward L, Franks P (2007). “Changes in Health Care Expenditure Associated with Gaining or
Losing Health Insurance.” Annals of Internal Medicine, 146(11), 768–774.

White IR, Daniel R, Royston P (2010). “Avoiding Bias Due to Perfect Prediction in Mul-
tiple Imputation of Incomplete Categorical Variables.” Computational Statistics & Data
Analysis, 54, 2267–2275.

Wiles NJ, Jones GT, Haase AM, Lawlor DA, Macfarlane GJ, Lewis G (2008). “Physical
Activity and Emotional Problems Amongst Adolescents.” Social Psychiatry and Psychiatric
Epidemiology, 43(10), 765–772.

Wolfe F, Caplan L, Michaud K (2006). “Treatment for Rheumatoid Arthritis and the Risk
of Hospitalization for Pneumonia: Associations with Prednisone, Disease-Modifying An-
tirheumatic Drugs, and Anti-Tumor Necrosis Factor Therapy.” Arthritis and Rheumatism,
54(2), 628–634.

Wood AM, White IR, Royston P (2008). “How Should Variable Selection Be Performed with
Multiply Imputed Data?” Statistics in Medicine, 27(17), 3227–3246.

Yu LM, Burton A, Rivero-Arias O (2007). “Evaluation of Software for Multiple Imputation
of Semi-Continuous Data.” Statistical Methods in Medical Research, 16, 243–258.

Yucel RM (2008). “Multiple Imputation Inference for Multivariate Multilevel Continuous
Data with Ignorable Non-Response.” Philosophical Transactions of the Royal Society A,
366, 2389–2403.

Affiliation:

Stef van Buuren
TNO
P.O. Box 2215
2301 CE Leiden, The Netherlands
and
Department of Methodology and Statistics, FSS
University of Utrecht
E-mail: stef.vanbuuren@tno.nl
URL: http://www.stefvanbuuren.nl

mailto:stef.vanbuuren@tno.nl
http://www.stefvanbuuren.nl

Journal of Statistical Software 67

Karin Groothuis-Oudshoorn
MB-HTSR, University of Twente
P.O. Box 217
7500 AE Enschede, The Netherlands
E-mail: c.g.m.oudshoorn@utwente.nl
URL: http://www.twentestat.nl

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 45, Issue 3 Submitted: 2009-09-01
December 2011 Accepted: 2011-05-30

mailto:c.g.m.oudshoorn@utwente.nl
http://www.twentestat.nl
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Software implementations
	Applications of chained equations
	Features

	General framework
	Notation
	Modular approach to multiple imputation
	MICE algorithm
	Simple example
	Inspecting the missing data
	Creating imputations
	Diagnostic checking
	Analysis of imputed data

	Imputation Models
	Seven Choices
	Univariate imputation methods
	Empty imputation method
	Perfect prediction
	Default imputation method
	Overview of imputation methods

	Predictor selection
	Removing a predictor
	Skipping imputation
	Intercept imputation
	Multilevel imputation
	Advice on predictor selection
	Quick predictor selection

	Passive imputation
	Preserving a transformation
	Index of two variables
	Sum scores
	Interaction terms
	Squeeze
	Cautious remarks

	Post-processing imputations
	Visiting scheme

	Running MICE
	Dry run
	Step by step
	Assessing convergence
	Solving problems with the data
	Checking your imputations

	After MICE
	Repeated data analysis
	Extracting imputed data
	Pooling
	mira objects
	Scalars
	Explained variance R-squared
	Model testing

	Miscellaneous topics
	Adding your own imputation functions
	Sensitivity analysis under MNAR

	Interacting with other software
	Microsoft Excel
	SPSS
	mitools
	Zelig
	mi

	Conclusion

