Zurich University of Applied Sciences

zh

Applied Time Series Analysis FS 2011 – Week 12

Marcel Dettling

Institute for Data Analysis and Process Design

Zurich University of Applied Sciences

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, May 16, 2011

Marcel Dettling, Zurich University of Applied Sciences

Spectral Analysis

Idea: Time series are interpreted as a combination of cyclic components, and thus, a linear combination of harmonic oscillations.

Why: As a descriptive means, showing the character and the dependency structure within the series.

What: It is in spirit, but also mathematically, closely related to the correlogram

Where: - engineering

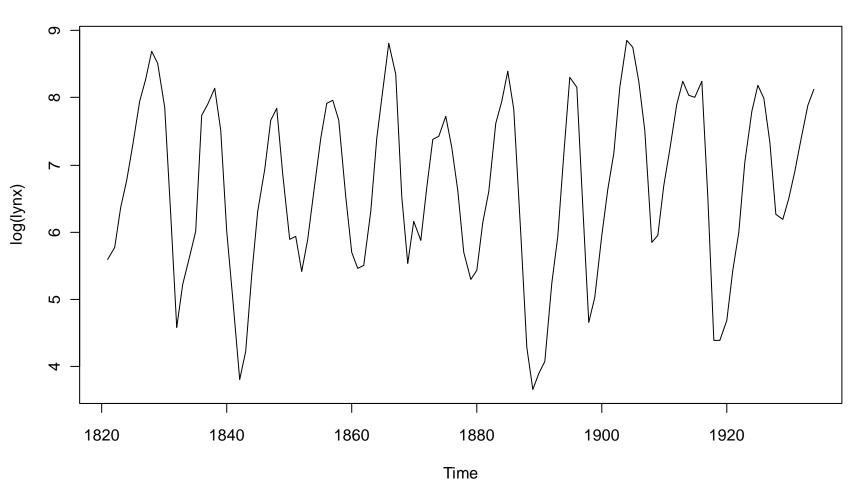
- economics
- biology/medicine

zh

Applied Time Series Analysis FS 2011 – Week 12

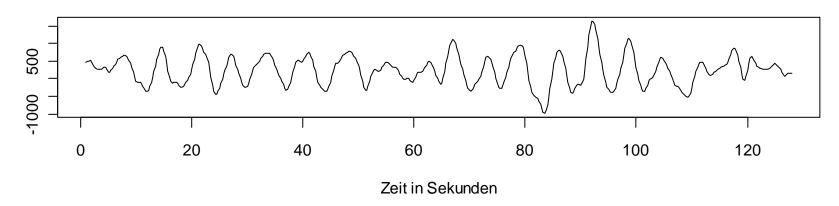
Lynx Data

Log Lynx Data

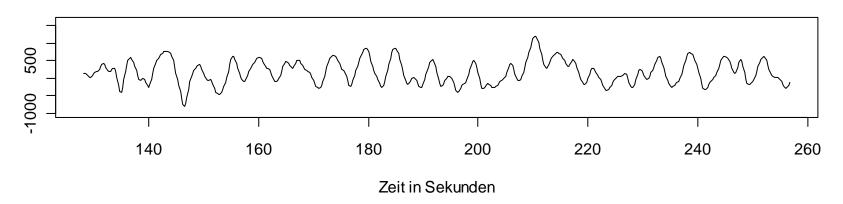


Ocean Wave Data

Ocean Wave Height Data, Part 1

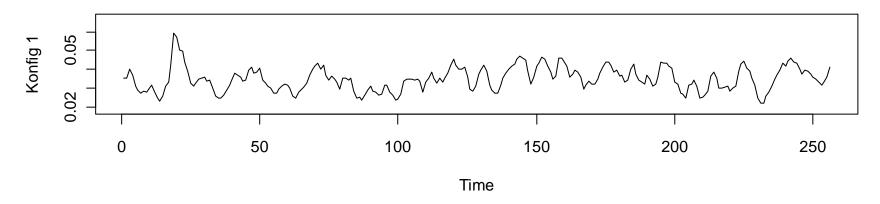


Ocean Wave Height Data, Part 2

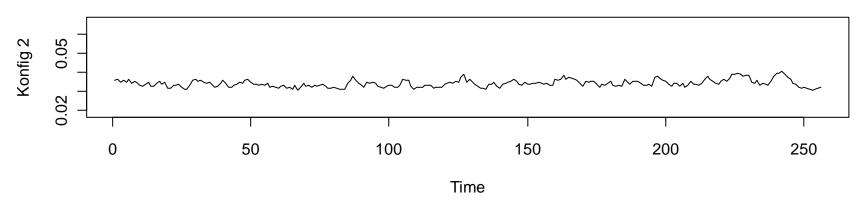


2-Component-Mixture Data

2-Component-Mixture: Series 1



2-Component-Mixture: Series 2



