Parametric Survival Models

Christoph Dätwyler and Timon Stucki

9. May 2011

Introduction

Parametric Model

Distributional Assumption

Weibull Model

Accelerated Failure Time Assumption

A More General Form of the AFT Model

Weibull AFT Model

Log-Logistic Model

Other Parametric Models

The Parametric Likelihood

Frailty Models

Introduction

Parametric Model

Distributional Assumption

Weibull Model

Accelerated Failure Time Assumption

A More General Form of the AFT Model

Weibull AFT Model

Log-Logistic Model

Other Parametric Models

The Parametric Likelihood

Frailty Models

Parametric Survival Model

Basic Idea

The survival time follows a distribution.

Goal

Use data to estimate parameters of this distribution

- ⇒ completely specified model
- \Rightarrow prediction of time-quantiles

Parametric Survival Model vs. Cox PH Model

Parametric Survival Model

- + Completely specified h(t) and S(t)
- + More consistent with theoretical S(t)
- + time-quantile prediction possible
- Assumption on underlying distribution

Cox PH Model

- distribution of survival time unkonwn
- Less consistent with theoretical S(t) (typically step function)
- + Does not rely on distributional assumptions
- + Baseline hazard not necessary for estimation of hazard ratio

Introduction

Parametric Model

Distributional Assumption

Weibull Model

Accelerated Failure Time Assumption

A More General Form of the AFT Model

Weibull AFT Model

Log-Logistic Model

Other Parametric Models

The Parametric Likelihood

Frailty Models

Introduction

Parametric Model

Distributional Assumption

Weibull Model

Accelerated Failure Time Assumption

A More General Form of the AFT Model

Weibull AFT Model

Log-Logistic Model

Other Parametric Models

The Parametric Likelihood

Frailty Models

Probability Density, Hazard and Survival Function

Main Assumption

The survival time T is assumed to follow a distribution with density function f(t).

$$\Rightarrow S(t) = P(T > t) = \int_{t}^{\infty} f(u) du$$

Recall:

$$h(t) = -\frac{\frac{d}{dt}S(t)}{S(t)}, \qquad S(t) = \exp\left(-\int_0^t h(u)du\right)$$

Density Function in Relation to the Hazard and Survival Function

Remark

$$f(t) = h(t)S(t)$$

Proof:

$$h(t)S(t) = -\frac{\frac{d}{dt}S(t)}{S(t)}S(t) = \frac{d}{dt}\int_{\infty}^{t} f(u)du = f(t)$$

Key Point

Specifying one of the three functions f(t), S(t) or h(t) specifies the other two functions.

Commonly Used Distributions and Parameters

Distribution	f(t)	S(t)	h(t)
Exponential	$\lambda \exp(-\lambda t)$	$\exp(-\lambda t)$	λ
Weibull	$\lambda p t^{p-1} \exp(-\lambda t^p)$	$\exp(-\lambda t^p)$	λpt^{p-1}
Log-logistic	$rac{\lambda p t^{p-1}}{(1+\lambda t^p)^2}$	$rac{1}{1+\lambda t^p}$	$rac{\lambda ho t^{ ho-1}}{1+\lambda t^{ ho}}$

Modeling of the parameters:

- $ightharpoonup \lambda$ is reparameterized in terms of predictor variables and regression parameters.
- ► Typically for parametric models, the shape parameters *p* is held fixed.

Introduction

Parametric Model

Distributional Assumption

Weibull Model

Accelerated Failure Time Assumption A More General Form of the AFT Model Weibull AFT Model Log-Logistic Model

Other Parametric Models

The Parametric Likelihood

Frailty Models

Weibull Model

Assuming $T \sim \text{Weibull}(\lambda, p)$ with probability density function

$$f(t) = \lambda p t^{p-1} \exp(-\lambda t^p)$$
, where $p > 0$ and $\lambda > 0$,

the hazard function is given by

$$h(t) = \lambda p t^{p-1}.$$

p is called **shape parameter**:

- ▶ If p > 1 the hazard increases
- ▶ If p = 1 the hazard is constant (exponential model)
- ▶ If p < 1 the hazard decreases

Graphical Evaluation of Weibull Assumption

Property of Weibull Model

The $\log(-\log(S(t)))$ is linear with the log of time.

$$S(t) = \exp(-\lambda t^p)$$

 $\Rightarrow -\log(S(t)) = \lambda t^p$
 $\Rightarrow \log(-\log(S(t))) = \log(\lambda) + p\log(t)$

This property allows a graphical evaluation of the appropriateness of a Weibull model by plotting

$$\log(-\log(\widehat{S}(t)))$$
 vs. $\log(t)$,

where $\widehat{S}(t)$ is Kaplan-Meier survival estimate.

