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Parametric Survival Model

Basic Idea
The survival time follows a distribution.

Goal
Use data to estimate parameters of this distribution
⇒ completely specified model
⇒ prediction of time-quantiles



Parametric Survival Model vs. Cox PH Model

Parametric Survival Model

+ Completely specified h(t) and S(t)

+ More consistent with theoretical S(t)

+ time-quantile prediction possible
– Assumption on underlying distribution

Cox PH Model

– distribution of survival time unkonwn
– Less consistent with theoretical S(t) (typically step function)
+ Does not rely on distributional assumptions
+ Baseline hazard not necessary for estimation of hazard ratio
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Probability Density, Hazard and Survival Function

Main Assumption
The survival time T is assumed to follow a distribution with density
function f (t).

⇒ S(t) = P(T > t) =

∫ ∞
t

f (u)du

Recall:

h(t) = −
d
dt S(t)

S(t)
, S(t) = exp

(
−
∫ t

0
h(u)du

)



Density Function in Relation to the Hazard and Survival
Function

Remark

f (t) = h(t)S(t)

Proof:

h(t)S(t) = −
d
dt S(t)

S(t)
S(t) =

d
dt

∫ t

∞
f (u)du = f (t)

Key Point
Specifying one of the three functions f (t), S(t) or h(t) specifies
the other two functions.



Commonly Used Distributions and Parameters

Distribution f (t) S(t) h(t)

Exponential λ exp(−λt) exp(−λt) λ
Weibull λptp−1 exp(−λtp) exp(−λtp) λptp−1

Log-logistic λptp−1

(1+λtp)2
1

1+λtp
λptp−1

1+λtp

Modeling of the parameters:
I λ is reparameterized in terms of predictor variables and

regression parameters.
I Typically for parametric models, the shape parameters p is

held fixed.
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Weibull Model
Assuming T ∼Weibull(λ, p) with probability density function

f (t) = λptp−1 exp(−λtp), where p > 0 and λ > 0,

the hazard function is given by

h(t) = λptp−1.

p is called shape parameter:

I If p > 1 the hazard increases

I If p = 1 the hazard is constant
(exponential model)

I If p < 1 the hazard decreases
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Graphical Evaluation of Weibull Assumption

Property of Weibull Model
The log(− log(S(t))) is linear with the log of time.

S(t) = exp(−λtp)

⇒ − log(S(t)) = λtp

⇒ log(− log(S(t))) = log(λ) + p log(t)

This property allows a graphical evaluation of the appropriateness
of a Weibull model by plotting

log(− log(Ŝ(t))) vs. log(t),

where Ŝ(t) is Kaplan-Meier survival estimate.



Example: Remission Data
We consider the remission data of 42 leukemia patients.

I 21 patients given treatment (TRT = 1)
I 21 patients given placebo (TRT = 0)

Note: The survival time (time to event) is the time until a patient
went out of remission, which means that the patient relapsed.
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Weibull PH Model

Recall: h(t) = λptp−1

Weibull PH model:
I Reparameterize λ with

λ = exp(β0 + β1TRT ).

I Then the hazard ratio (TRT = 1 vs. TRT = 0) is

HR =
exp(β0 + β1)ptp−1

exp(β0)ptp−1 = exp(β1),

which indicates that the PH assumption is satisfied.

Note: This result depends on p having the same value for TRT = 1
and TRT = 0 (otherwise time would not cancel out).



Exponential PH Model

The exponential distribution is a special case of the Weibull
distribution with p = 1.

Weibull density function:

f (t) = exp(−λtp)︸ ︷︷ ︸
S(t)

λptp−1︸ ︷︷ ︸
h(t)

Setting p = 1 gives the density function of an exponential
distribution

f (t) = exp(−λt)︸ ︷︷ ︸
S(t)

λ︸︷︷︸
h(t)

.



Exponential PH Model

Running the exponential model leads to the following output:

264 7. Parametric Survival Models

h(t) = λ = exp(β0 + β1TRT)

TRT = 1: h(t) = exp(β0 + β1)
TRT = 0: h(t) = exp(β0)

HR(TRT = 1 vs. TRT = 0)

= exp(β0 + β1)
exp(β0)

= exp(β1)

For simplicity, we demonstrate an exponential
model that has TRT as the only predictor. We
state the model in terms of the hazard by repa-
rameterizing λ as exp(β0 + β1TRT). With this
model, the hazard for subjects in the treated group
is exp(β0 + β1) and the hazard for the placebo
group is exp(β0). The hazard ratio comparing the
treatment and placebo (see left side) is the ratio of
the hazards exp(β1). The exponential model is a
proportional hazards model.

Constant Hazards
⇒ Proportional Hazards

Proportional Hazards
⇒\ Constant Hazards

Exponential Model—Hazards are
constant

Cox PH Model—Hazards are pro-
portional not necessarily constant

The assumption that the hazard is constant for
each pattern of covariates is a much stronger as-
sumption than the PH assumption. If the hazards
are constant, then of course the ratio of the haz-
ards is constant. However, the hazard ratio being
constant does not necessarily mean that each
hazard is constant. In a Cox PH model the base-
line hazard is not assumed constant. In fact, the
form of the baseline hazard is not even specified.