Harmonic Oscillations

The most simple periodic functions are sine and cosine, which we will use as the basis of our analysis.

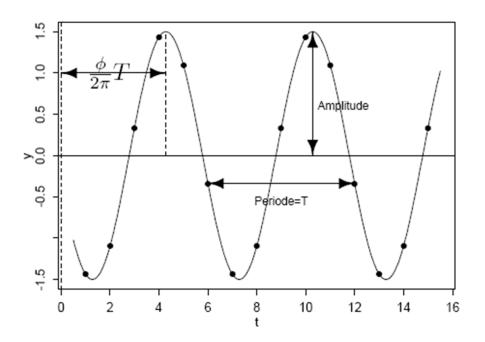
A harmonic oscillation has the following form:

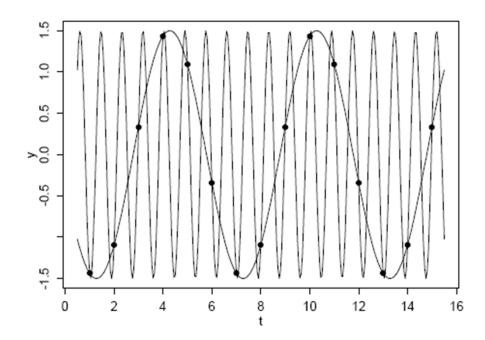
$$y(t) = \alpha \cos(2\pi vt) + \beta \sin(2\pi vt)$$

For the derivation, see the blackboard...

- In discrete time, we have aliasing, i.e. some frequencies cannot be distinguished (→ see next slide).
- The periodic analysis is limited to frequencies between
 0 and 0.5, i.e. things we observe at least twice.

Aliasing





Regression Model & Periodogram

We try to write a time series with a regression equation containing sine and cosine terms at the fourier frequencies.

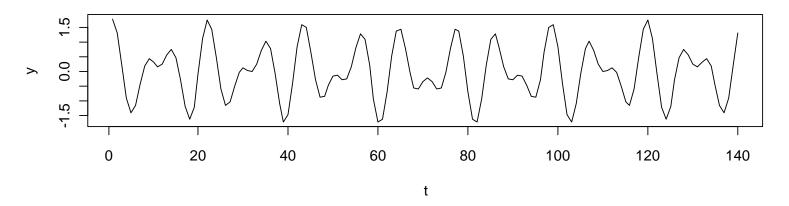
→ see the blackboard

The most important frequencies within the series, which when omitted, lead to pronounced increase in goodness-of-fit.

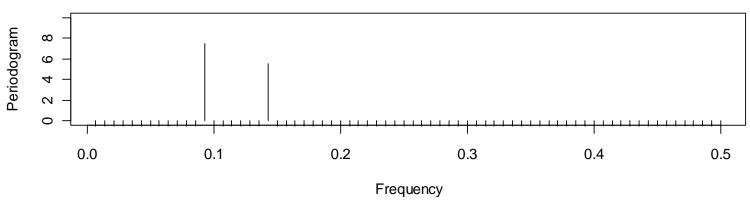
- This idea is used as a proxy for the periodogram,
 → see the blackboard...
- However, if the "true" frequency is not a fourier frequency, we have leakage (→ see next 2 slides).

