
Dr. M. Dettling Applied Time Series Analysis SS 2011

Series 3

1. Look at two time series ts1 and ts2—possibly AR processes—which you can load using the following
commands in R:

> d.ts <- read.table("http://stat.ethz.ch/Teaching/Datasets/WBL/ts_S3_A2.dat",

+ header = TRUE)

> ts1 <- ts(d.ts$ts1)

> ts2 <- ts(d.ts$ts2)

a) Plot both of these time series, and check whether they could have been generated by an AR
process. Are these stationary time series? What are their expectations?

b) Regard the autocorrelations and partial autocorrelations of the time series and decide whether
they can be generated by an AR process. If yes, what is the order of the respective AR process?

2. Consider the AR(3) model with coefficients α1 = 0.5, α2 = −0.4 and α3 = 0.6:

Xt = 0.5 ·Xt−1 − 0.4 ·Xt−2 + 0.6 ·Xt−3

a) Simulate 100 realizations of this time series and plot them. Does the time series look stationary?

R hint:

> set.seed(3)

> ar.coef <- c(0.5, -0.4, 0.6)

> ts.sim <- arima.sim(list(ar = ar.coef), n = 100)

b) Have a look at (partial) autocorrelations. Do they look as you expect? Comment.

c) Compute whether or not this process is stationary by calculating the roots of the polynomial
Φ(z) := 1 −

∑p
i=1 αiz

i with the R function polyroot.

3. In this exercise we look at the yield of a chemical process. The relevant data from 70 successive
experiments can be found in the dataset yields.dat. The aim of this exercise is to estimate the
mean yield and construct a 95% confidence interval.

R hint: Load the dataset and create a time series as follows:

> d.yields <- read.table("http://stat.ethz.ch/Teaching/Datasets/WBL/yields.dat",

+ header = FALSE)

> t.yields <- ts(d.yields[, 1])

a) Make a time series plot, estimate the mean yield and mark this in the plot.

R hint: Use mean() to estimate the mean yield. You can then draw a horizontal line with
intercept a using the command abline(h = a).

b) Investigate the dependence structure of this time series. Look at its autocorrelations. Compare
with lagged scatterplots, and characterise the dependence structure.

R hints:

> acf(...)

> lag.plot(t.yields, lag = ..., layout = c(..., ...), do.lines = FALSE)
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c) Construct a 95% confidence interval for µ by estimating each of the autocorrelations that differ

from 0.

How large would this confidence interval be if independence were falsely assumed?

R hint: You can compute γ̂(0) with either of the following commands:

> var(t.yields) * (length(t.yields) - 1) / length(t.yields)

> acf(t.yields, type = "covariance", plot = F)$acf[1]

d) Look at the partial autocorrelations. Would you use an AR model to fit this series? Which order
would you take? Comment.

e) Use the Yule-Walker equations to estimate by hands the parameters α1, . . . , αp of the AR(p) model
that you would use to fit the time series; p is the order you determined in Part d). Compute the
estimate σ̂2 of the variance of the innovations Var(Et). Check your results using R .

R hint:

> r.yw <- ar(yields, method = "yw", order.max = 1)

> str(r.yw)

Preliminary discussion: Monday, March 28.

Deadline: Monday, April 04.