Remission Data

Exponential regression
log relative-hazard form

t Coef. Std. Err. z p >|z|
trt −1.527 .398 −3.83 0.00
cons −2.159 .218 −9.90 0.00

Output from running the exponential model is
shown on the left. The model was run using Stata
software (version 7.0). The parameter estimates
are listed under the column called Coef. The pa-
rameter estimate for the coefficient of TRT (β1) is
−1.527. The estimate of the intercept (called cons
in the output) is −2.159. The standard errors (Std.
Err.), Wald test statistics (z), and p-values for the
Wald test are also provided. The output indicates
that the z test statistic for TRT is statistically sig-
nificant with a p-value <0.005 (rounds to 0.00 in
the output).

Coefficient estimates obtained by MLE↘
asymptotically normal

The regression coefficients are estimated using
maximum likelihood estimation (MLE), and
are asymptotically normally distributed.

The estimated hazard ratio is obtained from the estimated
coefficient β̂1 by

ĤR(TRT = 1 vs. TRT = 0) = exp(β̂1) = exp(−1.527) = 0.22.

Interpretation
This means that the hazard for the group with TRT = 0 is bigger
than the one for the group with TRT = 1 because 0.22 < 1,
indicating a positive effect of the treatment.
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Accelerated Failure Time Assumption

First example: Humans vs. dogs
I Let SH(t) and SD(t) denote the survival functions for humans

and dogs respectively.
I Known: In general dogs grow older seven times faster than

humans.
I In AFT terminology: The probability of a dog surviving past t

years is equal to the one of a human surviving past 7t years.
I This means:

SD(t) = SH(7t)

I In other words, dogs accelerate through life about seven times
faster than humans.



AFT Models

AFT Models
AFT Models describe stretching out or contraction of survival time
as a function of predictor variables.



Illustration of AFT Assumption

Second example: Smokers vs. nonsmokers
I Let SS(t) and SNS(t) denote the survival functions for

smokers and nonsmokers respectively.

AFT assumption

SNS(t) = SS(γt) for t ≥ 0

Definition
γ > 0 is the so called acceleration factor and is a constant.



Expressing the AFT assumption

The AFT assumption can be expressed
I in terms of survival function as seen before:

SNS(t) = SS(γt)

I in terms of random variables for survival time:

γTNS = TS ,

where TNS is a random variable following some distribution
representing the survival time for nonsmokers and TS the
analogous one for smokers.



Acceleration factor

The acceleration factor allows to evaluate the effect of predictor
variables on the survival time.

Acceleration factor
The acceleration factor is a ratio of time-quantiles corresponding to
any fixed value of S(t).268 7. Parametric Survival Models
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Horizontal lines are twice as long to
G = 2 compared to G = 1 because
γ = 2

This idea is graphically illustrated by examining
the survival curves for Group 1 (G = 1) and Group
2 (G = 2) shown on the left. For any fixed value of
S(t), the distance of the horizontal line from the
S(t) axis to the survival curve for G = 2 is double
the distance to the survival curve for G = 1. No-
tice the median survival time (as well as the 25th
and 75th percentiles) is double for G = 2. For AFT
models, this ratio of survival times is assumed con-
stant for all fixed values of S(t).

V. Exponential Example
Revisited

Remission data (n = 42)

21 patients given treatment (TRT = 1)
21 patients given placebo (TRT = 0)

Previously discussed PH form of
model
Now discuss AFT form of model

We return to the exponential example applied to
the remission data with treatment status (TRT) as
the only predictor. In Section III, results from the
PH form of the exponential model were discussed.
In this section we discuss the AFT form of the
model.

Exponential survival and hazard
functions:

S(t) = exp(−λt)
h(t) = λ

Recall for PH model:

h(t) = λ = exp(β0 + β1 TRT)

The exponential survival and hazard functions are
shown on the left. Recall that the exponential haz-
ard is constant and can be reparameterized as a
PH model, h(t) = λ = exp(β0 + β1TRT). In this
section we show how S(t) can be reparameterized
as an AFT model.



Interpretation of the Acceleration Factor

Assuming the event to occur is negative for an individual,
comparing two groups (levels of covariates) leads to the following
general interpretation:

γ > 1 ⇒ exposure benefits survival
γ < 1 ⇒ exposure harmful to survival

For the hazard ratio, we have:

HR > 1 ⇒ exposure harmful to survival
HR < 1 ⇒ exposure benefits survival

γ = HR = 1 ⇒ no effect from exposure
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General Form of AFT Model

Consider an AFT model with one predictor X . The model can be
expressed on the log scale as

log(T ) = α0 + α1X + ε,

where ε is a random error following some distribution.

T log(T )
Exponential Extreme value
Weibull Extreme value
Log-logistic Logistic
Lognormal Normal



General Form of AFT Model

Some distributions (e.g. Weibull) have an additional parameter σ,
which scales ε.

log(T ) = α0 + α1X + σε

Here (and in R) the model is parametrized using σ = 1
p :

log(T ) = α0 + α1X +
1
p
ε



General Form of AFT Model

The model in terms of the survival time T is

T = exp
(
α0 + α1X +

1
p
ε

)
= exp(α0) · exp(α1X ) · exp

(
1
p
ε

)

Remark
AFT model is multiplicative in terms of T and additive in terms of
log(T ).
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AFT Model

I We use again the remission data.
I We consider the variable TRT as only predictor (TRT = 1

and TRT = 0)

AFT Model Assumption
The ratio of time-quantile is constant (γ) for all fixed values
S(t) = q.

