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Series 6

1. In this exercise we shall apply a Kalman filter to smooth a given time series. From the lecture we
know that we can write

Yt = Zt + Et

with a smooth Zt by taking Zt to be a special AR(2) process.

a) Load and plot the time series y:

> load(url("ftp://stat.ethz.ch/Teaching/Datasets/WBL/ts-serie9.Rdata"))

The time series is now available as the R object y.

b) In the R package sspir, there are functions for defining state space models and the Kalman filter.

Specify the model as follows:

> library(sspir)

> ss.model <- SS(y = y,

+ x = NA,

+ Fmat = function(tt,x,phi) {

+ return(matrix(c(1,0))) },

+ Gmat = function(tt,x,phi) {

+ return(matrix(c(2,1,-1,0), ncol=2)) },

+ Vmat = function(tt,x,phi) {

+ return(matrix(phi[1])) },

+ Wmat = function(tt,x,phi) {

+ return(matrix(c(phi[2],0,0,0), ncol=2))},

+ m0 = (matrix(c(0,0),nrow=1)),

+ C0 = (diag(c(10,10))),

+ phi = c(1,0.01)

+ )

Use the output of print(ssm.ar2gl) to familiarize yourself with the notation used in this pack-
age. At the top of the output, you will find the state space model. The authors of the package
denote the state vector by θ.

What is the meaning of the values of the unknown parameter vector phi?

Hint: The notation used differs from that utilized in the lecture notes; it also varies between
different books and software packages.

c) Use the ML estimates φ = (0.9, 0.0001) (cf. part f)) to fit the Kalman filter, and smooth the
output using the smoother() function. Plot the output of the Kalman filter and the smoother.

> phi(ss.model) <- c(0.9,0.0001)

> model.filter <- kfilter(ss.model)

> model.smooth <- smoother(model.filter)

> plot(model.filter$y)

> lines(model.filter$m[, 1], lty = 1, col = 2)

> lines(model.smooth$m[, 1], lty = 1, col = 3, lwd = 2)

d) Now examine the influence of the error variance in the AR(2) process Zt (2nd coefficient in phi)
by first reducing it to zero and then raising it to 0.06. Plot the filter and smoothing results each
time. To do so, adapt the sample code from part c).

e) Plug in the ML estimates once more and vary the initial values m0 and C0. Be unrealistic and
plug in eg. large and small values for m0 and C0.

> phi(ss.model) <- c(0.9, 0.0001)

> m0(ss.model) <- matrix(..., ncol = 2)

> C0(ss.model) <- diag(...)
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f) Estimate both parameters using maximum likelihood (ML). To this end, write your own function

and note that variances cannot be negative.

Think about what happens in the following R code. If any of the functions is unfamiliar to you,
refer to its help file.

> f.optim <- function(log.phi)

+ {

+ phi(ss.model) <- exp(log.phi)

+ model.filter <- kfilter(ss.model)

+ return(c(-model.filter$likelihood))

+ }

> log.phi.min <- nlm(f.optim, log(c(1, 0.00001)))

2. In this exercise, we continue the investigation of the connection between advertising expenditure and
sales started in Series 5, Exercise 1. We again examine the dataset advert.dat which contains the
annual advertising expenditure (ADVERT) and the sales revenue (SALES) for a particular brand of
vegetable stock (Lydia Pinkham’s Vegetable Compound, 1907-1960).

Load and log-transform the data as follows:

> d.advert <- read.table("ftp://stat.ethz.ch/Teaching/Datasets/WBL/advert.dat",

+ header = TRUE)

> ts.advert <- ts(log(d.advert[, "ADVERT"]), start = 1907)

> ts.sales <- ts(log(d.advert[, "SALES"]), start = 1907)

In the following problems, we will refer to ts.advert and ts.sales as X1,t and X2,t, respectively.

a) First look at the time series plots. Are the series stationary?

R hint: you can either use the generic plot function (first line), or a specific time series plot
function (second line):

> plot(ts.union(ts.sales, ts.advert), plot.type = "single")

> ts.plot(ts.sales, ts.advert)

(Unless the time series have been joined using ts.union(), the commandplot(d.sales, d.advert)

will plot both of them against each other. It is easy to see that they are correlated.)

b) Compute the first-order differences Y1,t := X1,t −X1,t−1 (ts.adv.d1) and Y2,t := X2,t −X2,t−1
(ts.sal.d1). Are these processes stationary?

c) Regard the transfer function model

Y2,t =

∞∑
j=0

νjY1,t−j + Et .

Describe this model in words. From a business point of view, what is an illustrative interpretation
of this model?

d) Estimate the coefficients νj . Proceed as described below; see also the lecture slides. Make an
interpretation of the model you estimate. What do you notice about this model?

Instructions:

• First identify the row Y1,t. Which model should you fit? Estimate its coefficients using the
R function arima().

• Compute Dt and Zt for the transformed series.
R hints: Suppose your R object with the ARMA model you used to fit Y1,t is called
r.fit.adv. Dt then simply contains the residuals:

> ts.D <- resid(r.fit.adv)

To calculate Zt, you can extract the AR (or possibly ARMA) coefficients of the fitted model
and then use the R function filter(). For example, if alpha is a vector of AR coefficients,
use
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> ts.Z <- filter(ts.sal.d1, c(1, -alpha), sides = 1)

The argument sides = 1 causes filter() to only take the past into account; cf. the help
page.
Since you should only consider time points present in both time series, use

> ts.trans <- ts.intersect(ts.Z, ts.D)

• Draw the cross-correlogram for Dt and Zt. Give an interpretation of them.
R hint:

> acf(ts.trans, na.action = na.pass)

• Estimate the coefficients νj using the forumla given in the lecture.
R hints:
The variance of the errors Dt can be found in r.fit.adv$sigma2. The command

> acf(..., type = "covariance", na.action = na.pass)$acf[, 1, 2]

also returns the cross-covariances between Yt and Zt.

Preliminary discussion: Monday, May 09.

Deadline: Monday, May 16.


