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Solution to Series 5

1. a) In the time series plot, the dependence of the two series is evident. When advertising expenditure
increases (ADVERT), so do sales (SALES) (or vice versa?).
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b) We regard the model

SALESt = β0 + β1 ADVERTt + β2 ADVERTt−1 + Et .

R commands and output:

> lm.advert1 <- lm(SALES ~ ADVERT + ADVERT1, data = ts.advert)

> summary(lm.advert1)

Call:

lm(formula = SALES ~ ADVERT + ADVERT1, data = ts.advert)

Residuals:

Min 1Q Median 3Q Max

-877.9 -224.4 -18.1 211.1 593.6

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 496.68768 135.76609 3.658 0.00061 ***

ADVERT 1.35243 0.22704 5.957 2.55e-07 ***

ADVERT1 0.08066 0.22753 0.355 0.72445

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 346.3 on 50 degrees of freedom

(2 observations deleted due to missingness)

Multiple R-squared: 0.7081, Adjusted R-squared: 0.6965

F-statistic: 60.66 on 2 and 50 DF, p-value: 4.259e-14

> res.advert1 <- ts(resid(lm.advert1), start = 1908)

> layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

> plot(res.advert1, ylab = "residuals")

> acf(res.advert1, plot = TRUE)

> acf(res.advert1, type = "partial", plot = TRUE)
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The time series plot of residuals, and the corresponding correlograms, show that the errors are
correlated and behave as an AR(1) process.

Consequences:
Correlation of residuals means that subsequently, the confidence intervals for coefficients β0, β1
and β2 are inaccurate, which has an adverse effect on predictions and their precision. Since the
setup of this exercise means that prediction is our main interest, this model really should be
improved first.

c) We extend the model from part b) by introducing the variable SALESt−1 = SALES1:

SALESt = β0 + β1 ADVERTt + β2 ADVERTt−1 + β3 SALESt−1 + Et .

Note that the variable SALES serves both as a target and as an explanatory variable.

The summary of the lm object (not printed here) shows that all three explanatory variables are
significant. The plot of residuals—and moreover, the correlograms—no longer exhibit unwanted
correlation:
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By including
the additional variable SALESt−1, we have succeeded in eliminating the autocorrelation of residuals
from the model in part b).

Checking the assumption on the distribution of residuals:

> par(mfrow = c(1, 2), mar = c(3, 3, 2, 0.1))

> plot(fitted(lm.advert2), resid(lm.advert2), xlab = "fitted values",

+ ylab = "residuals")

> qqnorm(resid(lm.advert2))

> qqline(resid(lm.advert2))
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In the time series plot of residuals, and in the normal and Tukey-Anscombe plots, however, 2
outliers are visible. These observations should be looked at more closely. Simply omitting them
is not an option, since this obviously causes problems for a time series. (Simply omitting outliers
is a bad habit anyway. . . )

d) We regard the model
D SALESt = β0 + β1 D ADVERTt + Et ,

where D SALESt = SALESt − SALESt−1 and D ADVERTt = ADVERTt − ADVERTt−1 are the first-order
differences. The fitted line is shown in the following plot:

> diff.sales <- ts.advert[, "SALES"] - ts.advert[, "SALES1"]

> diff.advert <- ts.advert[, "ADVERT"] - ts.advert[, "ADVERT1"]

> lm.advert3 <- lm(diff.sales ~ diff.advert)

> plot(diff.advert, diff.sales, type = "p", xy.labels = FALSE, xy.lines = FALSE)

> abline(lm.advert3)
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Analysis of residuals:
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The correlograms do not exhibit any undesired correlation. All the ordinary and partial autocor-
relations lie inside the confidence band.

However, the time series plot of residuals and the normal and Tukey-Anscombe plots again contain
2 outliers. The fitted model is

D SALESt = 5.668 + 0.623 · D ADVERTt + Et .

The intercept β̂0 = 5.668 is not significant and could possibly be removed from the model.

e) Comparison of both models:

c) SALESt = β0 + β1 ADVERTt + β2 ADVERTt−1 + β3 SALESt−1 + Et

d) D SALESt = β0 + β1 D ADVERTt + Et;
corresponds to the model
SALESt = β0 + β1 ADVERTt − β1 ADVERTt−1 + SALESt−1 + Et

• In both models the errors satisfy the assumption of independence. However, both models
breach the assumption on their distribution, and there are outliers.

• Both models contain the same explanatory variables, but the model in part d) contains re-
strictions on the regression coefficients (only 2 coefficients are estimated here!).

• The second model is somewhat simpler to interpret than the first one. However, model d)
does not fit as well as model c): its R2 is only 0.344 compared to 0.915 in model c).

Notes — Outlook:
In this example it is difficult to determine which series influences the other one. The theory distin-
guishes two settings:

• Both series influence each other. Such models are called bivariate autoregressive models.

• Only one of the series (yt) depends on the other one (xt). Such models are termed transfer
function models.
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The connection between the two time series can be investigated using so-called cross-correlations,
which you will encounter later. In both cases, however, both yt and xt must be assumed to be
stationary time series.