Expression for time-quantiles

I Solve for t in terms of S(t)

I Scale t in terms of predictors



Weibull AFT Model
Recall: S(t) = exp(−λtp)

1. Solving for t gives:

S(t) = exp(−λtp)⇔ − log(S(t)) = λtp

⇔ t = (− log(S(t)))1/p 1
λ1/p

2. Reparameterizing 1
λ1/p = exp(α0 + α1TRT ) yields

t = (− log(S(t)))1/p exp(α0 + α1TRT ).

(TRT used to scale time to any fixed value of S(t))

3. In terms of any fixed probability S(t) = q we get

t = (− log(q))1/p exp(α0 + α1TRT ).



Weibull AFT Model: Acceleration Factor

The acceleration factor for a fixed value of S(t) = q is calculated
as follows:

Level of covariates: TRT = 1 and TRT = 0

Then the acceleration factor γ is

γ = γ(TRT = 1 vs. TRT = 0)

=
(− log(q))1/p exp(α0 + α1)

(− log(q))1/p exp(α0)

= exp(α1).

Note: As in the PH form of the model, this result depends on p
having the same value for TRT = 1 and TRT = 0.



R Code and R Output

> weibull.aft <- survreg(Surv(Survt,status) ~ TRT,dist=’weibull’)
> summary(weibull.aft)

Call:
survreg(formula = Surv(Survt, status) ~ TRT, dist = "weibull")

Value Std. Error z p
(Intercept) 2.248 0.166 13.55 8.30e-42
TRT 1.267 0.311 4.08 4.51e-05
Log(scale) -0.312 0.147 -2.12 3.43e-02

Scale= 0.732

Weibull distribution
Loglik(model)= -106.6 Loglik(intercept only)= -116.4

Chisq= 19.65 on 1 degrees of freedom, p= 9.3e-06
Number of Newton-Raphson Iterations: 5
n= 42



R Code and R Output: Acceleration Factor

The estimated acceleration factor γ̂ comparing the treatment group
to the placebo group (TRT = 1 vs. TRT = 0) is now:

γ̂ = exp(α̂1)

> exp(weibull.aft$coefficient[2])
TRT

3.551374

Interpretation
The survival time for the treatment group (TRT = 1) is increased
by a factor of 3.55 compared to the placebo group (TRT = 0)
⇒ Treatment is positive.



Survival functions

Computing time-quantiles, for example the median:

S(t) = 0.5 ⇒ t̂m = (− log(0.5))1/p̂ · exp(α̂0 + α̂1TRT )

Estimated survival times for the
median S(t) = 0.5:

> median <-predict(weibull.aft,
+ newdata=list(TRT=c(0,1)),
+ type=’quantile’,p=0.5)
> median

1 2
7.242697 25.721526

> median[2]/median[1]
2
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Relation between Weibull AFT and PH coefficients

I AFT: 1
λ1/p = exp(α0 + α1TRT )

⇔ (1/p) log(λ) = −(α0 + α1TRT )
⇔ log(λ) = −p(α0 + α1TRT )

I PH: λ = exp(β0 + β1TRT )
⇔ log(λ) = β0 + β1TRT

This indicates the following relationship between the coefficients:

βj = −αjp



Exponential PH and AFT Model

We obtained βj = −αjp for the Weibull model. In the special case
of the exponential model where p = 1 we have

βj = −αj .

Remark
The exponential PH and AFT are in fact the same model, except
that the parametrization is different.



Exponential PH and AFT Model

Example:
The estimated values from the exponential example above support
this result.

Coefficient PH Model: β̂1 = −1.527
Coefficient AFT Model: α̂1 = 1.527

We also have

ĤR(TRT = 1vs. TRT = 0) = exp(β̂1) = exp(−α̂1) =
1
γ̂
.



Property of the Weibull Model

Proposition
AFT assumption holds ⇔ PH assumption holds (given that p is
fixed)

Proof for the considered example (TRT = 1 and TRT = 0):

I [⇒]: γ = exp(α1)
Assume γ is constant ⇒ α1 is constant
HR = exp(β1) = exp(−pα1) ⇒ HR is constant

I [⇐]: HR = exp(β1)
Assume HR is constant ⇒ β1 is constant
γ = exp(α1) = exp(−β1

p ) ⇒ γ is constant



Possible Plots

Possible results for plots of log(− log(Ŝ(t))) against log(t):

⇒ Weibull (or Exponential if p = 1), PH and
AFT assumption hold.

⇒ Not Weibull, PH and not AFT.

⇒ Not Weibull, not PH and not AFT.

⇒ Weibull, not PH and not AFT (p not fixed).
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Hazard Function of Log-Logistic Model
The log-logistic distribution accommodates an AFT model but not
a PH model.
Hazard function is

h(t) =
λptp−1

1 + λtp ,

with p > 0 and λ > 0.

