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Solution to Series 6

1. a) The plot is shown in part c)

b) The state space model of the package sspir is given by

Zt = GtZt−1 + Et, Et ∼ N (0,Wt) (state equation),

Yt = FT
t Zt + Ut, Ut ∼ N (0, Vt) (observation equation).

φ is a free parameter vector that can have influence on the matrices Ft, Gt, Vt and Wt. In our
model, we have the dependencies

Vt = φ1, Wt =

(
φ2 0
0 0

)
.

The initialization of the state vector Z (called θ in the package documentation) is Z0 ∼ N (m0, C0).
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d) When setting the error variance of the AR(2) process to zero (next figure), the second derivative
of the process must be 0, that is, it must be a straight line. The smoother considers all data
points and fits a straight line through them, which estimates the process quite badly. The filter
fits the data better in the beginning, but runs into troubles as soon as the trend of the time series
changes.
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Setting the error variance of the AR(2) process to 0.06 (next figure) has the effect that the AR
process doesn’t have to be very smooth any more. The filtered as well as the smoothed series are
now closer to the data.
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e) Despite the very unrealistic start value of 40, filter and smoother adapt to the data quite fast
(first plot). Only by assigning this start value a high accuracy (a low variance), the adaptation
takes more time (second plot). This is the reason why the variance of the initial state is usually
chosen to be rather large.

> phi(ss.model) <- c(0.9, 0.0001)

> m0(ss.model) <- matrix(c(40, 40), ncol = 2)

> C0(ss.model) <- diag(c(20, 20))
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> C0(ss.model) <- diag(c(1, 1))
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f) In order to get only positive values as variances (cf. part b)), we optimize the component-wise
logarithm of the parameter vector φ. We minimize the negative log-likelihood with the function
nlm(). The result is then

> exp(log.phi.min$estimate)

[1] 0.899998212 0.000099124

(Note that the model ss.model must be initialized as in part b) to avoid getting stuck in local
optima.)

2. a) The plots clearly show that the time series are not stationary:
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b) We first remove the missing values (last entry of the time series) and then calculate the first
differences:

> ts.adv.d1 <- diff(ts.advert[!is.na(ts.advert)])

> ts.sal.d1 <- diff(ts.sales[!is.na(ts.sales)])

By differencing we can achieve stationarity as the following plots show (more or less):
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Advertising: first differences
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Sales: first differences
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c) The transfer function model

Y2,t =

∞∑
j=0

νjY1,t−j + Et

makes the assumption that a change in the advertising expenditures (Y1,t) causes a change in the
(future) sales (Y2,t), but not vice versa.

d) • From the correlogram of d.adv.d1 we see that the input series Y1,t = X1,t −X1,t−1 can be
described as an AR(2) model. We fit it as follows:

> (r.fit.adv <- arima(ts.adv.d1, order = c(2, 0, 0)))
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Call:

arima(x = ts.adv.d1, order = c(2, 0, 0))

Coefficients:

ar1 ar2 intercept

-0.0066 -0.2875 -0.0003

s.e. 0.1331 0.1314 0.0244

sigma^2 estimated as 0.05171: log likelihood = 3.21, aic = 1.59

Hence we get the model

Y1,t = −0.0066 · Y1,t−1 − 0.2875 · Y1,t−2 +Dt ,

where Dt is a white noise with variance σ̂2
D = 0.052 (see component r.fit.adv$sigma2). The

mean of the time series can be regarded as zero (one gets an estimate of −0.0014).
Remark: One could also fit the AR(2) model of the first differences with the function
ar.burg() or ar.yw(), resp. The estimates of the coefficients are quite similar, though.

• We apply the transformation as in the lecture:

> ts.D <- resid(r.fit.adv)

> ts.Z <- filter(ts.sal.d1, c(1, -r.fit.adv$model$phi), sides = 1)

In the transformed model

Zt =

∞∑
j=0

νjDt−j + Ut ,

the coefficients are the same as in the original transfer function model of part c). However,
the time series Dt is uncorrelated here. Hence we can estimate the coefficients νj by

ν̂k =
γ̂21(k)

σ̂2
D

, k ≥ 0

where ρ̂21(k) denotes the empirical cross correlations of Dt and Zt. The estimated coefficients
ν̂k are hence proportional to the empirical cross correlations ρ̂21(k) shown in the following
plot.

> ts.trans <- ts.intersect(ts.Z, ts.D)

> acf(ts.trans, ylim = c(-1, 1), plot = TRUE, na.action = na.pass)
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We see that ρ̂21(0) has the largest value. We find another large value at lag k = −1. This
shows that, contrary to our assumption in part c), there is an influence of Y2,t on Y1,t. Hence
the modeling approach is not allowed since the prerequisites are not fulfilled. However, our
analysis shows that there is a mutual influence between Y2,t and Y1,t.
A change in the sales hence also causes a change in the advertising expenditures. This seems
to be plausible in practice: the budget for advertising is usually established based on past
sales, e.g. as a percentage of last year’s sales.
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• Estimation of the coefficients νj in R :

> gamma21 <- acf(ts.trans, plot = FALSE, type = "covariance",

+ na.action = na.pass)$acf[, 1, 2]

> round(gamma21/r.fit.adv$sigma2, 2)[1:6]

[1] 0.33 0.20 0.01 0.04 0.02 -0.11


