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Parametric Survival Model

Basic Idea
The survival time follows a distribution.

Goal

Use data to estimate parameters of this distribution
= completely specified model

= prediction of time-quantiles



Parametric Survival Model vs. Cox PH Model

Parametric Survival Model
+ Completely specified h(t) and S(t)
+ More consistent with theoretical S(t)
+ time-quantile prediction possible

— Assumption on underlying distribution

Cox PH Model

— distribution of survival time unkonwn
— Less consistent with theoretical S(t) (typically step function)
+ Does not rely on distributional assumptions

+ Baseline hazard not necessary for estimation of hazard ratio
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Probability Density, Hazard and Survival Function

Main Assumption
The survival time T is assumed to follow a distribution with density

function f(t).
SS(t) = P(T > t) = /OO F(u)du

Recall:
50 51— exp <— /Oth(u)du)

h(t) = - de(t) )




Density Function in Relation to the Hazard and Survival
Function

Remark
f(t) = h(t)S(t)
Proof:
d t
h(£)S() = —dgfi)t)S(t) _ C‘/’t/ F(u)du = £(2)
Key Point

Specifying one of the three functions f(t), S(t) or h(t) specifies
the other two functions.



Commonly Used Distributions and Parameters

Distribution f(t) S(t) h(t)
Exponential Aexp(—At) exp(—At) A
Weibull AptP~Lexp(—AtP) exp(—AtP) AptP1
Log-logistic Aptt 1 Apt? 2
g-108 (1+tP)? 1+AtP 1+AtP

Modeling of the parameters:

» ) is reparameterized in terms of predictor variables and
regression parameters.

» Typically for parametric models, the shape parameters p is
held fixed.
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Weibull Model
Assuming T ~ Weibull(X, p) with probability density function

f(t) = AptP "L exp(—AtP), where p > 0 and A > 0,

the hazard function is given by

h(t) = AptP~L.
Hazard Function h(t)
— p<1
e
— p>1
p is called shape parameter: BN
> If p > 1 the hazard increases
» If p =1 the hazard is constant =
(exponential model)
> If p < 1 the hazard decreases 3
T T
6 8 10



Graphical Evaluation of Weibull Assumption

Property of Weibull Model
The log(— log(S(t))) is linear with the log of time.
S(t) = exp(—AtP)
= —log(5(t)) = AtP
= log(~ log(S(1))) = log(\) + plog(?)

This property allows a graphical evaluation of the appropriateness
of a Weibull model by plotting

log(— log(5(t))) vs. log(t).

where S(t) is Kaplan-Meier survival estimate.



Example: Remission Data

log(-log(5())
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We consider the remission data of 42 leukemia patients.
» 21 patients given treatment (TRT = 1)
» 21 patients given placebo (TRT = 0)

Note: The survival time (time to event) is the time until a patient
went out of remission, which means that the patient relapsed.
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» straight lines = Weibull
» same slope = PH



Weibull PH Model
Recall: h(t) = AptP~!

Weibull PH model:

» Reparameterize \ with

A= exp(ﬁo + b1 TRT)

» Then the hazard ratio (TRT =1vs. TRT =0) is

exp(fBo + B1)ptPt

HR =
exp(fo)ptP~1

= exp(1),

which indicates that the PH assumption is satisfied.

Note: This result depends on p having the same value for TRT =1
and TRT = 0 (otherwise time would not cancel out).



Exponential PH Model

The exponential distribution is a special case of the Weibull
distribution with p = 1.

Weibull density function:

f(t) = exp(=AtP) A\ptP~!
—

Setting p = 1 gives the density function of an exponential
distribution
f(t) =exp(—At) A

s(r)  h(t)



Exponential PH Model

Running the exponential model leads to the following output:

it Coef. Std. Err. z p>lz|
trt —1.527 .398 -3.83  0.00
cons —2.159 218 -9.90  0.00

The estimated hazard ratio is obtained from the estimated
coefficient 51 by

HR(TRT =1 vs. TRT = 0) = exp(f1) = exp(—1.527) = 0.22.