Shape of hazard function:
I p ≤ 1: hazard decreases
I p > 1: hazard unimodal
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PO Assumption

Definition
In a proportional odds (PO) survival model, the odds ratio is
constant over time.

I Survival odds: odds of surviving beyond time t

S(t)

1− S(t)
=

P(T > t)

P(T ≤ t)

I Failure odds: odds of getting the event by time t

1− S(t)

S(t)
=

P(T ≤ t)

P(T > t)



PO Assumption

The failure odds of the log-logistic survival model are

1− S(t)

S(t)
=

λtp
1+λtp

1
1+λtp

= λtp.

The failure odds ratio (OR) for two different groups (1 and 2) is
(for p fixed)

OR(1 vs. 2) =

1−S1(t)
S1(t)

1−S2(t)
S2(t)

=
λ1tp

λ2tp =
λ1

λ2
.

Hence, the log-logistic model is a proportional odds (PO) model.



Graphical Evaluation of Log-Logistic Assumption

The log-failure odds can be written as

log
(
1− S(t)

S(t)

)
= log(λtp) = log(λ) + p log(t),

which is a linear function of log(t).

Graphical Evaluation of Log-Logistic Assumption

I Plot log
(

1−Ŝ(t)
Ŝ(t)

)
against log(t) (Ŝ are the KM-survival

estimates).
I If the plot is linear with slope p, then the survival time follows

a log-logistic distribution.



Log-Logistic Example with the Remission Data
We consider a new categorical variable WBCCAT :

I WBCCAT = 2 if logWBC ≥ 2.5 (high count)
I WBCCAT = 1 if logWBC < 2.5 (medium count)

The graphical evaluation of WBCCAT = 2 and WBCCAT = 1:
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⇒ straight lines indicate
log-logistic distribution



AFT Log-Logistic Model

AFT log-logistic model with WBCCAT as only predictor:

We solve
S(t) =

1
1 + λtp =

1

1 + (λ
1
p t)p

for t and obtain

t =

(
1

S(t)
− 1
) 1

p 1

λ
1
p
.

We reparameterize the factor on the right as

1

λ
1
p

= exp(α0 + α1WBCCAT ).



AFT Log-Logistic Model: Acceleration Factor

We get

t =

(
1

S(t)
− 1
) 1

p

exp(α0 + α1WBCCAT ).

For a fixed probability S(t) = q, the expression for t is

t =
(
q−1 − 1

) 1
p exp(α0 + α1WBCCAT ).

The acceleration factor γ for S(t) = q is

γ(WBCCAT = 2 vs. WBCCAT = 1) =

(
q−1 − 1

) 1
p exp(α0 + 2α1)

(q−1 − 1)
1
p exp(α0 + 1α1)

= exp(α1).



R Code and R Output

> logistic.aft <- survreg(Surv(Survt, status) ~ WBCCAT,
+ dist=’loglogistic’,data=remdata)
> summary(logistic.aft)

Call:
survreg(formula = Surv(Survt, status) ~ WBCCAT, data = remdata,

dist = "loglogistic")
Value Std. Error z p

(Intercept) 4.094 0.586 6.98 2.92e-12
WBCCAT -0.987 0.337 -2.93 3.40e-03
Log(scale) -0.564 0.154 -3.67 2.41e-04

Scale= 0.569

Log logistic distribution
Loglik(model)= -111.2 Loglik(intercept only)= -115.4

Chisq= 8.28 on 1 degrees of freedom, p= 0.004
Number of Newton-Raphson Iterations: 4
n= 42



R Code and R Output: Acceleration Factor

The estimated acceleration factor γ̂ comparing WBCCAT = 2
(high count) and WBCCAT = 1 (medium count) is now:

γ̂ = exp(α̂1)
> exp(logistic.aft$coefficient[2])

WBCCAT
0.3728214

⇒ Ŝ1(t) = Ŝ2(0.37t)

(Ŝi is the survival function for WBCCAT = i , i = 1,2)

Interpretation
The survival time for the group with high count (WBCCAT = 2) is
"accelerated" by a factor of 0.37 compared to the group with
medium count (WBCCAT = 1) ⇒ High WBC is negative.



PO Log-Logistic Model

The proportional odds (PO) form of the log-logistic model can be
formulated by reparameterizing λ.

Failure odds:
1− S(t)

S(t)
=

λtp
1+λtp

1
1+λtp

= λtp.

Reparameterizing λ gives

λ = exp(β0 + β1WBCCAT ).

Hence, the failure odds ratio is

OR(WBCCAT=2 vs. WBCCAT=1) =
tp exp(β0 + 2β1)

tp exp(β0 + 1β1)
= exp(β1).



Comparing AFT and PO Log-Logistic Model

Parameterizations:
I AFT model: 1

λ
1
p

= exp(α0 + α1WBCCAT )

I PO model: λ = exp(β0 + β1WBCCAT )

Hence, we have the relationship

β0 = −α0p and β1 = −α1p.