Example: Remission Data

We consider the remission data of 42 leukemia patients.

- ▶ 21 patients given treatment (TRT = 1)
- ▶ 21 patients given placebo (TRT = 0)

Note: The survival time (time to event) is the time until a patient went out of remission, which means that the patient relapsed.

- ▶ straight lines ⇒ Weibull
- ▶ same slope ⇒ PH

Weibull PH Model

Recall:
$$h(t) = \lambda pt^{p-1}$$

Weibull PH model:

ightharpoonup Reparameterize λ with

$$\lambda = \exp(\beta_0 + \beta_1 TRT).$$

▶ Then the hazard ratio (TRT = 1 vs. TRT = 0) is

$$HR = \frac{\exp(\beta_0 + \beta_1)pt^{p-1}}{\exp(\beta_0)pt^{p-1}} = \exp(\beta_1),$$

which indicates that the PH assumption is satisfied.

Note: This result depends on p having the same value for TRT = 1 and TRT = 0 (otherwise time would not cancel out).

Exponential PH Model

The exponential distribution is a special case of the Weibull distribution with p=1.

Weibull density function:

$$f(t) = \underbrace{\exp(-\lambda t^p)}_{S(t)} \underbrace{\lambda p t^{p-1}}_{h(t)}$$

Setting p=1 gives the density function of an exponential distribution

$$f(t) = \underbrace{\exp(-\lambda t)}_{S(t)} \underbrace{\lambda}_{h(t)}.$$

Exponential PH Model

Running the exponential model leads to the following output:

_t	Coef.	Std. Err.	Z	p > z
trt	-1.527	.398	-3.83	0.00
_cons	-2.159	.218	-9.90	0.00

The estimated hazard ratio is obtained from the estimated coefficient $\hat{\beta}_1$ by

$$\widehat{HR}(TRT = 1 \text{ vs. } TRT = 0) = \exp(\hat{\beta}_1) = \exp(-1.527) = 0.22.$$

Interpretation

This means that the hazard for the group with TRT=0 is bigger than the one for the group with TRT=1 because 0.22<1, indicating a positive effect of the treatment.

Introduction

Parametric Model

Distributional Assumption Weibull Model

Accelerated Failure Time Assumption

A More General Form of the AFT Model Weibull AFT Model

Log-Logistic Model

Other Parametric Models

The Parametric Likelihood

Frailty Models

Accelerated Failure Time Assumption

First example: Humans vs. dogs

- Let $S_H(t)$ and $S_D(t)$ denote the survival functions for humans and dogs respectively.
- Known: In general dogs grow older seven times faster than humans.
- ▶ In AFT terminology: The probability of a dog surviving past *t* years is equal to the one of a human surviving past 7*t* years.
- ► This means:

$$S_D(t) = S_H(7t)$$

In other words, dogs accelerate through life about seven times faster than humans.

AFT Models

AFT Models

AFT Models describe stretching out or contraction of survival time as a function of predictor variables.

Illustration of AFT Assumption

Second example: Smokers vs. nonsmokers

▶ Let S_S(t) and S_{NS}(t) denote the survival functions for smokers and nonsmokers respectively.

AFT assumption

$$S_{NS}(t) = S_{S}(\gamma t)$$
 for $t \ge 0$

Definition

 $\gamma > 0$ is the so called **acceleration factor** and is a constant.

Expressing the AFT assumption

The AFT assumption can be expressed

in terms of survival function as seen before:

$$S_{NS}(t) = S_{S}(\gamma t)$$

in terms of random variables for survival time:

$$\gamma T_{NS} = T_{S},$$

where T_{NS} is a random variable following some distribution representing the survival time for nonsmokers and T_S the analogous one for smokers.

Acceleration factor

The acceleration factor allows to evaluate the effect of predictor variables on the survival time.

Acceleration factor

The acceleration factor is a ratio of time-quantiles corresponding to any fixed value of S(t).