Interpretation

This means that the hazard for the group with TRT = 0 is bigger
than the one for the group with TRT = 1 because 0.22 < 1,
indicating a positive effect of the treatment.
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Accelerated Failure Time Assumption

First example: Humans vs. dogs

>

Let Sy(t) and Sp(t) denote the survival functions for humans
and dogs respectively.

Known: In general dogs grow older seven times faster than
humans.
In AFT terminology: The probability of a dog surviving past t
years is equal to the one of a human surviving past 7t years.
This means:

Sp(t) = Su(7t)

In other words, dogs accelerate through life about seven times
faster than humans.



AFT Models

AFT Models
AFT Models describe stretching out or contraction of survival time
as a function of predictor variables.



[llustration of AFT Assumption

Second example: Smokers vs. nonsmokers

» Let Ss(t) and Sys(t) denote the survival functions for
smokers and nonsmokers respectively.

AFT assumption

Sns(t) = Ss(~t) for t >0

Definition
~ > 0 is the so called acceleration factor and is a constant.



Expressing the AFT assumption

The AFT assumption can be expressed

» in terms of survival function as seen before:
Sns(t) = Ss(vt)
» in terms of random variables for survival time:
YTns = Ts,

where Tys is a random variable following some distribution
representing the survival time for nonsmokers and Ts the
analogous one for smokers.



Acceleration factor

The acceleration factor allows to evaluate the effect of predictor
variables on the survival time.

Acceleration factor
The acceleration factor is a ratio of time-quantiles corresponding to
any fixed value of S(t).

y=2
distance to G =1

0.50 4= distance to G =2




Interpretation of the Acceleration Factor

Assuming the event to occur is negative for an individual,
comparing two groups (levels of covariates) leads to the following
general interpretation:

v>1 = exposure benefits survival
v<1 = exposure harmful to survival
For the hazard ratio, we have:

HR >1 = exposure harmful to survival

HR <1 = exposure benefits survival

y=HR=1 = no effect from exposure
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General Form of AFT Model
Consider an AFT model with one predictor X. The model can be
expressed on the log scale as
log(T) = apg + a1 X + ¢,

where € is a random error following some distribution.

T log(T)
Exponential  Extreme value
Weibull Extreme value

Log-logistic  Logistic
Lognormal  Normal




General Form of AFT Model

Some distributions (e.g. Weibull) have an additional parameter o,
which scales e.
log(T) = ap + a1 X + e

Here (and in R) the model is parametrized using o = %:

1
log(T) = ag + a1 X + =€
p



General Form of AFT Model

The model in terms of the survival time T is

1 1
T = exp (ao + a1 X + e> = exp(ap) - exp(a1X) - exp (e)
p p

Remark
AFT model is multiplicative in terms of T and additive in terms of

log(T).
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AFT Model

» We use again the remission data.

» We consider the variable TRT as only predictor (TRT =1
and TRT =0)

AFT Model Assumption

The ratio of time-quantile is constant () for all fixed values
S(t)=gq.

Expression for time-quantiles

» Solve for t in terms of S(t)

» Scale t in terms of predictors



Weibull AFT Model
Recall: S(t) = exp(—AtP)
1. Solving for t gives:
5(t) = exp(—AtP) & —log(5(t)) = AtP
1
et=(- |Og(5(t)))1/"m

2. Reparameterizing = exp(ap + a1 TRT) yields

1
A\1/p

t = (—log(S(t)))Y? exp(ap + a1 TRT).
(TRT used to scale time to any fixed value of 5(t))

3. In terms of any fixed probability S(t) = g we get

t = (—log(q))*/? exp(ag + a1 TRT).



Weibull AFT Model: Acceleration Factor

The acceleration factor for a fixed value of S(t) = q is calculated
as follows:

Level of covariates: TRT =1 and TRT =0

Then the acceleration factor 7 is

v=7(TRT =1vs. TRT =0)

 (—log(q))"/P exp(ar + 1)
(—log(q))Y/P exp(ao)
= exp(a1).

Note: As in the PH form of the model, this result depends on p
having the same value for TRT =1 and TRT = 0.



