Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 11

Marcel Dettling

Institute for Data Analysis and Process Design

Zurich University of Applied Sciences

marcel.dettling@zhaw.ch

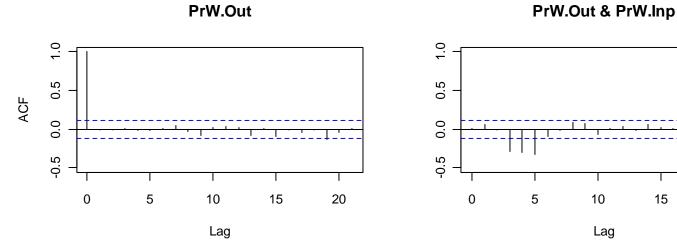
http://stat.ethz.ch/~dettling

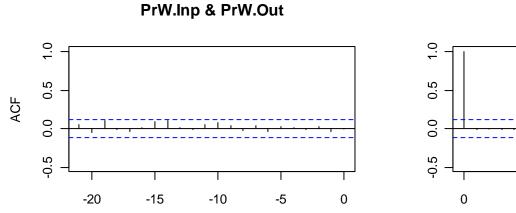
ETH Zürich, May 9, 2011

Prewhitening the Gas Furnace Data What to do:

- AR(p)-models are fitted to the differenced series
- The residual time series are U_t and V_t , white noise
- Check the sample cross correlation (see next slide)
- Model the output as a linear combination of past input values: transfer function model.

Prewhitening the Gas Furnace Data



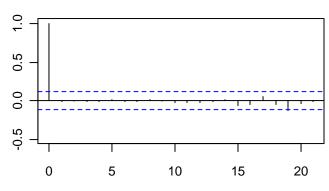


Lag Marcel Dettling, Zurich University of Applied Sciences

PrW.Inp

15

20



Zurich University

Transfer Function Models

Properties:

- Transfer function models are an option to describe the dependency between two time series.
- The first (input) series influences the second (output) one, but there is no feedback from output to input.
- The influence from input to output only goes "forward".

The model is:

$$X_{2,t} - \mu_2 = \sum_{j=0}^{\infty} \nu_j (X_{1,t-j} - \mu_1) + E_t$$

Transfer Function Models

The model is:

$$X_{2,t} - \mu_2 = \sum_{j=0}^{\infty} \nu_j (X_{1,t-j} - \mu_1) + E_t$$

E[E_t]=0.

- E_t and $X_{1,s}$ are uncorrelated for all t and s.
- E_t and E_s are usually correlated.
- For simplicity of notation, we here assume that the series have been mean centered.

Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 11

Cross Covariance

When plugging-in, we obtain for the cross covariance:

$$\gamma_{21}(k) = Cov(X_{2,t+k}, X_{1,t}) = Cov\left(\sum_{j=0}^{\infty} v_j X_{1,t+k-j}, X_{1,t}\right) = \sum_{j=0}^{\infty} v_j \gamma_{11}(k-j)$$

- If only finitely many coefficients are different from zero, we could generate a linear equation system, plug-in $\hat{\gamma}_{11}$ and $\hat{\gamma}_{21}$ to obtain the estimates \hat{v}_i .
- → This is not a statistically efficient estimation method.

Special Case: X_{1,t} Uncorrelated

If $X_{1,t}$ was an uncorrelated series, we would obtain the coefficients of the transfer function model quite easily:

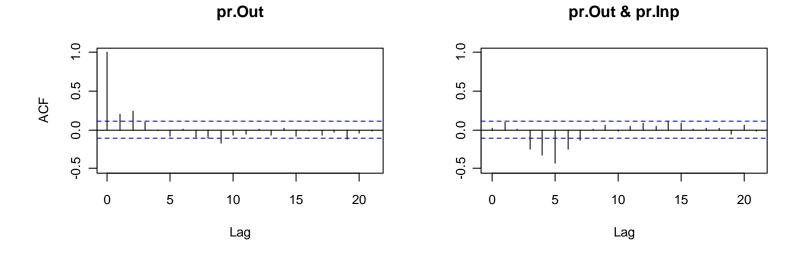
$$\nu_k = \frac{\gamma_{21}(k)}{\gamma_{11}(0)}$$

However, this is usually not the case. We can then:

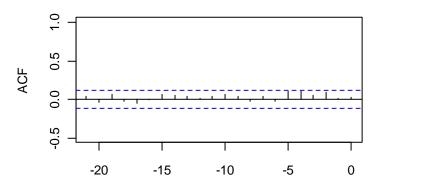
- transform all series in a clever way
- the transfer function model has identical coefficients
- the new, transformed input series is uncorrelated

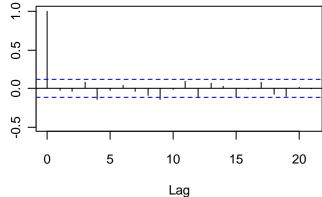
→ see blackboard for the transformation...