Note: If p is fixed this leads to: AFT ⇔ PO

So we can calculate the estimated OR with the coefficients of the
AFT model by:

ÔR = exp(β̂1)

= exp(−α̂1p̂) = 5.66

> alpha1 <- logistic.aft$coefficient[2]
> p <- 1/logistic.aft$scale
> exp(-alpha1*p)
5.662691



Graphical Evaluation
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Graphical Evaluation

Proposition

1. Straight lines ⇒ Log-logistic
2. Parallel plots and log-logistic ⇒ PO
3. Log-logistic and PO ⇒ AFT

Proof: Consider two groups (1 and 2).
1. log(failure odds) = log(λ) + p log(t)

2. Parallel plots ⇒ p the same for both groups
⇒ OR = tpλ1

tpλ2
= λ1

λ2

3. For S(t) = q, the acceleration factor is

γ =

(
q−1 − 1

) 1
p λ1

(q−1 − 1)
1
p λ2

=
λ1

λ2
.
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Generalized Gamma Model

The generalized gamma distribution is given by

f (t) =
p
ad td−1 exp(−( t

a)p)

Γ(d/p)
,

where
Γ(z) =

∫ ∞
0

sz−1e−sds

and a > 0, d > 0, p > 0.

I The three parameters allow great flexibility in the distributions
shape.

I Weibull and lognormal distributions are special cases of the
generalized gamma distribution (e.g. setting d = p gives us
the Weibull distribution).



Lognormal Model

The lognormal distribution is given by

f (t) =
1

tσ
√
2π

exp
(
−(log(t)− µ)2

2σ2

)
,

where µ and σ are the mean and standard deviation respectively, of
the variable’s natural logarithm (by definition, the variable’s
logarithm is normally distributed).

I Shape similar to the log-logistic distribution (and yields similar
model results)

I Accommodates an AFT model (as the log-logistic), but is not
a proportional odds model (whereas the log-logistic model is a
PO model)



Gompertz Model

I PH model but not AFT

I Hazard function (with one predictor (TRT)):

h(t) = [exp(ξt)] · exp(β0 + β1TRT )

with parametrically specified baseline hazard h0(t) = exp(ξt)
I ξ > 0: hazard increases exponentially with t
I ξ < 0: hazard decreases exponentially with t
I ξ = 0: constant hazard (exponential model)



Modeling the Shape Parameter

Many parametric models contain a shape parameter, which is
usually considered fixed.

Example:

I Weibull model
Recall: h(t) = λptp−1 where λ = exp(β0 + β1TRT ) and p,
the shape parameter, unaffected by predictors.

I Alternative Weibull model
Now: h(t) = λptp−1 where λ = exp(β0 + β1TRT ) and
p = exp(δ0 + δ1TRT )

I If δ1 6= 0, the value of p differs by TRT
I Not a PH or AFT model if δ1 6= 0, but still a Weibull model
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Parametric Likelihood and Censoring

The likelihood function for a parametric model
I is a function of the observed data and the unknown

parameters of the model.
I is based on the distribution of the survival time.
I depends on the censoring of the data.

286 7. Parametric Survival Models

Alternative Weibull model
models the ancillary parameter p

h(t) = λpt p−1

where λ = exp(β0 + β1TRT)
p = exp(δ0 + δ1TRT)

Not a PH or AFT model if δ1 �= 0
but still a Weibull model

An alternative approach is to model the shape pa-
rameter in terms of predictor variables and regres-
sion coefficients. In the Weibull model shown on
the left, both λ and p are modeled as functions of
treatment status (TRT). If δ1 is not equal to zero,
then the value of p differs by TRT. For that sit-
uation, the PH (and thus the AFT) assumption is
violated because t p−1 will not cancel in the hazard
ratio for TRT (see Practice Exercises 15 to 17).

Choosing appropriate model� Evaluate graphically
◦ Exponential
◦ Weibull
◦ Log-logistic� Akaike’s information criterion
◦ Compares model fit
◦ Uses −2 log likelihood

Choosing the most appropriate parametric model
can be difficult. We have provided graphical ap-
proaches for evaluating the appropriateness of
the exponential, Weibull, and log-logistic models.
Akaike’s information criterion (AIC) provides
an approach for comparing the fit of models with
different underlying distributions, making use of
the −2 log likelihood statistic (described in Prac-
tice Exercises 11 and 14).

X. The Parametric Likelihood� Function of observed data and
unknown parameters� Based on outcome distribution
f(t)� Censoring complicates survival
data
◦ Right-censored
◦ Left-censored
◦ Interval-censored

The likelihood for any parametric model is a func-
tion of the observed data and the model’s un-
known parameters. The form of the likelihood
is based on the probability density function f(t)
of the outcome variable. A complication of sur-
vival data is the possible inclusion of censored
observations (i.e., observations in which the ex-
act time of the outcome is unobserved). We con-
sider three types of censored observations: right-
censored, left-censored, and interval-censored.

Examples of Censored Subjects

Right-censored:
10

10

108

Left-censored:  __________________   time

Interval-censored:  ______________   time

x

x

x

time

Right-censored. Suppose a subject is lost to
follow-up after 10 years of observation. The time
of event is not observed because it happened af-
ter the 10th year. This subject is right-censored at
10 years because the event happened to the right
of 10 on the time line (i.e., t > 10).

Left-censored. Suppose a subject had an event be-
fore the 10th year but the exact time of the event is
unknown. This subject is left-censored at 10 years
(i.e., t < 10).