R Code and R Output

> weibull.aft <- survreg(Surv(Survt,status) ~ TRT,dist=’weibull’)
> summary(weibull.aft)

Call:

survreg(formula = Surv(Survt, status) ~ TRT, dist = "weibull")
Value Std. Error z P

(Intercept) 2.248 0.166 13.55 8.30e-42

TRT 1.267 0.311 4.08 4.51e-05

Log(scale) -0.312 0.147 -2.12 3.43e-02

Scale= 0.732

Weibull distribution

Loglik(model)= -106.6 Loglik(intercept only)= -116.4
Chisg= 19.65 on 1 degrees of freedom, p= 9.3e-06

Number of Newton-Raphson Iterations: 5

n= 42



R Code and R Output: Acceleration Factor

The estimated acceleration factor 4 comparing the treatment group
to the placebo group (TRT =1 vs. TRT =0) is now:

4 = exp(&1)

> exp(weibull.aft$coefficient[2])
TRT
3.5561374

Interpretation

The survival time for the treatment group (TRT = 1) is increased
by a factor of 3.55 compared to the placebo group (TRT = 0)
= Treatment is positive.



Survival functions

Computing time-quantiles, for example the median:

S(t)=05 = tn=(—log(0.5))? . exp(ay+ a1 TRT)

Survival Function S(t)

Estimated survival times for the
median S(t) = 0.5:

1.0

0.8

> median <-predict(weibull.aft,
+ newdata=list(TRT=c(0,1)), ¢ |
+ type=’quantile’,p=0.5)
> median
1 2
7.242697 25.721526 g
> median[2]/median[1]
2 =

S
6

0.4

3 . 55 1374 0 10 20 30 40 50 60



Relation between Weibull AFT and PH coefficients

> AFT: 5 = exp(ag + a1 TRT)
< (1/p)log(A) = —(ao + a1 TRT)
< log(A) = —p(ao + a1 TRT)

» PH: A = exp(Bo + S1 TRT)
& log() =Bo+ B TRT

This indicates the following relationship between the coefficients:

Bj = —ajp



Exponential PH and AFT Model

We obtained 3; = —a;jp for the Weibull model. In the special case
of the exponential model where p = 1 we have

B = —qj.

Remark
The exponential PH and AFT are in fact the same model, except
that the parametrization is different.



Exponential PH and AFT Model

Example:

The estimated values from the exponential example above support
this result.

Coefficient PH Model:

B = —1.527
Coefficient AFT Model:

&1 = 1.527

We also have

HR(TRT = 1vs. TRT = 0) = exp(51) = exp(—a1)

2|



Property of the Weibull Model

Proposition
AFT assumption holds < PH assumption holds (given that p is
fixed)

Proof for the considered example (TRT =1 and TRT = 0):

> [=]: v = exp(aa)
Assume « is constant = «; is constant
HR = exp(f1) = exp(—pa1) = HR is constant

> [<]: HR = exp(B1)
Assume HR is constant = [ is constant

v =exp(ai) = exp(—%) = 7 is constant



Possible Plots

Possible results for plots of log(— log(5(t))) against log(t):

= Weibull (or Exponential if p = 1), PH and
AFT assumption hold.

/ = Not Weibull, PH and not AFT.

= Not Weibull, not PH and not AFT.

/ = Weibull, not PH and not AFT (p not fixed).
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Hazard Function of Log-Logistic Model

The log-logistic distribution accommodates an AFT model but not
a PH model.

Hazard function is
B AptP—1

14 AP

h(t)

with p > 0and A > 0.

Hazard Function h(t)

1.0

0.8

Shape of hazard function:

h(t)
0.6
1

» p < 1: hazard decreases

» p > 1: hazard unimodal

0.4
1

0.2




PO Assumption

Definition
In a proportional odds (PO) survival model, the odds ratio is
constant over time.

» Survival odds: odds of surviving beyond time ¢t

S(t) _ P(T>1)

1-S5(t) P(T<t)

» Failure odds: odds of getting the event by time t

1-5(t) P(T<t)

S(t) P(T >t)




PO Assumption

The failure odds of the log-logistic survival model are

A P
1-5(t) 1+§\tP —\¢P
5(t) o1 '
TFAeP

The failure odds ratio (OR) for two different groups (1 and 2) is
(for p fixed)
1-S

Sl(lt()t) atP N

1-S(t) TN
52(2t) Ao tP Ao

OR(1vs. 2) =

Hence, the log-logistic model is a proportional odds (PO) model.