Periodogram of a Simulated Series

Simulated Series

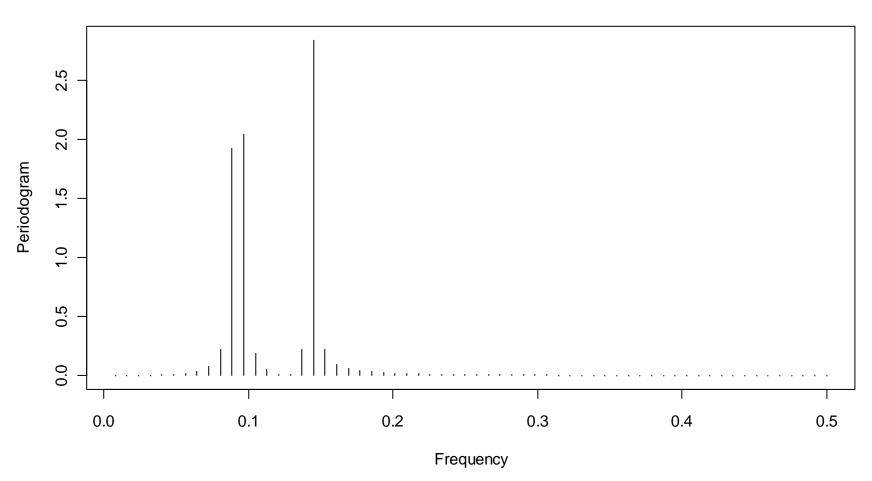


Periodogram of the Series



Periodogram of the Shortened Series

Periodogram of the Shortened Series



of Applied Sciences Zh W

Applied Time Series Analysis FS 2011 – Week 12

Properties of the Periodogram

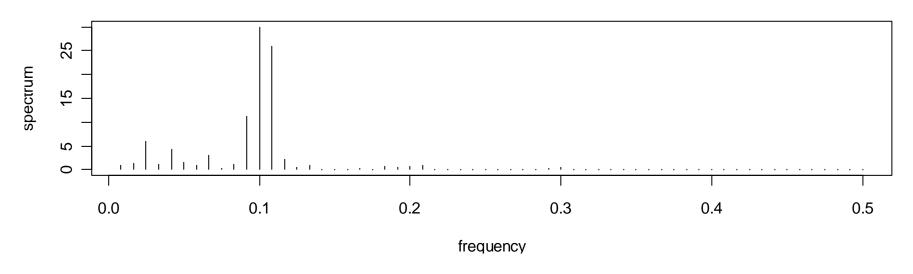
Periodogram and correlogram are mathematically equivalent, the former is the **fourier transform** of the latter.

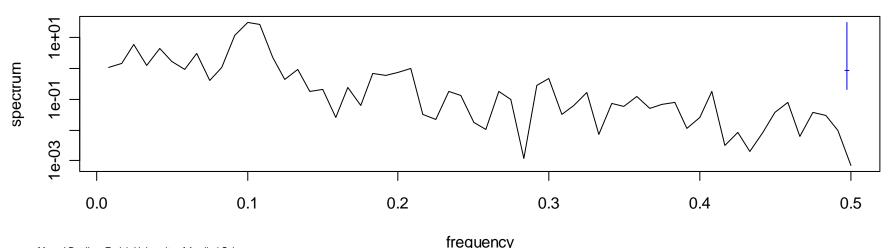
> see the blackboard for the derivation

Note: this is a reason why we divided by 1/n in the ACV.

- $I(v_k)$ or $\log(I(v_k))$ are plotted against $\frac{k}{n}$
- Estimates seem rather instable and noisy
- On the log-scale, most frequencies are present
- It seems as if smoothing is required for interpretation.