Interval-censored. Suppose a subject had an
event between the 8th and 10th year (exact time
unknown). This subject is interval-censored (i.e.,
8 < t < 10).



Construction of the Likelihood on an Example

Assume a survival time distribution with probability density function
f (t).

Subject Event Time Likelihood Contribution

Barry t = 2 f (2)

Gary t > 8
(right−censored)

∫∞
8 f (t)dt

Harry t = 6 f (6)

Carrie t < 2
(left−censored)

∫ 2
0 f (t)dt

Larry 4 < t < 8
(interval−censored)

∫ 8
4 f (t)dt



Construction of the Likelihood on an Example

The likelihood function L is the product of each contribution:

L = f (2) ·
∫ ∞

8
f (t)dt · f (6) ·

∫ 2

0
f (t)dt ·

∫ 8

4
f (t)dt

Assumptions for formulating L:
I Subjects are independent (product of contributions).
I No competing risks:

No competing event prohibits a subject from eventually
getting the event of interest.
Example: Death

I Follow-up times are continuous without gaps
(i.e. subjects do not return into study).



Maximum likelihood Estimates

The likelihood for M subjects is

L =
M∏
i=1

Li .

The maximum likelihood estimates of the parameters are obtained
by solving the following system of equations

∂ log(L)

∂βj
= 0, j = 1, 2, . . . ,N,

where N is the number of parameters βj .



Parametric and Cox likelihood

In a parametric model, the parametric likelihood handles easily
right-, left- or interval-censored data.
In a Cox model, the Cox likelihood handles right-censored data, but
is not designed to accommodate left- or interval-censored data
directly.
Example:

I Health check for nonsymptomatic outcome every year once
I If event was detected e.g. at the beginning of the third year,

the exact time when the event occurred was between the
second and third year

I Fit a parametric model with the distribution of the outcome
denoted by f (t)

I Each subject’s contribution to the likelihood is obtained by
integrating f (t) over the interval in which it had the event.
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Frailty

What is frailty?
I Random component
I Accounts for variability due to unobserved individual-level

factors (unaccounted for by the other predictors)

The frailty α (α > 0)
I is an unobserved multiplicative effect on the hazard
I follows some distribution g(α) with the mean of g(α) equal to

1 (µ = 1)
I θ = Var(g(α)), parameter to be estimated from the data



Hazard functions, Survival functions and Frailty

Express an individual’s hazard function conditional on the frailty as

h(t | α) = αh(t)

This leads to:

S(t | α) = exp
[
−
∫ t

0
h(u | α)du

]
= exp

[
−
∫ t

0
αh(u)du

]
= exp

[
−
∫ t

0
h(u)du

]α
= S(t)α

Suppose α > 1. Then we get:
I Increased hazard
I Decreased survival

And vice versa for α < 1.



Survival functions in Frailty Models
Distinguish between

I the individual level or conditional survival function
S(t | α)

I and the population level or unconditional survival function
SU(t), representing a population average.

Once the frailty distribution g(α) is chosen we find the
unconditional survival function by

SU(t) =

∫ ∞
0

S(t | α)g(α)dα

Then we can find the corresponding unconditional hazard hU(t)
using the known relationship between survival and hazard function

hU(t) =
−d [SU(t)]/dt

SU(t)



Example: Weibull PH model with and without frailty
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Frailty distribution g(α), α > 0,
E(α) = 1

Stata offers choices for g(α)
1. Gamma
2. Inverse-Gaussian
Both distributions parameterized in
terms of θ

Any distribution for α > 0 with a mean of 1
can theoretically be used for the distribution of
the frailty. Stata supports two distributions: the
gamma distribution and the inverse-Gaussian
distribution for the frailty. With the mean fixed
at 1, both these distributions are parameterized in
terms of the variance θ and typically yield similar
results.

EXAMPLE

Vet Lung Cancer Trial

Predictors:

TX (dichotomous: 1 = standard, 2 = test)

PERF (continuous: 0 = worst, 100 = best)

DD (disease duration in months)

AGE (in years)

PRIORTX (dichotomous: 0 = none,
10 = some)

To illustrate the use of a frailty model, we apply
the data from the Veteran’s Administration Lung
Cancer Trial described in Chapter 5. The exposure
of interest is treatment status TX (standard = 1,
test = 2). The control variables are performance
status (PERF), disease duration (DD), AGE, and
prior therapy (PRIORTX), whose coding is shown
on the left. The outcome is time to death (in days).

Model 1. No Frailty

Weibull regression (PH form)

Log likelihood = −206.20418

t Coef. Std. Err. z p >|z|
tx .137 .181 0.76 0.450
perf −.034 .005 −6.43 0.000
dd .003 .007 0.32 0.746
age −.001 .009 −0.09 0.927
priortx −.013 .022 −0.57 0.566
cons −2.758 .742 −3.72 0.000

/ln p −.018 .065 −0.27 0.786

p .982 .064
1/p 1.02 .066

Output from running a Weibull PH model with-
out frailty using Stata software is shown on the
left (Model 1). The model can be expressed: h(t) =
λpt p−1 where

λ = exp(β0 + β1TX + β2PERF + β3DD
+ β4AGE + β5PRIORTX).