Interpretation of the Acceleration Factor

Assuming the event to occur is negative for an individual, comparing two groups (levels of covariates) leads to the following general interpretation:

$$\begin{array}{lll} \gamma > 1 & \Rightarrow & \text{exposure benefits survival} \\ \gamma < 1 & \Rightarrow & \text{exposure harmful to survival} \end{array}$$

For the hazard ratio, we have:

$$HR > 1 \Rightarrow ext{exposure harmful to survival}$$
 $HR < 1 \Rightarrow ext{exposure benefits survival}$

$$\gamma = \mathit{HR} = 1 \quad \Rightarrow \quad \text{no effect from exposure}$$

Introduction

Parametric Model

Distributional Assumption

Weibull Model

Accelerated Failure Time Assumption

A More General Form of the AFT Model

Weibull AFT Model

Log-Logistic Model

Other Parametric Models

The Parametric Likelihood

Frailty Models

General Form of AFT Model

Consider an AFT model with one predictor X. The model can be expressed on the log scale as

$$\log(T) = \alpha_0 + \alpha_1 X + \epsilon,$$

where ϵ is a random error following some distribution.

T	$\log(T)$
Exponential	Extreme value
Weibull	Extreme value
Log-logistic	Logistic
Lognormal	Normal

General Form of AFT Model

Some distributions (e.g. Weibull) have an additional parameter σ , which scales ϵ .

$$\log(T) = \alpha_0 + \alpha_1 X + \sigma \epsilon$$

Here (and in R) the model is parametrized using $\sigma = \frac{1}{\rho}$:

$$\log(T) = \alpha_0 + \alpha_1 X + \frac{1}{p}\epsilon$$

General Form of AFT Model

The model in terms of the survival time T is

$$T = \exp\left(\alpha_0 + \alpha_1 X + \frac{1}{\rho}\epsilon\right) = \exp(\alpha_0) \cdot \exp(\alpha_1 X) \cdot \exp\left(\frac{1}{\rho}\epsilon\right)$$

Remark

AFT model is multiplicative in terms of \mathcal{T} and additive in terms of $\log(\mathcal{T})$.

Introduction

Parametric Model

Distributional Assumption

Weibull Model

Accelerated Failure Time Assumption

A More General Form of the AFT Model

Weibull AFT Model

Log-Logistic Model

Other Parametric Models

The Parametric Likelihood

Frailty Models

AFT Model

- We use again the remission data.
- ▶ We consider the variable TRT as only predictor (TRT = 1 and TRT = 0)

AFT Model Assumption

The ratio of time-quantile is constant (γ) for all fixed values S(t)=q.

Expression for time-quantiles

- ▶ Solve for t in terms of S(t)
- Scale t in terms of predictors

Weibull AFT Model

Recall: $S(t) = \exp(-\lambda t^p)$

1. Solving for t gives:

$$\begin{split} S(t) &= \exp(-\lambda t^p) \Leftrightarrow -\log(S(t)) = \lambda t^p \\ &\Leftrightarrow t = (-\log(S(t)))^{1/p} \frac{1}{\lambda^{1/p}} \end{split}$$

2. Reparameterizing $\frac{1}{\lambda^{1/p}} = \exp(\alpha_0 + \alpha_1 TRT)$ yields

$$t = (-\log(S(t)))^{1/p} \exp(\alpha_0 + \alpha_1 TRT).$$

(TRT used to scale time to any fixed value of S(t))

3. In terms of any fixed probability S(t)=q we get

$$t = (-\log(q))^{1/p} \exp(\alpha_0 + \alpha_1 TRT).$$

Weibull AFT Model: Acceleration Factor

The acceleration factor for a fixed value of S(t) = q is calculated as follows:

Level of covariates: TRT = 1 and TRT = 0

Then the acceleration factor γ is

$$\gamma = \gamma (TRT = 1 \text{ vs. } TRT = 0)$$

$$= \frac{(-\log(q))^{1/p} \exp(\alpha_0 + \alpha_1)}{(-\log(q))^{1/p} \exp(\alpha_0)}$$

$$= \exp(\alpha_1).$$

Note: As in the PH form of the model, this result depends on p having the same value for TRT=1 and TRT=0.

R Code and R Output

```
> weibull.aft <- survreg(Surv(Survt,status) ~ TRT,dist='weibull')</pre>
> summary(weibull.aft)
Call:
survreg(formula = Surv(Survt, status) ~ TRT, dist = "weibull")
            Value Std. Error z
(Intercept) 2.248 0.166 13.55 8.30e-42
TRT
     1.267 0.311 4.08 4.51e-05
Log(scale) -0.312 0.147 -2.12 3.43e-02
Scale= 0.732
Weibull distribution
Loglik(model) = -106.6 Loglik(intercept only) = -116.4
       Chisq= 19.65 on 1 degrees of freedom, p= 9.3e-06
Number of Newton-Raphson Iterations: 5
n = 42
```

R Code and R Output: Acceleration Factor

The estimated acceleration factor $\hat{\gamma}$ comparing the treatment group to the placebo group (TRT=1 vs. TRT=0) is now:

$$\hat{\gamma} = \exp(\hat{\alpha}_1)$$

3.551374

Interpretation

The survival time for the treatment group (TRT = 1) is increased by a factor of 3.55 compared to the placebo group (TRT = 0) \Rightarrow Treatment is positive.