2. a)

t
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b) Both explanatory variables are significant:

> lm.voc <- lm(O3 ~ ., data = ts.voc)

> summary(lm.voc)

Call:

lm(formula = O3 ~ ., data = ts.voc)

Residuals:

Min 1Q Median 3Q Max

-9.9833 -2.7762 -0.0024 2.0879 12.1565

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 63.60570 6.54426 9.719 2.12e-15 ***

t 0.99033 0.19733 5.019 2.87e-06 ***

rf -0.67404 0.05577 -12.085 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.917 on 84 degrees of freedom

Multiple R-squared: 0.7905, Adjusted R-squared: 0.7855

F-statistic: 158.5 on 2 and 84 DF, p-value: < 2.2e-16

However, the residuals behave badly: they are not uncorrelated:
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c) The PACF plot of the residuals in part b) indicates that the residuals should be modeled as an
AR(1) process. We fit its parameter and transform the model accordingly:

> alpha <- ar(res.lm.voc, method = "yw", order.max = 1)$ar

> ts.voc.star <- ts.voc - alpha[1] * lag(ts.voc, -1)

> colnames(ts.voc.star) <- colnames(ts.voc)

We can now perform a least squares regression with the transformed time series:

> lm.voc.star <- lm(O3 ~ ., data = ts.voc.star)

> summary(lm.voc.star)

Call:

lm(formula = O3 ~ ., data = ts.voc.star)

Residuals:

Min 1Q Median 3Q Max

-8.638 -3.495 -0.018 2.131 13.774

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 44.68763 5.58291 8.004 6.38e-12 ***

t 0.93329 0.23743 3.931 0.000175 ***

rf -0.63378 0.06446 -9.833 1.42e-15 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.729 on 83 degrees of freedom

Multiple R-squared: 0.7127, Adjusted R-squared: 0.7057

F-statistic: 102.9 on 2 and 83 DF, p-value: < 2.2e-16

Both explanatory variables are still significant. The residual analysis gives good results now—up
to few outliers:
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d) > library(nlme)

> times <- time(ts.voc)

> gls.voc <- gls(O3 ~ ., data = ts.voc, method = "ML",

+ correlation = corARMA(form = ~ times, p = 1, q = 0))

> summary(gls.voc)

Generalized least squares fit by maximum likelihood

Model: O3 ~ .

Data: ts.voc

AIC BIC logLik

523.246 535.5756 -256.623

Correlation Structure: AR(1)

Formula: ~times

Parameter estimate(s):

Phi

0.3162185

Coefficients:

Value Std.Error t-value p-value

(Intercept) 60.84755 7.822679 7.778352 0e+00

t 0.94651 0.236042 4.009938 1e-04

rf -0.62598 0.065669 -9.532313 0e+00

Correlation:

(Intr) t

t -0.851

rf -0.891 0.534

Standardized residuals:

Min Q1 Med Q3 Max
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-2.15109265 -0.61024167 -0.01873279 0.52524855 2.44588076

Residual standard error: 4.86868

Degrees of freedom: 87 total; 84 residual
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e) OLS C & O GLS
estimate std. err. estimate std. err. estimate std. err.

β̂0 63.61 6.54 61.61 7.7 60.85 7.82

β̂1 0.99 0.2 0.93 0.24 0.95 0.24

β̂2 −0.67 0.06 −0.63 0.06 −0.63 0.07

3. a) i) Xt = t + Et is not stationary since the expectation value E[Xt] = E[t + Et] = t is not
stationary.

ii) We have
Yt = Xt −Xt−1 = t+ Et − (t− 1 + Et−1) = 1 + Et − Et−1 ,

hence Yt is a stationary MA(1) process with µ = 1 and β1 = −1.

iii) The time series Zt = Xt − t is stationary: Zt = Xt − t = t+ Et − t = Et.

b) • Series Yt has autocovariances

γ11(k) = Cov(Yt, Yt+k) = Cov(1 + Et − Et−1, 1 + Et+k − Et+k−1)

= Cov(Et, Et+k)− Cov(Et, Et+k−1)− Cov(Et−1, Et+k) + Cov(Et−1, Et+k−1)

=

 2σ2 k = 0
−σ2 k = ±1
0 |k| > 1

Therefore we find the autocorrelations

ρ11(0) = 1 ,

ρ11(±1) =
γ11(1)

γ11(0)
= −1

2
,

ρ11(k) = 0 , für |k| > 1 .
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• Series Zt: Since Zt = Et is white noise, we have, trivially, γ22(0) = σ2 and γ22(k) = 0 for
|k| ≥ 1. Hence we have ρ22(0) = 1 and ρ22(k) = 0 for |k| ≥ 1.

• Cross-correlations between Yt and Zt: The cross-covariances are

γ12(k) = Cov(Yt+k, Zt) = Cov(1 + Et+k − Et+k−1, Et)

= Cov(Et+k, Et)− Cov(Et+k−1, Et)

=

 σ2 k = 0
−σ2 k = 1
0 sonst

Hence we find the cross-correlations

ρ12(k) =
γ12(k)√

γ11(0)γ22(0)
=

 1/
√

2 = 0.71 k = 0

−1/
√

2 = −0.71 k = 1
0 otherwise

In this example, the cross-correlation ρ12(k) describes the connection between Yt+k (MA(1)
model) and Et (white noise). By construction of the series, the cross-correlation always
vanishes, except for lags 0 and 1.

c) The simulated processes Yt and Zt behave as we expect from theory.

Simulation with R:

> ts.E <- ts(rnorm(201))

> ts.X <- (1:201) + ts.E

> ts.Y <- diff(ts.X)

> ts.Z <- ts.E

Plot of the auto- and crosscorrelations:

> acf(ts.intersect(ts.Y, ts.Z), ylim = c(-1, 1), plot = TRUE)
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