The estimate of the hazard ratio comparing TX = 2
vs. TX = 1 is exp(0.137) = 1.15 controlling for per-
formance status, disease duration, age, and prior
therapy. The estimate for the shape parameter is
0.982 suggesting a slightly decreasing hazard over
time.

Model 1:
h(t) = λptp−1 where

λ = exp(β0 + β1TX + β2PERF + β3DD
+ β4AGE + β5PRIORTX )



Example: Weibull PH model with and without frailty
Presentation: XII. Frailty Models 297

EXAMPLE (continued) 

Model 2. With Frailty

Weibull regression (PH form)
Gamma frailty
Log likelihood = −200.11338

t Coef. Std. Err. z p >|z|
tx .105 .291 0.36 0.719
perf −.061 .012 −5.00 0.000
dd −.006 .017 −0.44 0.663
age −.013 .015 −0.87 0.385
priortx −.006 .035 −0.18 0.859
cons −2.256 1.100 −2.05 0.040

/ln p .435 .141 3.09 0.002
/ln the −.150 .382 −0.39 0.695

p 1.54 .217
1/p .647 .091
theta .861 .329

Likelihood ratio test of theta = 0:
chibar2(01) = 12.18
Prob>=chibar2 = 0.000

Model 2 (output on left) is the same Weibull model
as Model 1 except that a frailty component has
been included. The frailty in Model 2 is assumed
to follow a gamma distribution with mean 1 and
variance equal to theta (θ ). The estimate of theta
is 0.861 (bottom row of output). A variance of
zero (theta = 0) would indicate that the frailty
component does not contribute to the model. A
likelihood ratio test for the hypothesis theta = 0
is shown directly below the parameter estimates
and indicates a chi-square value of 12.18 with 1
degree of freedom yielding a highly significant
p-value of 0.000 (rounded to 3 decimals).

Notice how all the parameter estimates
are altered with the inclusion of the frailty.
The estimate for the shape parameter is now 1.54,
quite different from the estimate 0.982 obtained
from Model 1. The inclusion of frailty not only
has an impact on the parameter estimates but
also complicates their interpretation.

Comparing Model 2 with Model 1� There is one additional
parameter to estimate in
Model 2� The actual values of
individuals’ frailty are not
estimated in Model 2� The coefficients for the
predictor variables in Models 1
and 2 have different estimates
and interpretation� The estimate of the shape
parameter is <1.0 for Model 1
and >1.0 for Model 2

Before discussing in detail how the inclusion
of frailty influences the interpretation of the
parameters, we overview some of the key points
(listed on the left) that differentiate Model 2
(containing the frailty) and Model 1.

Model 2 contains one additional parameter,
the variance of the frailty. However, the actual
values of each subject’s frailty are not estimated.
The regression coefficients and Weibull shape
parameter also differ in their interpretations for
Model 2 compared to Model 1. We now elaborate
on these points.

Model 2:
hj(t | αj) = αjh(t), j = 1, 2, ..., n, where
h(t) and λ as above, αj denoting the
frailty for the j-th subject and where
α ∼ gamma (µ = 1, variance = θ)

Note: αj not estimable
(overparameterization). But the
variance of the frailty θ is estimated



Example: Weibull PH model with and without frailty

For Model 1 we get ĤR = exp(0.137) = 1.15.
For Model 2 we get ĤR = exp(0.105) = 1.11.

Remark
In Model 2 the value we obtained is the estimated hazard ratio for
two individuals having the same frailty one taking the test and the
other taking the standard treatment (and same levels of other
predictors).



Example: Weibull PH model with and without frailty

Compare the estimated values for the shape parameter p:
I Model 1: p̂ = 0.982 (→ decreasing hazard)
I Model 2: p̂ = 1.54 (→ increasing individual level hazard)

BUT: For frailty models one has to distinguish between the
individual level and population level hazard.

I Individual level/conditional hazard is estimated to increase
I Population level/unconditional hazard has an unimodal shape

(first increasing, then decreasing to 0)



Conditional and Unconditional Hazards in Frailty Models
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Estimated unconditional hazard
Model 2 (TX = 1, mean level for
other covariates, p̂ = 1.54)

analysis time

Weibull regression

tx
 =
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On the left is a plot (from Model 2) of the
estimated unconditional hazard for those on stan-
dard treatment (TX = 1) with mean values for
the other covariates. The graph is unimodal, with
the hazard first increasing and then decreasing
over time. So each individual has an estimated
increasing hazard ( p̂ = 1.54), yet the hazard
averaged over the population is unimodal, rather
than increasing. How can this be?

The answer is that the population is com-
prised of individuals with different levels of
frailty. The more frail individuals (α > 1) have
a greater hazard and are more likely to get the
event earlier. Consequently, over time, the “at risk
group” has an increasing proportion of less frail
individuals (α < 1), decreasing the population
average, or unconditional, hazard.