Survival functions

Computing time-quantiles, for example the median:

$$S(t) = 0.5$$
 \Rightarrow $\hat{t}_m = (-\log(0.5))^{1/\hat{p}} \cdot \exp(\hat{\alpha}_0 + \hat{\alpha}_1 TRT)$

Estimated survival times for the median S(t) = 0.5:

Relation between Weibull AFT and PH coefficients

AFT:
$$\frac{1}{\lambda^{1/p}} = \exp(\alpha_0 + \alpha_1 TRT)$$
$$\Leftrightarrow (1/p)\log(\lambda) = -(\alpha_0 + \alpha_1 TRT)$$
$$\Leftrightarrow \log(\lambda) = -p(\alpha_0 + \alpha_1 TRT)$$

PH:
$$\lambda = \exp(\beta_0 + \beta_1 TRT)$$

 $\Leftrightarrow \log(\lambda) = \beta_0 + \beta_1 TRT$

This indicates the following relationship between the coefficients:

$$\beta_i = -\alpha_i p$$

Exponential PH and AFT Model

We obtained $\beta_j = -\alpha_j p$ for the Weibull model. In the special case of the exponential model where p=1 we have

$$\beta_j = -\alpha_j$$
.

Remark

The exponential PH and AFT are in fact the same model, except that the parametrization is different.

Exponential PH and AFT Model

Example:

The estimated values from the exponential example above support this result.

Coefficient PH Model:
$$\hat{\beta}_1 = -1.527$$

Coefficient AFT Model:
$$\hat{\alpha}_1 = 1.527$$

We also have

$$\widehat{HR}(TRT = 1vs. \ TRT = 0) = \exp(\hat{\beta}_1) = \exp(-\hat{\alpha}_1) = \frac{1}{\hat{\gamma}}.$$

Property of the Weibull Model

Proposition

AFT assumption holds \Leftrightarrow PH assumption holds (given that p is fixed)

Proof for the considered example (TRT = 1 and TRT = 0):

- ▶ [⇒]: $\gamma = \exp(\alpha_1)$ Assume γ is constant $\Rightarrow \alpha_1$ is constant $HR = \exp(\beta_1) = \exp(-p\alpha_1) \Rightarrow HR$ is constant
- [\Leftarrow]: $HR = \exp(\beta_1)$ Assume HR is constant $\Rightarrow \beta_1$ is constant $\gamma = \exp(\alpha_1) = \exp(-\frac{\beta_1}{p}) \Rightarrow \gamma$ is constant

Possible Plots

Possible results for plots of $\log(-\log(\hat{S}(t)))$ against $\log(t)$:

 \Rightarrow Weibull (or Exponential if p=1), PH and AFT assumption hold.

 \Rightarrow Not Weibull, PH and not AFT.

 \Rightarrow Not Weibull, not PH and not AFT.

 \Rightarrow Weibull, not PH and not AFT (p not fixed).

Contents

Introduction

Parametric Model

Distributional Assumption

Weibull Model

Accelerated Failure Time Assumption

A More General Form of the AFT Model

Weibull AFT Model

Log-Logistic Model

Other Parametric Models

The Parametric Likelihood

Frailty Models

Summary

Hazard Function of Log-Logistic Model

The log-logistic distribution accommodates an AFT model but not a PH model.

Hazard function is

$$h(t) = \frac{\lambda \rho t^{\rho - 1}}{1 + \lambda t^{\rho}},$$

with p > 0 and $\lambda > 0$.

Shape of hazard function:

- ▶ $p \le 1$: hazard decreases
- ▶ *p* > 1: hazard **unimodal**

PO Assumption

Definition

In a proportional odds (PO) survival model, the odds ratio is constant over time.