Graphical Evaluation of Log-Logistic Assumption

The log-failure odds can be written as

log <1 ;(%t)) = log(AtP) = log(\) + plog(t),

which is a linear function of log(t).

Graphical Evaluation of Log-Logistic Assumption

1-5(¢)
5(t)

» Plot log (
estimates).

» If the plot is linear with slope p, then the survival time follows
a log-logistic distribution.

) against log(t) (S are the KM-survival



Log-Logistic Example with the Remission Data
We consider a new categorical variable WBCCAT:

» WBCCAT =2 if logWBC > 2.5 (high count)
» WBCCAT =1 if logWBC < 2.5 (medium count)

The graphical evaluation of WBCCAT = 2 and WBCCAT = 1:

Log Failure Odds vs. Log Time

o
o WBCCAT=1 A s
A WBCCAT=2

a = straight lines indicate
o od log-logistic distribution

log((1 - $())/5())
D>

log(t)



AFT Log-Logistic Model

AFT log-logistic model with WBCCAT as only predictor:

We solve ) )
S(t) = =
= 1w 14 (Apt)P

for t and obtain

We reparameterize the factor on the right as

1
— = exp(ag + a1 WBCCAT).

AP



AFT Log-Logistic Model: Acceleration Factor

We get

1 ,
t= <5(t) - 1> exp(ag + a1 WBCCAT).

For a fixed probability S(t) = g, the expression for t is

TR

t= (g~ — 1) exp(ao + g WBCCAT).

The acceleration factor 7y for S(t) = q is

v(WBCCAT =2 vs. WBCCAT =1) =

= exp(a1).



R Code and R Output

> logistic.aft <- survreg(Surv(Survt, status) ~ WBCCAT,
+ dist=’loglogistic’,data=remdata)
> summary (logistic.aft)

Call:
survreg(formula = Surv(Survt, status) ~ WBCCAT, data = remdata,
dist = "loglogistic")

Value Std. Error z P
(Intercept) 4.094 0.586 6.98 2.92e-12
WBCCAT -0.987 0.337 -2.93 3.40e-03
Log(scale) -0.564 0.154 -3.67 2.41e-04
Scale= 0.569

Log logistic distribution

Loglik(model)= -111.2 Loglik(intercept only)= -115.4
Chisq= 8.28 on 1 degrees of freedom, p= 0.004

Number of Newton-Raphson Iterations: 4

n= 42



R Code and R Output: Acceleration Factor

The estimated acceleration factor 4 comparing WBCCAT =2
(high count) and WBCCAT =1 (medium count) is now:

~ ~ > exp(logistic.aft$coefficient[2])
7 = exp(d1) WBCCAT

0.3728214

= 31(1') = §2(0.37t)
(§,- is the survival function for WBCCAT =i, i = 1,2)

Interpretation

The survival time for the group with high count (WBCCAT = 2) is
"accelerated" by a factor of 0.37 compared to the group with
medium count (WBCCAT = 1) = High WBC is negative.



PO Log-Logistic Model

The proportional odds (PO) form of the log-logistic model can be
formulated by reparameterizing .

Failure odds: .
1-5(t) T

= = AtP.
() e

Reparameterizing A gives

A = exp(fBo + 51 WBCCAT).

Hence, the failure odds ratio is

p
OR(WBCCAT=2 vs. WBCCAT=1) = ip Zggg‘) 1 igli = exp(f1)-
0 1




Comparing AFT and PO Log-Logistic Model

Parameterizations:
» AFT model: - = exp(ag + a; WBCCAT)
AP

» PO model: A = exp(fo + 1 WBCCAT)
Hence, we have the relationship

Bo=—aop and  B1 = —aip.

Note: If p is fixed this leads to: AFT < PO

So we can calculate the estimated OR with the coefficients of the
AFT model by:

> alphal <- logistic.aft$coefficient[2]
) > p <- 1/logistic.aft$scale
—& 13) 5.66 > exp(-alphal*p)

5.662691



Graphical Evaluation

Log Failure Odds vs. Log Time
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Graphical Evaluation

Proposition

1. Straight lines = Log-logistic
2. Parallel plots and log-logistic = PO
3. Log-logistic and PO = AFT

Proof: Consider two groups (1 and 2).
1. log(failure odds) = log(\) + plog(t)

2. Parallel plots = p the same for both groups

_ PN M
= OR = T =

3. For S(t) = g, the acceleration factor is

(q—l DM A
1)5 Ay
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Generalized Gamma Model

The generalized gamma distribution is given by

19 exp(—(L)P)
r(d/p) ’

f(t) =

where -
MNz)= / s le~Sds
0

anda>0,d>0,p>0.