Gas Furnace Transformed



pr.Inp & pr.Out





Lag Marcel Dettling, Zurich University of Applied Sciences

Zurich University

Gas Furnace: Final Remarks

- In the previous slide, we see the empirical cross correlations $\hat{\rho}_{21}(k)$ of the two series D_t and Z_t .
- The coefficients \hat{v}_k from the transfer function model will be proportional to the empirical cross correlations. We can already now conjecture that the output is delayed by 3-7 times, i.e. 27-63 seconds.
- The formula for the transfer function model coefficients is:

$$\hat{v}_k = \frac{\hat{\sigma}_Z}{\hat{\sigma}_D} \hat{\rho}_{21}(k)$$

Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 11

State Space Models

Basic idea: There is a stochastic process/time series Z_t which we cannot directly observe, but only under the addition of some white noise.

Thus: We observe the time series

 $Y_{t} = Z_{t} + U_{t}$ where $U_{t} \sim N(0, \tau^{2})$, i.i.d.

Example: $Z_t = #$ of fish in a lake

 $Y_t = \#$ estimated number of fish from a sample

Notation and Terminology for an AR(1)

We assume that the true underlying process is an AR(1), i.e.

$$Z_t = a_1 Z_{t-1} + E_t$$
,

where

 $E_t \sim N(0, \sigma_E^2)$ are i.i.d. innovations, "process noise".

In practice, we only observe y_t , as realizations of the process

$$Y_t = Z_t + U_t$$
, with $U_t \sim N(0, \tau^2)$, i.i.d.

and additionally, the U_t are independent of Z_s , E_s for all s,t, thus they are independent "observation white noise".

More Terminology

We call

$$Z_t = a_1 Z_{t-1} + E_t$$

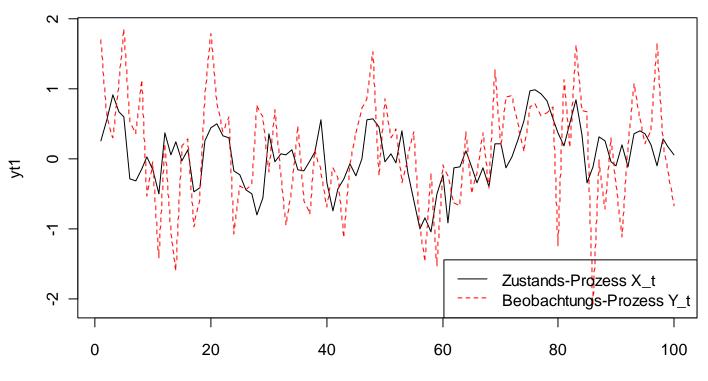
the "state equation", and

 $Y_t = Z_t + U_t$

the "observation equation".

On top of that, we remember once again that the "process noise" E_t is an innovation that affects all future values Z_{t+k} and thus also Y_{t+k} , whereas U_t only influences the current observation Y_t , but no future ones.