Survival odds: odds of surviving beyond time t

$$\frac{S(t)}{1 - S(t)} = \frac{P(T > t)}{P(T \le t)}$$

► Failure odds: odds of getting the event by time *t*

$$\frac{1-S(t)}{S(t)} = \frac{P(T \le t)}{P(T > t)}$$

PO Assumption

The failure odds of the log-logistic survival model are

$$\frac{1-S(t)}{S(t)} = \frac{\frac{\lambda t^p}{1+\lambda t^p}}{\frac{1}{1+\lambda t^p}} = \lambda t^p.$$

The failure odds ratio (OR) for two different groups (1 and 2) is (for p fixed)

$$OR(1 \text{ vs. } 2) = \frac{\frac{1 - S_1(t)}{S_1(t)}}{\frac{1 - S_2(t)}{S_2(t)}} = \frac{\lambda_1 t^p}{\lambda_2 t^p} = \frac{\lambda_1}{\lambda_2}.$$

Hence, the log-logistic model is a proportional odds (PO) model.

Graphical Evaluation of Log-Logistic Assumption

The log-failure odds can be written as

$$\log\left(\frac{1-S(t)}{S(t)}\right) = \log(\lambda t^p) = \log(\lambda) + p\log(t),$$

which is a linear function of log(t).

Graphical Evaluation of Log-Logistic Assumption

- ▶ Plot $\log\left(\frac{1-\hat{S}(t)}{\hat{S}(t)}\right)$ against $\log(t)$ (\hat{S} are the KM-survival estimates).
- ▶ If the plot is linear with slope *p*, then the survival time follows a log-logistic distribution.

Log-Logistic Example with the Remission Data

We consider a new categorical variable WBCCAT:

- ▶ WBCCAT = 2 if $logWBC \ge 2.5$ (high count)
- ► WBCCAT = 1 if logWBC < 2.5 (medium count)

The graphical evaluation of WBCCAT = 2 and WBCCAT = 1:

 \Rightarrow straight lines indicate log-logistic distribution

AFT Log-Logistic Model

AFT log-logistic model with WBCCAT as only predictor:

We solve

$$S(t) = \frac{1}{1 + \lambda t^p} = \frac{1}{1 + (\lambda^{\frac{1}{p}} t)^p}$$

for t and obtain

$$t = \left(\frac{1}{S(t)} - 1\right)^{\frac{1}{p}} \frac{1}{\lambda^{\frac{1}{p}}}.$$

We reparameterize the factor on the right as

$$\frac{1}{\lambda^{\frac{1}{p}}} = \exp(\alpha_0 + \alpha_1 WBCCAT).$$

AFT Log-Logistic Model: Acceleration Factor

We get

$$t = \left(\frac{1}{S(t)} - 1\right)^{\frac{1}{p}} \exp(\alpha_0 + \alpha_1 WBCCAT).$$

For a fixed probability S(t) = q, the expression for t is

$$t = (q^{-1} - 1)^{\frac{1}{p}} \exp(\alpha_0 + \alpha_1 WBCCAT).$$

The acceleration factor γ for S(t) = q is

$$\gamma(\textit{WBCCAT} = 2 \text{ vs. } \textit{WBCCAT} = 1) = \frac{\left(q^{-1} - 1\right)^{\frac{1}{p}} \exp(\alpha_0 + 2\alpha_1)}{\left(q^{-1} - 1\right)^{\frac{1}{p}} \exp(\alpha_0 + 1\alpha_1)} = \exp(\alpha_1).$$

R Code and R Output

```
> logistic.aft <- survreg(Surv(Survt, status) ~ WBCCAT,
+ dist='loglogistic',data=remdata)
> summary(logistic.aft)
Call:
survreg(formula = Surv(Survt, status) ~ WBCCAT, data = remdata,
   dist = "loglogistic")
            Value Std. Error z
(Intercept) 4.094 0.586 6.98 2.92e-12
WBCCAT -0.987 0.337 -2.93 3.40e-03
Log(scale) -0.564 0.154 -3.67 2.41e-04
Scale = 0.569
Log logistic distribution
Loglik(model) = -111.2 Loglik(intercept only) = -115.4
       Chisq= 8.28 on 1 degrees of freedom, p= 0.004
Number of Newton-Raphson Iterations: 4
n=42
```

R Code and R Output: Acceleration Factor

The estimated acceleration factor $\hat{\gamma}$ comparing WBCCAT=2 (high count) and WBCCAT=1 (medium count) is now:

$$\hat{\gamma} = \exp(\hat{\alpha}_1) \\ \qquad \qquad > \exp(\text{logistic.aft\$coefficient[2]}) \\ \qquad \qquad \text{WBCCAT} \\ \qquad 0.3728214$$

$$\Rightarrow \hat{S}_1(t) = \hat{S}_2(0.37t)$$

 $(\hat{S}_i \text{ is the survival function for } WBCCAT = i, i = 1,2)$

Interpretation

The survival time for the group with high count (WBCCAT=2) is "accelerated" by a factor of 0.37 compared to the group with medium count (WBCCAT=1) \Rightarrow High WBC is negative.

