Applied Time Series Analysis FS 2011 – Week 09

Marcel Dettling

Institute for Data Analysis and Process Design

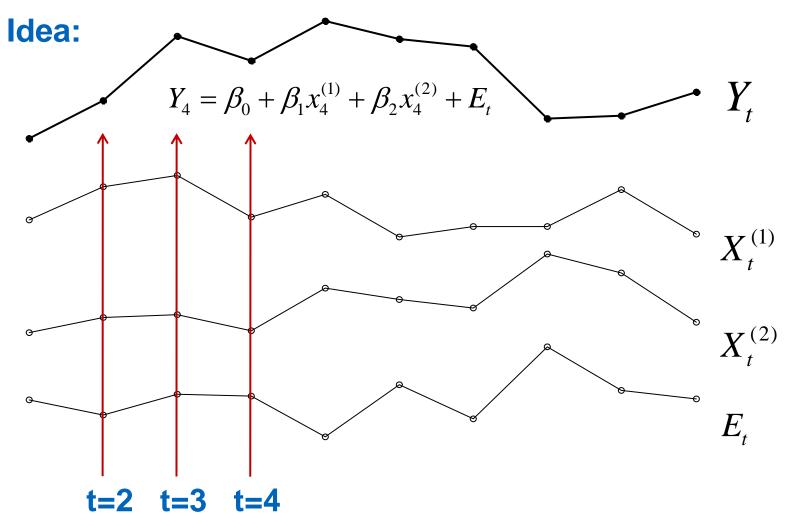
Zurich University of Applied Sciences

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, April 18, 2010

Time Series Regression



Applied Time Series Analysis FS 2011 – Week 09

The Setup

- There is a response time series Y_t
- There is one or several explanatory/descriptive time series $X_t^{(1)}, ..., X_t^{(k)}$
- The goal is to infer the relation between X and Y, i.e. the β_i
- As long as the error series E_t is i.i.d, the usual regression setup with LS-estimates is perfectly fine

→ Caution and specific procedures are required if the errors are correlated!

Zurich University

Dealing with Correlated Errors

- In case of time series regression, the error term E_t is usually correlated and not i.i.d.
- Then, the estimated β_j are still unbiased, but the usual LS-procedure is no longer efficient and the standard errors can be grossly wrong
- There are procedures that correct for correlated errors:
 - Cochrane-Orcutt-Method
 - Generalized Least Squares
- They must be applied in case of correlated errors!

Example 1

A few scenarios, where time series regression is met:

1) "Normal" Time Series

 $(Oxidant)_t = (Temp)_t + (Wind)_t + E_t$

- \rightarrow The data are from 30 consecutive measurement days at L.A.
- → It's plausible that the pollutant levels is influenced by both wind and temperature
- → It's well conceivable that there is day-to-day "memory" in the pollutant levels, which expresses itself in correlated errors

Example 2

A few scenarios, where time series regression is met:

2) Lagged Time Series

 $(Fish Caught)_t = (Young Fish Introduced)_{t-1} + E_t$

- \rightarrow Data may be available from several years
- → It's plausible that the fish caught are influenced by the young fish that were introduced
- → It's well conceivable that there is year-to-year "memory" in the fish levels, which expresses itself in correlated errors

Example 3

A few scenarios, where time series regression is met:

3) Parametric Input Terms (Time Series)

We are already familiar with:

- \rightarrow linear and quadratic trends
- \rightarrow intervention and increasing intervention models
- \rightarrow intervention with diminishing influence

\rightarrow etc.

Zurich University

Time Series Regression Model

$$Y_{t} = \beta_{0} + \beta_{1} x_{t}^{(1)} + \dots + \beta_{q} x_{t}^{(q)} + E_{t}$$

-
$$t = 1, ..., N$$

- no feedback from Y_t onto the predictors (i.e. input series)
- E_t are independent from $x_s^{(j)}$ for all j and all s, t
- E_t (generally) are dependent (e.g. an ARMA(p,q)-process)

Facts When Using Least Squares

In case of correlated errors, the effect on point estimates is:

- the estimated coefficients $\beta_1, ..., \beta_q$ are unbiased
- the estimates are no longer optimal: $Var(\hat{\beta}_j) > \min_* Var(\hat{\beta}_j^*)$

Important is the effect on the standard errors of the estimates:

- $V\hat{a}r(\hat{\beta}_j)$ can be grossly wrong!
- often, the standard errors are underestimated
- too small CIs & spuriously significant results

Zurich University

Simulation Study: Model

We want to study the effect of correlated errors on the quality of estimates when using the least squares approach:

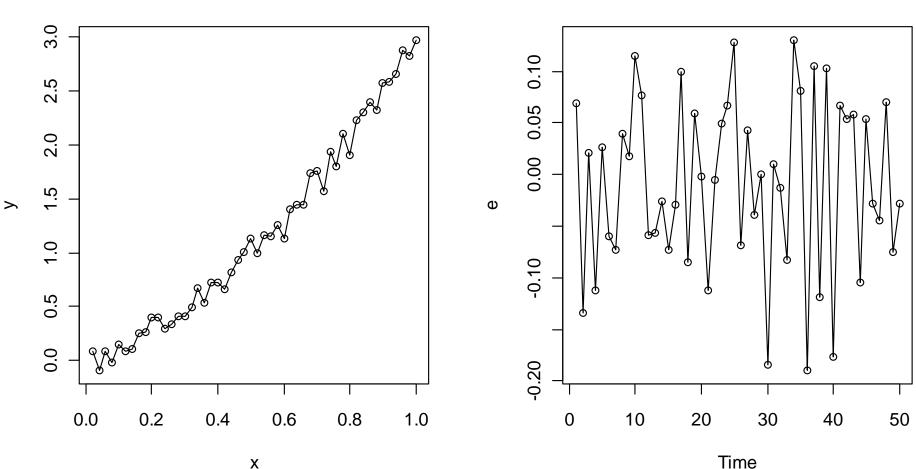
$$x_t = t / 50$$
$$y_t = x_t + 2x_t^2 + E_t$$

where E_t is from an AR(1)-process with $\alpha = -0.65$ and $\sigma = 0.1$.