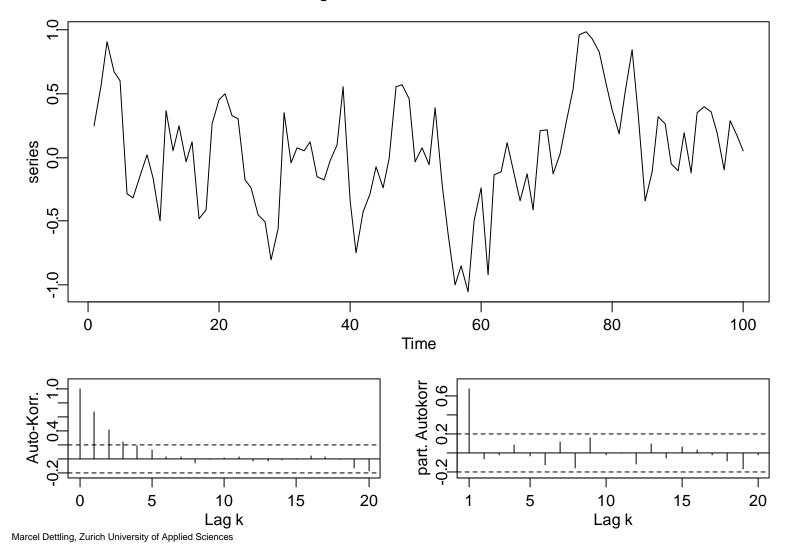
AR(1)-Example with α =0.7



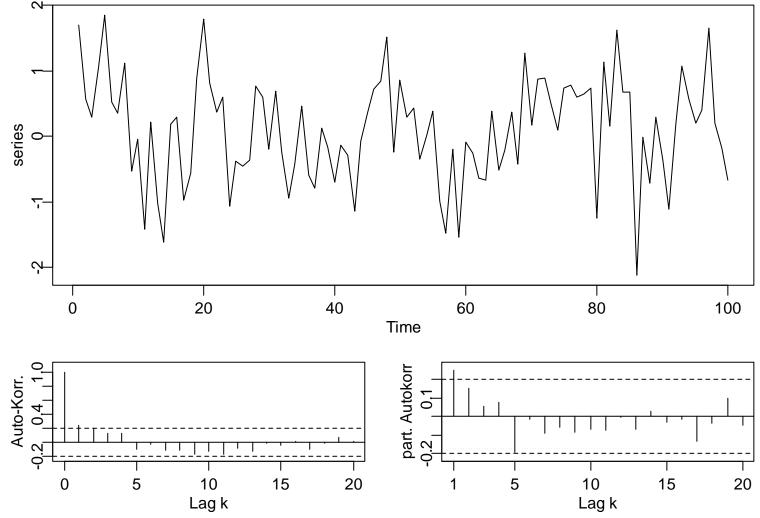
AR(1)-Example

zh aw

ACF/PACF of Z_t



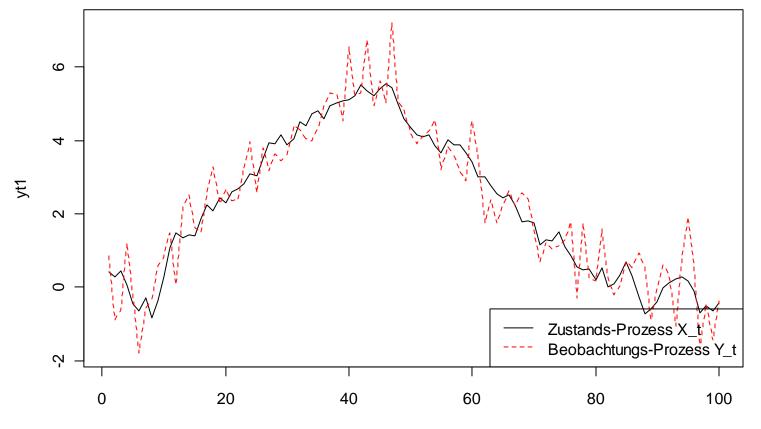
ACF/PACF of Y_t



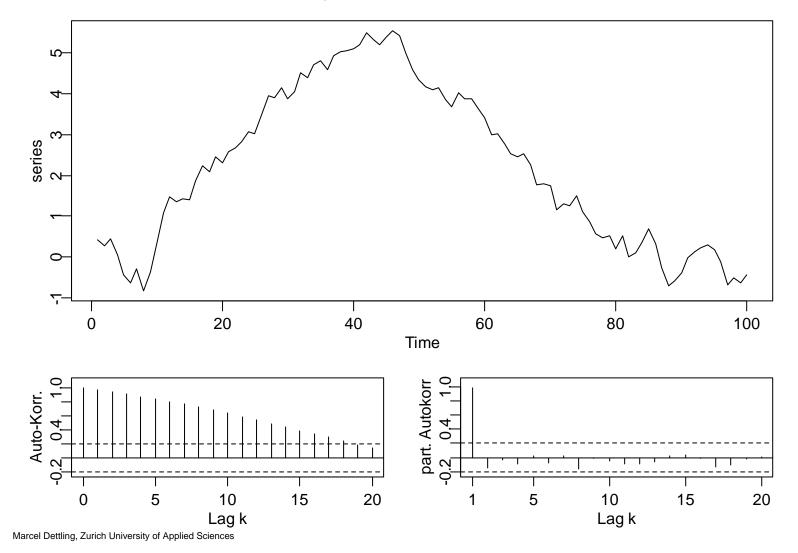
Zurich University

AR(1)-Example with α =1

AR(1)-Example



ACF/PACF of Z_t



Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 11

What is the goal?

The goal of State Space Modeling/Kalman Filtering is:

To uncover the "de-noised" process Z_t from the observed process Y_t .

- The algorithm of Kalman Filtering works with nonstationary time series, too.
- The algorithm is based on a maximum-likelihoodprinciple where one assume normal distortions.
- There are extensions to multi-dimensional state space models. This is partly discussed in the exercises.

