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Non-Linear Models: ARIMA and SARIMA
Why?

We have seen that many time series we encounter in prac-
tice show trends and/or seasonality. While we could de-
compose them and model the stationary part, it might also 
be attractive to directly model a non-stationary series.

How does it work?
There is a mechanism, "the integration" or "the seasonal
integration" which takes care of the deterministic features, 
while the remainder is modeled using an ARMA(p,q).

There are some peculiarities!
 see blackboard!
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Example: Australian Beer Production
Logged Australian Beer Production
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ARIMA(p,d,q)-Models
Idea: Fit an ARMA(p,q) to a time series where the dth

order difference with lag 1 was taken before. 

Example: If ,
then

Notation: With backshift-operator B()

Stationarity: ARIMA-models are usually non-stationary!

Advantage: it‘s easier to forecast in R!

1 (1 ) ~ ( , )t t t tY X X B X ARMA p q   

( )(1 ) ( )d
t tB B X B E   

~ ( ,1, )tX ARIMA p q
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Fitting and Forecasting
We start by fitting an ARIMA(0,1,1) to the beer series:

fit <- arima(log(beer), order=c(0,1,1))

> fit

Call: arima(x = log(beer), order = c(0, 1, 1))

Coefficients:           ma1
-0.2934

s.e. 0.0529

sigma^2 estimated as 0.01734
log likelihood = 240.28,  aic = -476.57
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Fitting and Forecasting
We start by fitting an ARIMA(0,1,1) to the beer series:

> fit.111 <- arima(log(beer), order=c(1,1,1))

> fit.111

Call: arima(x = log(beer), order = c(1, 1, 1))

Coefficients:          ar1      ma1
0.5094  -0.9422

s.e. 0.0469   0.0125

sigma^2 estimated as 0.01491  
log likelihood = 269.51,  aic = -533.01
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Forecasting Australian Beer Production
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Residual Analysis of the ARIMA(1,1,1)
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ACF/PACF: Differenced Original Series

Time

se
rie

s

1960 1965 1970 1975 1980 1985 1990

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
0

1.
0

Lag k

A
ut

o-
K

or
r.

0 5 10 15 20 25

-0
.4

0.
0

Lag k

pa
rt.

 A
ut

ok
or

r

1 5 10 15 20 25



10Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
FS 2011 – Week 14 

Beer Series: Results 
• From the residuals, we cleary observe that the fitted models

are not adequate, and thus the forecasts are not to be trusted

• It seems as if we failed to include the seasonality into the
model. This is visible from the residuals.

• However, this is also visible from ACF/PACF of the original 
(differenced) series. This is where we made the "mistake" in 
the first place.

• We need more complex models which can also deal with
seasonality. They exist, see the following slides...
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SARIMA(p,d,q)(P,D,Q)s

= a.k.a. Airline Model. We are looking at the log-trsf. airline data 

Log-Transformed Airline Data
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SARIMA(p,d,q)(P,D,Q)s

or at the log-transformed Australian Beer Production 
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SARIMA(p,d,q)(P,D,Q)s

We perform some differencing… ( see blackboard)
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ACF/PACF of SARIMA(p,d,q)(P,D,Q)s
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Modeling the Airline Data
Since there are “big gaps” in ACF/PACF:

This is an MA(13)-model with many coefficients equal to 0,
or equivalently, a SARIMA(0,1,1)(0,1,1)12.

Note: Every SARIMA(p,d,q)(P,D,Q)s can be written as 
an ARMA(p+sP,q+sQ), where many coefficients
will be equal to 0.

12
1 1(1 )(1 )t tZ B B E   

1 1 1 12 1 1 13t t t tE E E E        
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SARIMA(p,d,q)(P,D,Q)s

The general notation is:

Interpretation:

- one typically chooses d=D=1
- s = periodicity in the data (season)
- P,Q describe the dependency on multiples of the period
 see blackboard

(1 ) (1 )

( ) ( ) ( ) ( )

d s D
t t

s s s
t t

Y B B X

B B Y B B E

  

    
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Forecasting Australian Beer Production
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Residual Analysis of SARIMA(1,1,1)(1,1,0)
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Outlook to Non-Linear Models
What are linear models?

Models which can be written as a linear combination of
i.e. all AR-, MA- and ARMA-models

What are non-linear models?
Everything else, e.g. non-linear combinations of , 
terms like in the linear combination, and much more!  

Motivation for non-linear models?
- modeling cyclic behavior with quicker increase then decrease
- non-constant variance, even after transforming the series

tX

tX
2
tX
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Simulated ARCH(1)-Process
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Residuals from a Fitted ARCH(1)
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ARCH(1) is Long-Tailed
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ARCH(1) is Long-Tailed
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Dependency in the Squared Series
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