PO Log-Logistic Model

The proportional odds (PO) form of the log-logistic model can be formulated by reparameterizing λ .

Failure odds:

$$\frac{1-S(t)}{S(t)} = \frac{\frac{\lambda t^p}{1+\lambda t^p}}{\frac{1}{1+\lambda t^p}} = \lambda t^p.$$

Reparameterizing λ gives

$$\lambda = \exp(\beta_0 + \beta_1 WBCCAT).$$

Hence, the failure odds ratio is

$$OR(WBCCAT=2 \text{ vs. } WBCCAT=1) = \frac{t^p \exp(\beta_0 + 2\beta_1)}{t^p \exp(\beta_0 + 1\beta_1)} = \exp(\beta_1).$$

Comparing AFT and PO Log-Logistic Model

Parameterizations:

- ► AFT model: $\frac{1}{\lambda^{\frac{1}{p}}} = \exp(\alpha_0 + \alpha_1 WBCCAT)$
- ▶ PO model: $\lambda = \exp(\beta_0 + \beta_1 WBCCAT)$

Hence, we have the relationship

$$\beta_0 = -\alpha_0 p$$
 and $\beta_1 = -\alpha_1 p$.

Note: If p is fixed this leads to: AFT \Leftrightarrow PO

So we can calculate the estimated OR with the coefficients of the AFT model by:

Graphical Evaluation

Log Failure Odds vs. Log Time

Graphical Evaluation

Proposition

- 1. Straight lines \Rightarrow Log-logistic
- 2. Parallel plots and log-logistic \Rightarrow PO
- 3. Log-logistic and PO \Rightarrow AFT

Proof: Consider two groups (1 and 2).

- 1. $\log(\text{failure odds}) = \log(\lambda) + p \log(t)$
- 2. Parallel plots \Rightarrow p the same for both groups \Rightarrow $OR = \frac{t^p \lambda_1}{t^p \lambda_2} = \frac{\lambda_1}{\lambda_2}$
- 3. For S(t) = q, the acceleration factor is

$$\gamma = \frac{(q^{-1} - 1)^{\frac{1}{p}} \lambda_1}{(q^{-1} - 1)^{\frac{1}{p}} \lambda_2} = \frac{\lambda_1}{\lambda_2}.$$

Contents

Introduction

Parametric Model

Distributional Assumption

Weibull Model

Accelerated Failure Time Assumption

A More General Form of the AFT Model

Weibull AFT Model

Log-Logistic Model

Other Parametric Models

The Parametric Likelihood

Frailty Models

Summary

Generalized Gamma Model

The generalized gamma distribution is given by

$$f(t) = \frac{\frac{p}{a^d}t^{d-1}\exp(-(\frac{t}{a})^p)}{\Gamma(d/p)},$$

where

$$\Gamma(z) = \int_0^\infty s^{z-1} e^{-s} ds$$

and a > 0, d > 0, p > 0.

- ► The three parameters allow great flexibility in the distributions shape.
- ▶ Weibull and lognormal distributions are special cases of the generalized gamma distribution (e.g. setting d = p gives us the Weibull distribution).

Lognormal Model

The lognormal distribution is given by

$$f(t) = \frac{1}{t\sigma\sqrt{2\pi}} \exp\left(-\frac{(\log(t) - \mu)^2}{2\sigma^2}\right),$$

where μ and σ are the mean and standard deviation respectively, of the variable's natural logarithm (by definition, the variable's logarithm is normally distributed).

- Shape similar to the log-logistic distribution (and yields similar model results)
- Accommodates an AFT model (as the log-logistic), but is not a proportional odds model (whereas the log-logistic model is a PO model)

Gompertz Model

▶ PH model but not AFT

► Hazard function (with one predictor (TRT)):

$$h(t) = [\exp(\xi t)] \cdot \exp(\beta_0 + \beta_1 TRT)$$

with parametrically specified baseline hazard $h_0(t) = \exp(\xi t)$

- $\xi > 0$: hazard increases exponentially with t
- ξ < 0: hazard decreases exponentially with t
- $\xi = 0$: constant hazard (exponential model)

Modeling the Shape Parameter

Many parametric models contain a shape parameter, which is usually considered fixed.