Four increasing individual level
hazards, but average hazard de-
creases from t1 to t2

h(t)

h1

x

x

x

xh2

t1 t2

average hazard: h2 < h1

To clarify the above explanation, consider the
graph on the left in which the hazards for four
individuals increase linearly over time until their
event occurs. The two individuals with the high-
est hazards failed between times t1 and t2 and the
other two failed after t2. Consequently, the aver-
age hazard (h2) of the two individuals still at risk
at t2 is less than the average hazard (h1) of the four
individuals at risk at t1. Thus the average hazard
of the “at risk” population decreased from t1 to
t2 (i.e., h2 < h1) because the individuals surviving
past t2 were less frail than the two individuals who
failed earlier.

Frailty Effect

h∪(t) eventually decreases
because

“at risk group” becoming less frail
over time

This property, in which the unconditional hazard
eventually decreases over time because the “at risk
group” has an increasing proportion of less frail
individuals, is called the frailty effect.

I Hazard for individuals
increase

I Average hazard decreases
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Estimated unconditional hazard
Model 2 (TX = 1, mean level for
other covariates, p̂ = 1.54)

analysis time

Weibull regression
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On the left is a plot (from Model 2) of the
estimated unconditional hazard for those on stan-
dard treatment (TX = 1) with mean values for
the other covariates. The graph is unimodal, with
the hazard first increasing and then decreasing
over time. So each individual has an estimated
increasing hazard ( p̂ = 1.54), yet the hazard
averaged over the population is unimodal, rather
than increasing. How can this be?

The answer is that the population is com-
prised of individuals with different levels of
frailty. The more frail individuals (α > 1) have
a greater hazard and are more likely to get the
event earlier. Consequently, over time, the “at risk
group” has an increasing proportion of less frail
individuals (α < 1), decreasing the population
average, or unconditional, hazard.

Four increasing individual level
hazards, but average hazard de-
creases from t1 to t2

h(t)

h1

x

x

x

xh2

t1 t2

average hazard: h2 < h1

To clarify the above explanation, consider the
graph on the left in which the hazards for four
individuals increase linearly over time until their
event occurs. The two individuals with the high-
est hazards failed between times t1 and t2 and the
other two failed after t2. Consequently, the aver-
age hazard (h2) of the two individuals still at risk
at t2 is less than the average hazard (h1) of the four
individuals at risk at t1. Thus the average hazard
of the “at risk” population decreased from t1 to
t2 (i.e., h2 < h1) because the individuals surviving
past t2 were less frail than the two individuals who
failed earlier.

Frailty Effect

h∪(t) eventually decreases
because

“at risk group” becoming less frail
over time

This property, in which the unconditional hazard
eventually decreases over time because the “at risk
group” has an increasing proportion of less frail
individuals, is called the frailty effect.
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Estimated unconditional hazard
Model 2 (TX = 1, mean level for
other covariates, p̂ = 1.54)

analysis time

Weibull regression
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On the left is a plot (from Model 2) of the
estimated unconditional hazard for those on stan-
dard treatment (TX = 1) with mean values for
the other covariates. The graph is unimodal, with
the hazard first increasing and then decreasing
over time. So each individual has an estimated
increasing hazard ( p̂ = 1.54), yet the hazard
averaged over the population is unimodal, rather
than increasing. How can this be?

The answer is that the population is com-
prised of individuals with different levels of
frailty. The more frail individuals (α > 1) have
a greater hazard and are more likely to get the
event earlier. Consequently, over time, the “at risk
group” has an increasing proportion of less frail
individuals (α < 1), decreasing the population
average, or unconditional, hazard.

Four increasing individual level
hazards, but average hazard de-
creases from t1 to t2

h(t)

h1

x

x

x

xh2

t1 t2

average hazard: h2 < h1

To clarify the above explanation, consider the
graph on the left in which the hazards for four
individuals increase linearly over time until their
event occurs. The two individuals with the high-
est hazards failed between times t1 and t2 and the
other two failed after t2. Consequently, the aver-
age hazard (h2) of the two individuals still at risk
at t2 is less than the average hazard (h1) of the four
individuals at risk at t1. Thus the average hazard
of the “at risk” population decreased from t1 to
t2 (i.e., h2 < h1) because the individuals surviving
past t2 were less frail than the two individuals who
failed earlier.

Frailty Effect

h∪(t) eventually decreases
because

“at risk group” becoming less frail
over time

This property, in which the unconditional hazard
eventually decreases over time because the “at risk
group” has an increasing proportion of less frail
individuals, is called the frailty effect.

Population with different levels of frailty
→ "more frail individuals" (α > 1) are more likely to get the event
earlier
→ "at risk group" has increasing proportion of less frail individuals
(α < 1)
→ decreasing population average hazard hU(t)
→ frailty effect



Example

Assume plotting the Kaplan-Meier log-log survival estimates for
treatment TX = 2 vs. TX = 1 would give us plots starting out
parallel but then converge over time.

I Interpretation 1: Effect of treatment weakens over time
⇒ PH model not appropriate

I Interpretation 2: Effect of treatment remains constant over
time. Convergence is caused by an unobserved heterogeneity
in the population
⇒ a PH model with frailty would be appropriate
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Summary

I Parametric model: assume distribution of survival time
I PH, AFT and PO (Examples: Weibull and log-logistic models)
I Parametric likelihood
I Frailty models: additional variability factor for hazard
I Distinguish between conditional and unconditional frailty



Thank you for your attention!
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