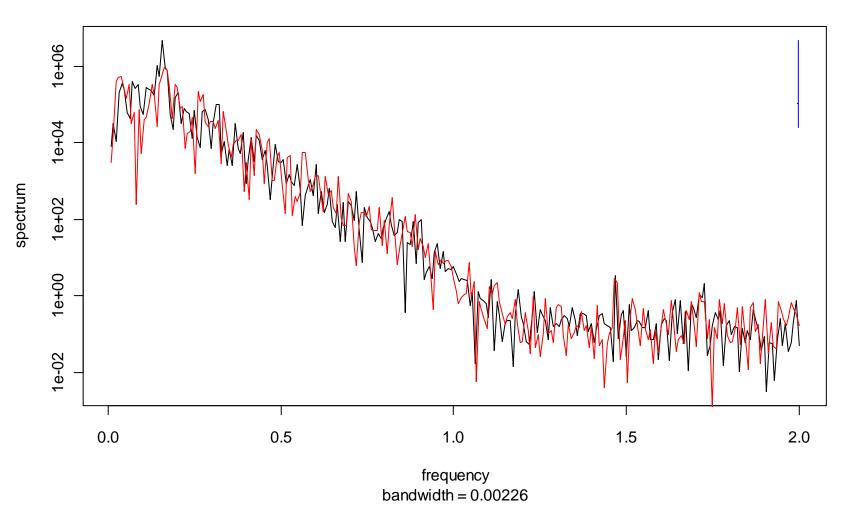
Periodogram of the Log Lynx Data





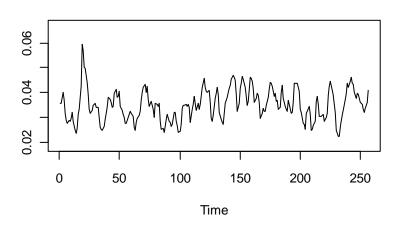
Periodogram of the Ocean Wave Data

Periodogram of the Ocean Wave Data

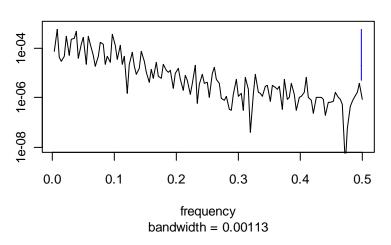


Periodogram of the 2-Component-Mixture

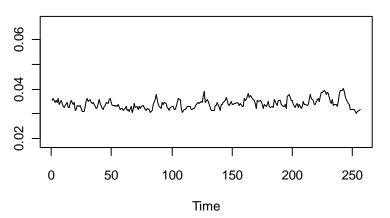
2-Component-Mixture: Config 1



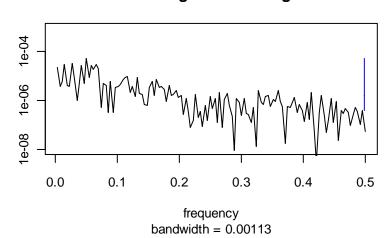
Periodogram of Config 1



2-Component-Mixture: Config 2



Periodogram of Config 2



Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 12

The Spectrum

Observed time series	⇔	Stochastic process
Empirical ACF	\Leftrightarrow	Theoretical ACF
Periodogram	\Leftrightarrow	Spectrum

There is a link between ACF and periodogram/spectrum

$$f(v) = \sum_{k=-\infty}^{+\infty} \gamma(k) \cos(2\pi v k)$$

and

$$\gamma(k) = \int_{-0.5}^{+0.5} f(v) \cos(2\pi v k) dv$$

respectively. The spectrum is thus the Fourier transformation of the ACV.

What's the Spectrum Good For?

Theorem: Cramer Representation

Every stationary process can be written as the limit of a linear combination consisting of harmonic oscillations with random, uncorrelated amplitudes.

- The spectrum characterizes the variance of all these random amplitudes.
- Or vice versa: $\int_{\nu}^{\nu_2} f(\nu) d\nu$ is the variance between the frequencies that make the integration limits.
- The spectrum takes only positive values. Thus, not every ACF sequence defines a stationary series.