Example:

- Weibull model Recall: $h(t) = \lambda pt^{p-1}$ where $\lambda = \exp(\beta_0 + \beta_1 TRT)$ and p, the shape parameter, unaffected by predictors.
- Now: $h(t) = \lambda p t^{p-1}$ where $\lambda = \exp(\beta_0 + \beta_1 TRT)$ and $p = \exp(\delta_0 + \delta_1 TRT)$
 - ▶ If $\delta_1 \neq 0$, the value of p differs by TRT
 - ▶ Not a PH or AFT model if $\delta_1 \neq 0$, but still a Weibull model

Contents

Introduction

Parametric Model

Distributional Assumption

Weibull Model

Accelerated Failure Time Assumption

A More General Form of the AFT Model

Weibull AFT Model

Log-Logistic Model

Other Parametric Models

The Parametric Likelihood

Frailty Models

Summary

Parametric Likelihood and Censoring

The likelihood function for a parametric model

- is a function of the observed data and the unknown parameters of the model.
- is based on the distribution of the survival time.
- depends on the censoring of the data.

Construction of the Likelihood on an Example

Assume a survival time distribution with probability density function f(t).

Event Time	Likelihood Contribution
t = 2	f(2)
t > 8	$\int_8^\infty f(t)dt$
t=6	f(6)
t < 2 (left-censored)	$\int_0^2 f(t)dt$
4 < t < 8 (interval—censored)	$\int_4^8 f(t)dt$
	t=2 $t>8$ $(right-censored)$ $t=6$ $t<2$ $(left-censored)$ $4< t<8$

Construction of the Likelihood on an Example

The likelihood function L is the product of each contribution:

$$L = f(2) \cdot \int_{8}^{\infty} f(t)dt \cdot f(6) \cdot \int_{0}^{2} f(t)dt \cdot \int_{4}^{8} f(t)dt$$

Assumptions for formulating L:

- Subjects are independent (product of contributions).
- No competing risks: No competing event prohibits a subject from eventually getting the event of interest.
 - Example: Death
- ► Follow-up times are continuous without gaps (i.e. subjects do not return into study).

Maximum likelihood Estimates

The likelihood for *M* subjects is

$$L=\prod_{i=1}^M L_i.$$

The maximum likelihood estimates of the parameters are obtained by solving the following system of equations

$$\frac{\partial \log(L)}{\partial \beta_i} = 0, \qquad j = 1, 2, \dots, N,$$

where N is the number of parameters β_j .

Parametric and Cox likelihood

In a parametric model, the parametric likelihood handles easily right-, left- or interval-censored data.

In a Cox model, the Cox likelihood handles right-censored data, but is not designed to accommodate left- or interval-censored data directly.

Example:

- ▶ Health check for nonsymptomatic outcome every year once
- If event was detected e.g. at the beginning of the third year, the exact time when the event occurred was between the second and third year
- Fit a parametric model with the distribution of the outcome denoted by f(t)
- ▶ Each subject's contribution to the likelihood is obtained by integrating f(t) over the interval in which it had the event.

Contents

Introduction

Parametric Model

Distributional Assumption

Weibull Model

Accelerated Failure Time Assumption

A More General Form of the AFT Model

Weibull AFT Model

Log-Logistic Model

Other Parametric Models

The Parametric Likelihood

Frailty Models

Summary

Frailty

What is frailty?

- Random component
- Accounts for variability due to unobserved individual-level factors (unaccounted for by the other predictors)

The frailty α ($\alpha > 0$)

- is an unobserved multiplicative effect on the hazard
- ▶ follows some distribution $g(\alpha)$ with the mean of $g(\alpha)$ equal to 1 $(\mu = 1)$
- $\theta = Var(g(\alpha))$, parameter to be estimated from the data

Hazard functions, Survival functions and Frailty

Express an individual's hazard function conditional on the frailty as

$$h(t \mid \alpha) = \alpha h(t)$$

This leads to:

$$S(t \mid \alpha) = \exp\left[-\int_0^t h(u \mid \alpha)du\right] = \exp\left[-\int_0^t \alpha h(u)du\right]$$
$$= \exp\left[-\int_0^t h(u)du\right]^{\alpha} = S(t)^{\alpha}$$

Suppose $\alpha > 1$. Then we get:

- Increased hazard
- Decreased survival

And vice versa for $\alpha < 1$.