» The three parameters allow great flexibility in the distributions
shape.

» Weibull and lognormal distributions are special cases of the
generalized gamma distribution (e.g. setting d = p gives us
the Weibull distribution).



Lognormal Model

The lognormal distribution is given by

() Lo (LoD,

to/ 27 2072

where 1 and o are the mean and standard deviation respectively, of
the variable's natural logarithm (by definition, the variable's
logarithm is normally distributed).

» Shape similar to the log-logistic distribution (and yields similar
model results)

» Accommodates an AFT model (as the log-logistic), but is not
a proportional odds model (whereas the log-logistic model is a
PO model)



Gompertz Model

» PH model but not AFT

» Hazard function (with one predictor (TRT)):

h(t) = [exp(&t)] - exp(Bo + B1 TRT)

with parametrically specified baseline hazard ho(t) = exp(&t)
» £ > 0: hazard increases exponentially with ¢
» £ < 0: hazard decreases exponentially with ¢
» & =0: constant hazard (exponential model)



Modeling the Shape Parameter

Many parametric models contain a shape parameter, which is
usually considered fixed.

Example:

» Weibull model
Recall: h(t) = AptP~! where A = exp(Bo + 1 TRT) and p,
the shape parameter, unaffected by predictors.

» Alternative Weibull model
Now: h(t) = AptP~! where A\ = exp(By + B1 TRT) and
p = eXp((50 + 01 TRT)
» If 01 # 0, the value of p differs by TRT
» Not a PH or AFT model if §; # 0, but still a Weibull model
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Parametric Likelihood and Censoring

The likelihood function for a parametric model
> is a function of the observed data and the unknown
parameters of the model.
> is based on the distribution of the survival time.

» depends on the censoring of the data.

Right-censored: X time
10
Left-censored: _X time
10

Interval-censored: X time
8 10



Construction of the Likelihood on an Example

Assume a survival time distribution with probability density function

f(t).

Subject Event Time Likelihood Contribution

Barry t=2 f(2)

G t>8 > f(t)dt
ary (right—censored) fS ( )

Harry t=256 f(6)

Carri t<2 2 f(t)dt
arme (left—censored) 0 ( )

Larry 4<t<8 [ f(t)dt

(interval—censored)




Construction of the Likelihood on an Example

The likelihood function L is the product of each contribution:

L:f(z)./:o f(t)dt.f(ﬁ)./o2 f(t)dt./48 F(t)dt

Assumptions for formulating L:
» Subjects are independent (product of contributions).

» No competing risks:
No competing event prohibits a subject from eventually
getting the event of interest.
Example: Death

» Follow-up times are continuous without gaps
(i.e. subjects do not return into study).



Maximum likelihood Estimates

The likelihood for M subjects is

The maximum likelihood estimates of the parameters are obtained
by solving the following system of equations

dlog(L)
aB;

where N is the number of parameters ;.

=0, j=1,2,...,N,



Parametric and Cox likelihood

In a parametric model, the parametric likelihood handles easily
right-, left- or interval-censored data.

In a Cox model, the Cox likelihood handles right-censored data, but
is not designed to accommodate left- or interval-censored data
directly.

Example:

» Health check for nonsymptomatic outcome every year once

» If event was detected e.g. at the beginning of the third year,
the exact time when the event occurred was between the
second and third year

» Fit a parametric model with the distribution of the outcome

denoted by f(t)

» Each subject’s contribution to the likelihood is obtained by
integrating f(t) over the interval in which it had the event.
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Frailty

What is frailty?
» Random component

» Accounts for variability due to unobserved individual-level
factors (unaccounted for by the other predictors)

The frailty a (o > 0)
» is an unobserved multiplicative effect on the hazard

» follows some distribution g(«) with the mean of g(«) equal to
1(p=1)
» 0 = Var(g(«a)), parameter to be estimated from the data



Hazard functions, Survival functions and Frailty

Express an individual's hazard function conditional on the frailty as
h(t | @) = ah(t)

This leads to:

S(t] ) = exp [— /oth(u | a)du} — exp [— /Otah(u)du]
— exp [_ /Ot h(u)du] " s

Suppose o > 1. Then we get:
» Increased hazard
» Decreased survival

And vice versa for ao < 1.



