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Non-Linear Models: ARIMA and SARIMA

Why?
We have seen that many time series we encounter in prac-
tice show trends and/or seasonality. While we could de-
compose them and model the stationary part, it might also
be attractive to directly model a non-stationary series.

How does it work?
There is a mechanism, "the integration"” or "the seasonal
Integration" which takes care of the deterministic features,
while the remainder is modeled using an ARMA(p,q).

There are some peculiarities!
-> see blackboard!
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Example: Australian Beer Production
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ARIMA(p,d,q)-Models

ldea:

Example:

Notation:

Stationarity:

Advantage:

Marcel Dettling, Zurich University of Applied Sci

Fit an ARMA(p,q) to a time series where the d"
order difference with lag 1 was taken before.

If Y, = X,— X, =@0-B)X, ~ ARMA(p,q),
then X, ~ ARIMA(p,1,q)

With backshift-operator B()
®(B)(1-B)" X, = ®(B)E,

ARIMA-models are usually non-stationary!

it's easier to forecast in R!
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Fitting and Forecasting

We start by fitting an ARIMA(0O,1,1) to the beer series:

fit <- arima(log(beer), order=c(0,1,1))

> Fit

Call: arimma(x = log(beer), order = c(0, 1, 1))

Coefficients: mal
-0.2934
s.e. 0.0529

sigma”™2 estimated as 0.01734
log likelithood = 240.28, ailc = -476.57

ich University of Applied Sciences 5



Zurich University

Applied Time Series Analysis Zh
FS 2011 — Week 14 aw

Fitting and Forecasting

We start by fitting an ARIMA(0O,1,1) to the beer series:

> fi1t.111 <- arima(log(beer), order=c(1,1,1))
> fi1t.111

Call: arima(x = log(beer), order = c(1, 1, 1))

Coefficients: arl mal
0.5094 -0.9422
s.e. 0.0469 0.0125

sigma”™2 estimated as 0.01491
log likelthood = 269.51, aic = -533.01

ich University of Applied Sciences 6



Applied Time Series Analysis
FS 2011 — Week 14

Forecasting Australian Beer Production

Forecast of log(beer), ARIMA(0,1,1)
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Residual Analysis of the ARIMA(1,1,1)
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ACF/PACF: Differenced Original Series
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Beer Series: Results

 From the residuals, we cleary observe that the fitted models
are not adequate, and thus the forecasts are not to be trusted

e It seems as If we failed to include the seasonality into the
model. This is visible from the residuals.

 However, this is also visible from ACF/PACF of the original
(differenced) series. This is where we made the "mistake" in
the first place.

 We need more complex models which can also deal with
seasonality. They exist, see the following slides...

Marcel Dettling, Zurich University of Applied Sciences 10
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SARIMA(p,d,q)(P,D,Q)s
= a.k.a. Airline Model. We are looking at the log-trsf. airline data

Log-Transformed Airline Data
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SARIMA(p,d,q)(P,D,Q)s

or at the log-transformed Australian Beer Production

Logged Australian Beer Production
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SARIMA(p,d,q)(P,D,Q)s

We perform some differencing... (= see blackboard)
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Auto-Korr.
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ACF/PACF of SARIMA(p,d,q)(P,D,Q)s
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Modeling the Airline Data
Since there are “big gaps” in ACF/PACF:
Z, =(1+ 8B)(1+y,B®)E,
=E +pE_ +7E_,+L1E

This is an MA(13)-model with many coefficients equal to O,
or equivalently, a SARIMA(0,1,1)(0,1,1)*2.

Note: Every SARIMA(p,d,q)(P,D,Q)s can be written as

an ARMA(p+sP,qg+sQ), where many coefficients
will be equal to 0.

15
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SARIMA(p,d,q)(P,D,Q)s

The general notation is:
Y, =(1-B)'(1-B°%)° X,
®(B)D(B°)Y, = O(B)®°(B)E,

Interpretation:

- one typically chooses d=D=1

- s = periodicity in the data (season)

- P,Q describe the dependency on multiples of the period
- see blackboard

Marcel Dettling, Zurich University of Applied Sciences
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Forecasting Australian Beer Production
Forecast of log(beer), SARIMA(1,1,1)(1,0,0)
1985 1986 1987 1988 1989 1990 1991

Time

uuuuuuuuuuuuuuuuu
eeeeeeeeeeeeeeee

17



Zurich University

Applied Time Series Analysis Zh
FS 2011 — Week 14 aw

Residual Analysis of SARIMA(1,1,1)(1,1,0)
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Outlook to Non-Linear Models

What are linear models?

Models which can be written as a linear combination of X,
..e. all AR-, MA- and ARMA-models

What are non-linear models?
Everything else, e.g. non-linear combinations of X_,
terms like X? in the linear combination, and much morel!

Motivation for non-linear models?
- modeling cyclic behavior with quicker increase then decrease
- non-constant variance, even after transforming the series

Marcel Dettling, Zurich University of Applied Sciences 19
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Simulated ARCH(1)-Process

Simulated ARCH(1) process
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Residuals from a Fitted ARCH(1)
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ARCH(1) is Long-Talled

Histogram of x
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ARCH(1) is Long-Talled

Q-Q Plot of x
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Dependency In the Squared Series

ACF of Squared x
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