Survival functions in Frailty Models

Distinguish between

- the individual level or conditional survival function $S(t \mid \alpha)$
- ▶ and the population level or unconditional survival function $S_U(t)$, representing a population average.

Once the frailty distribution $g(\alpha)$ is chosen we find the unconditional survival function by

$$S_U(t) = \int_0^\infty S(t \mid \alpha) g(\alpha) d\alpha$$

Then we can find the corresponding unconditional hazard $h_U(t)$ using the known relationship between survival and hazard function

$$h_U(t) = \frac{-d[S_U(t)]/dt}{S_U(t)}$$

Vet Lung Cancer Trial Predictors:

TX (dichotomous: 1 = standard, 2 = test)
PERF (continuous: 0 = worst, 100 = best)
DD (disease duration in months)

AGE (in years)

PRIORTX (dichotomous: 0 = none, 10 = some)

Model 1. No Frailty

Weibull regression (PH form) Log likelihood = -206.20418

Model 1: $h(t) = \lambda p t^{p-1} \text{ where}$ $\lambda = \exp(\beta_0 + \beta_1 TX + \beta_2 PERF + \beta_3 DD + \beta_4 AGE + \beta_5 PRIORTX)$

Model 2. With Frailty Weibull regression (PH form) Gamma frailty Log likelihood = -200.11338

_t	Coef.	Std. Err.	Z	p > z
tx	.105	.291	0.36	0.719
perf	061	.012	-5.00	0.000
dd	006	.017	-0.44	0.663
age	013	.015	-0.87	0.385
priortx	006	.035	-0.18	0.859
_cons	-2.256	1.100	-2.05	0.040
/ln_p	.435	.141	3.09	0.002
/ln_the	150	.382	-0.39	0.695
p	1.54	.217		
1/p	.647	.091		
theta	.861	.329		

Likelihood ratio test of theta = 0: chibar2(01) = 12.18 Prob>=chibar2 = 0.000

Model 2:

 $h_j(t \mid \alpha_j) = \alpha_j h(t), j = 1, 2, ..., n$, where h(t) and λ as above, α_j denoting the frailty for the j-th subject and where $\alpha \sim gamma$ ($\mu = 1$, variance $= \theta$)

Note: α_j not estimable (overparameterization). But the variance of the frailty θ is estimated

```
For Model 1 we get \widehat{HR} = \exp(0.137) = 1.15.
For Model 2 we get \widehat{HR} = \exp(0.105) = 1.11.
```

Remark

In Model 2 the value we obtained is the estimated hazard ratio for two individuals having the **same** frailty one taking the test and the other taking the standard treatment (and same levels of other predictors).

Compare the estimated values for the shape parameter p:

- ▶ Model 1: $\hat{p} = 0.982$ (→ decreasing hazard)
- ▶ Model 2: $\hat{p} = 1.54$ (→ increasing individual level hazard)

BUT: For frailty models one has to distinguish between the individual level and population level hazard.

- Individual level/conditional hazard is estimated to increase
- Population level/unconditional hazard has an unimodal shape (first increasing, then decreasing to 0)

Conditional and Unconditional Hazards in Frailty Models

- Hazard for individuals increase
- Average hazard decreases

Conditional and Unconditional Hazards in Frailty Models

Population with different levels of frailty

- \rightarrow "more frail individuals" ($\alpha > 1)$ are more likely to get the event earlier
- \rightarrow "at risk group" has increasing proportion of less frail individuals ($\alpha < 1)$
- ightarrow decreasing population average hazard $h_U(t)$
- \rightarrow frailty effect

Example

Assume plotting the Kaplan-Meier log-log survival estimates for treatment TX=2 vs. TX=1 would give us plots starting out parallel but then converge over time.

- ▶ Interpretation 1: Effect of treatment weakens over time
 ⇒ PH model not appropriate
 - → FTI model not appropriate
- Interpretation 2: Effect of treatment remains constant over time. Convergence is caused by an unobserved heterogeneity in the population
 - \Rightarrow a PH model with frailty would be appropriate

Contents

Introduction

Parametric Model

Distributional Assumption

Weibull Model

Accelerated Failure Time Assumption

A More General Form of the AFT Model

Weibull AFT Model

Log-Logistic Model

Other Parametric Models

The Parametric Likelihood

Frailty Models

Summary

Summary

- Parametric model: assume distribution of survival time
- ▶ PH, AFT and PO (Examples: Weibull and log-logistic models)
- Parametric likelihood
- Frailty models: additional variability factor for hazard
- Distinguish between conditional and unconditional frailty