Survival functions in Frailty Models

Distinguish between
» the individual level or conditional survival function
5(t| )
» and the population level or unconditional survival function
Su(t), representing a population average.

Once the frailty distribution g(«) is chosen we find the
unconditional survival function by

sut) = | " S(t | a)g(a)da

Then we can find the corresponding unconditional hazard hy(t)
using the known relationship between survival and hazard function

—d[Su(1)]/dt

hU(t) - Su(t)



Example: Weibull PH model with and without frailty

Model 1:
h(t) = AptP~! where

X = exp(Bo + B1TX + B2PERF + B3DD
+ B4AGE + Bs PRIORTX)




Example: Weibull PH model with and without frailty

Model 2. With Frailty

Weibull regression (PH form)

Gamma frailty

Log likelihood = —200.11338

t Coef.  Std. Ern. z p>lzl
tx 105 291 0.36 0.719
perf —.061 012 —5.00 0.000
dd —.006 017  —0.44 0.663
age —.013 015 —0.87 0.385
priortx ~ —.006 035 —0.18 0.859
cons  —2256 1.100 —2.05 0.040
/n_p 435 141 3.09 0.002
/n_the  —.150 382 —0.39 0.695
p 1.54 217

1p 647 091

theta 861 329

Likelihood ratio test of theta = 0:

chibar2(01) = 12.18

Prob>=chibar2 = 0.000

Model 2:

hi(t | o) = ajh(t), j =1,2,...,n, where
h(t) and A as above, o; denoting the
frailty for the j-th subject and where

a ~ gamma (pu = 1, variance = 6)

Note: o not estimable
(overparameterization). But the
variance of the frailty 0 is estimated



Example: Weibull PH model with and without frailty

For Model 1 we get HR = exp(0.137) = 1.15.
For Model 2 we get HR = exp(0.105) = 1.11.

Remark

In Model 2 the value we obtained is the estimated hazard ratio for
two individuals having the same frailty one taking the test and the
other taking the standard treatment (and same levels of other
predictors).



Example: Weibull PH model with and without frailty

Compare the estimated values for the shape parameter p:
» Model 1: p = 0.982 (— decreasing hazard)
» Model 2: p = 1.54 (— increasing individual level hazard)

BUT: For frailty models one has to distinguish between the
individual level and population level hazard.
» Individual level/conditional hazard is estimated to increase

» Population level/unconditional hazard has an unimodal shape
(first increasing, then decreasing to 0)



Conditional and Unconditional Hazards in Frailty Models

h(t)

X

average hazard: 1712 < ;zl

» Hazard for individuals
increase

» Average hazard decreases




Conditional and Unconditional Hazards in Frailty Models

h(t)

X

average hazard: 22 < %1

tx =1
Hazard function

Population with different levels of frailty
— "more frail individuals" (> 1) are more likely to get the event

earlier

analysis time
Weibull regression

— "at risk group" has increasing proportion of less frail individuals

(<)

— decreasing population average hazard hy(t)

— frailty effect



Example

Assume plotting the Kaplan-Meier log-log survival estimates for
treatment TX =2 vs. TX = 1 would give us plots starting out
parallel but then converge over time.

> Interpretation 1: Effect of treatment weakens over time
= PH model not appropriate

> Interpretation 2: Effect of treatment remains constant over
time. Convergence is caused by an unobserved heterogeneity
in the population
= a PH model with frailty would be appropriate
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Summary

Parametric model: assume distribution of survival time
PH, AFT and PO (Examples: Weibull and log-logistic models)
Parametric likelihood

v

v

v

v

Frailty models: additional variability factor for hazard

v

Distinguish between conditional and unconditional frailty



Thank you for your attention!
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