Summary of Kalman Filtering

Summary:

- 1) The Kalman Filter is a recursive algorithm
- 2) It relies on an update idea, i.e. we update the forecast $\hat{Z}_{t+1,t}$ with the difference $(y_{t+1} \hat{Y}_{t+1,t})$.
- 3) The weight of the update is determined by the relation between the process variance σ_E^2 and the observation white noise τ^2 .
- 4) This relies on the knowledge of g, h, σ_E^2 , τ^2 . In practice we have procedures for simultaneous estimation.

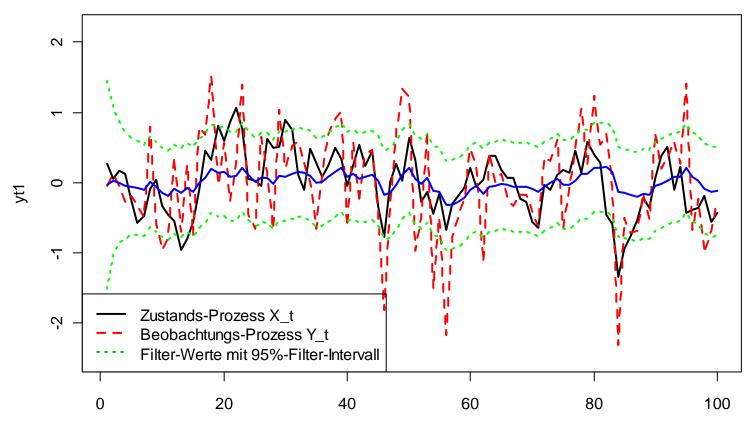
Applied Time Series Analysis FS 2011 – Week 11 Additional Remarks

urich University

- For the recursive approach of Kalman filtering, initial values are necessary. Their choice is not crucial, their influence cancels out rapidly.
- 2) The procedures yield forecast and filter intervals: $\hat{Z}_{t+1,t} \pm 1.96 \cdot \sqrt{R_{t+1,t}}$ and $\hat{Z}_{t+1,t+1} \pm 1.96 \cdot \sqrt{R_{t+1,t+1}}$
- 3) State space models are a very rich class. Every ARIMA(p,d,q) can be written in state space form, and the Kalman filter can be used for estimating the coefficients.
- 4) We can also use Kalman filtering for smoothing, i.e. providing $Z_t | Y_1^T$ with T>t.

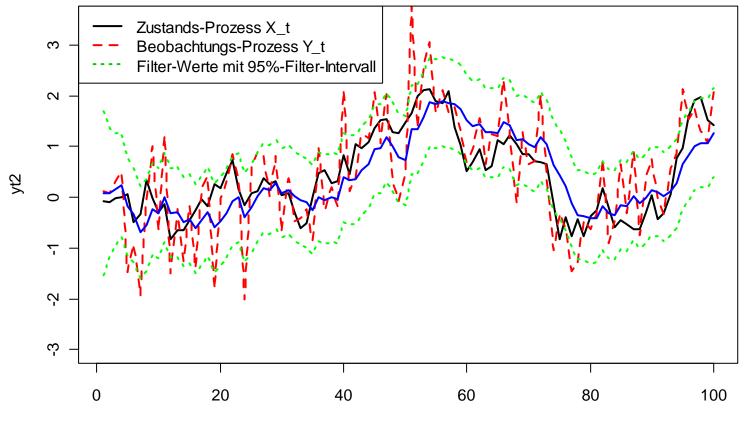
AR(1)-Example with α =0.7

AR(1)-Example with alpha=0.7

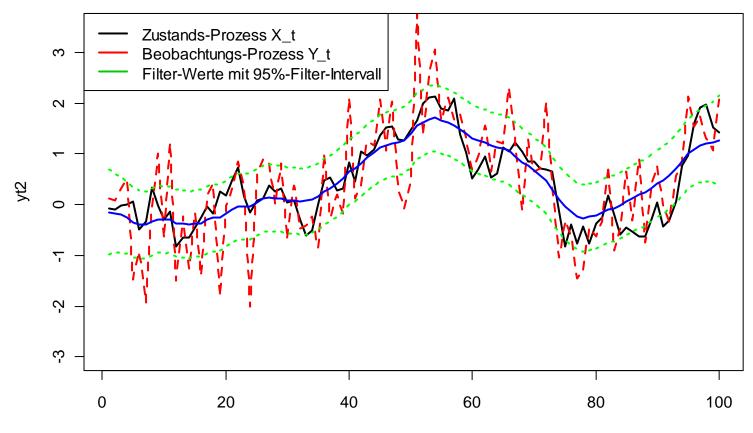


zh aw

AR(1)-Example with α =1.0



AR(1)-Smoothing with α =1.0



Smoothing instead of filtering