Marcel Dettling, Zurich University of Applied Sciences

A Few Particular Spectra

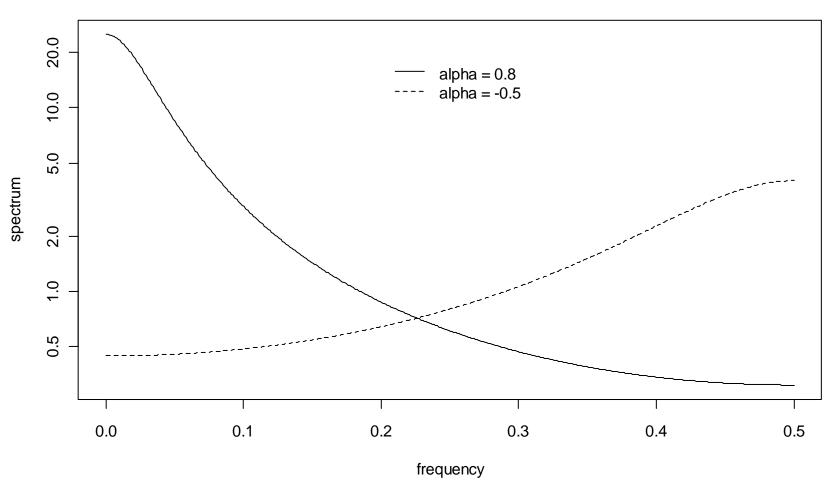
- White noise
 - → the spectrum is constant over all frequencies.
- AR(1), see next slide
 - \rightarrow already quite a complicated function α_1
- ARMA (p,q)
 - → the characteristic polynoms determine the spectrum

$$f(v) = \sigma_E^2 \frac{|\Theta(\exp(-i2\pi v))|}{|\Phi(\exp(-i2\pi v))|}$$

• Note: to generate m maxima in the spectrum, we require an AR-model, where the order is at least 2m.

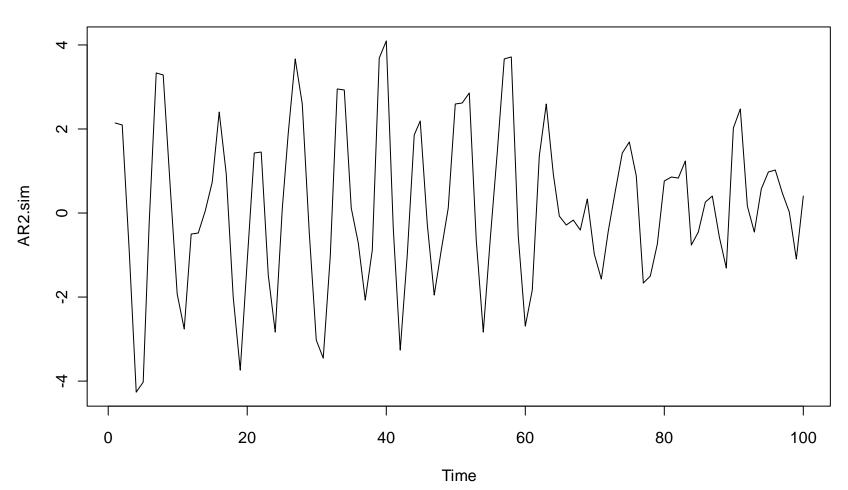
Spectrum of AR(1)-Processes

Spectrum of Simulated AR(1)-Processes

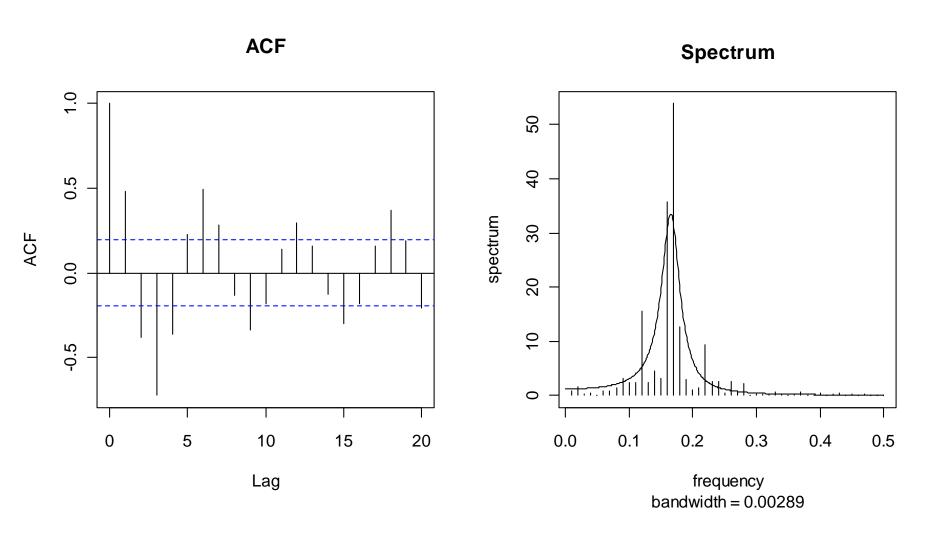


Simulated AR(2)-Process

Simulated AR(2)



ACF/Spectrum of Simulated AR(2)-Process



Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 12

Spectral Analysis

- Spectral analysis is a descriptive technique, where the time series is interpreted as a linear combination of harmonic oscillations.
- The periodogram shows empirically, which frequencies are "important", i.e. lead to a substantial increase in RSS when ommitted from the linear combination.
- The spectrum is the theoretical counterpart to the periodogram. It can also be seen as the Fourier transformation of the theoretical autocovariances.
- The periodogram is a poor estimator for the spectrum: it's not smooth and inconsistent.

Improving the Raw Periodogram

- 1) Smoothing with a running mean
 - + simple approach
 - choice of the bandwith
- 2) Smoothing with a weighted running mean
 - + choice of the bandwith is less critical
 - difficulties shift to the choice of weights
- 3) Weighted plug-in estimation
 - weighted Fourier trsf. of estimated autocovariances
 - choice of weights
- 4) Piecewise periodogram estimation with averaging
 - can serve as a check for stationarity, too

Improving the Raw Periodogram

5) Spectrum of an estimated model

- + fundamentally different from 1)-4)
- only works for "small" orders p

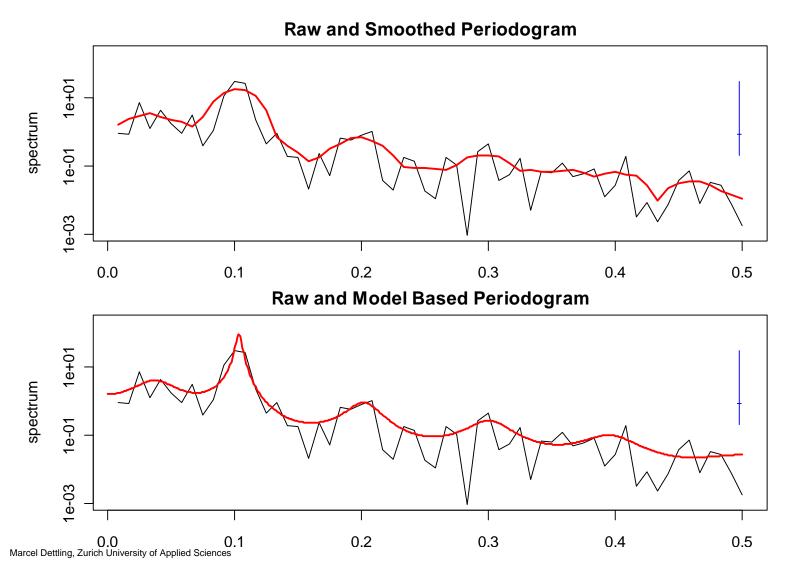
6) Tapering

- further modification of periodogram estimation
- reduces the bias in the periodogram
- should always be applied

7) Prewhitening and Rescoloring

- model fit and periodogram estimation on residuals
- the effect of the model will be added again

Modified Periodogram of log(Lynx) Data



Modified Periodogram of log(Lynx) Data

Piecewise periodogram of ocean wave data