We generate 100 realizations from this model and estimate the regression coefficient and its standard error by:

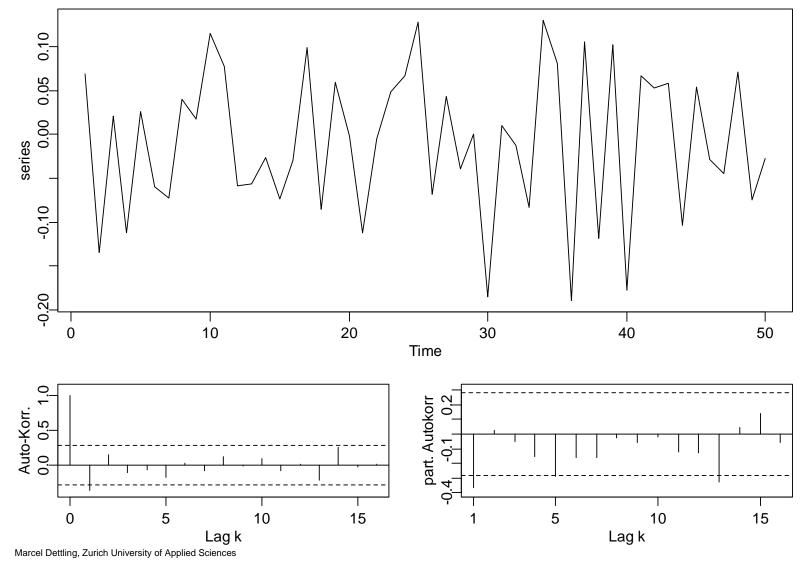
Simulation Study: Series

Series Yt



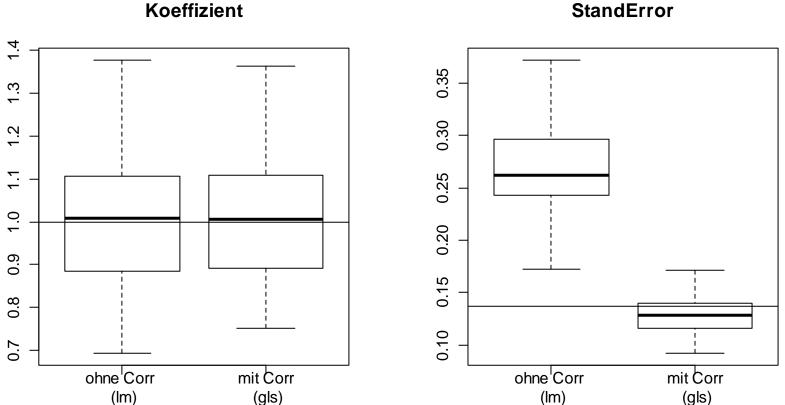
Series Et

Simulation Study: ACF of the Error Term



Zurich University

Simulation Study: Results



StandError

Applied Time Series Analysis FS 2011 – Week 09

Pollutant Example

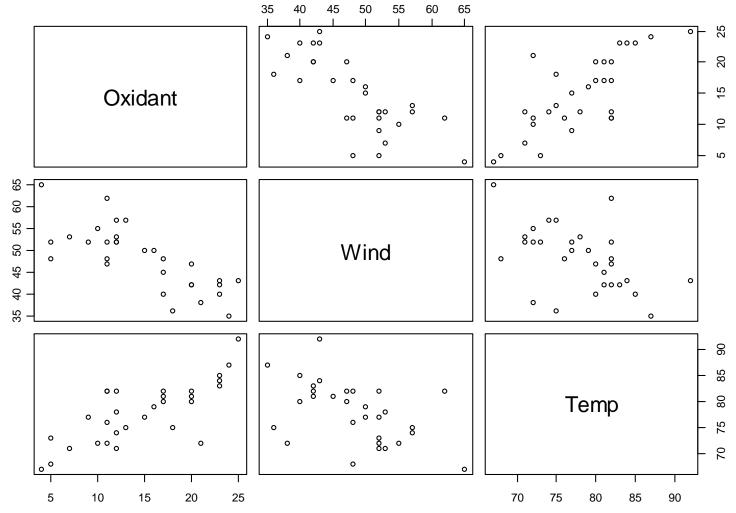
A few scenarios, where time series regression is met:

1) "Normal" Time Series

 $(Oxidant)_t = (Temp)_t + (Wind)_t + E_t$

- \rightarrow The data are from 30 consecutive measurement days at L.A.
- → It's plausible that the pollutant levels is influenced by both wind and temperature
- → It's well conceivable that there is day-to-day "memory" in the pollutant levels, which expresses itself in correlated errors

Pollutant Example



Applied Time Series Analysis FS 2011 – Week 09

Pollutant Example

<pre>> summary(erg.poll,corr=F)</pre>							
Call: lm(formula = Oxidant ~ Wind + Temp, data = pollute)							
Coefficients:							
	Estimate Std. Error t value Pr(> t)						
(Intercept)	-5.20334 11.11810 -0.468 0.644						
Wind	-0.42706 0.08645 -4.940 3.58e-05 ***						
Temp	0.52035 0.10813 4.812 5.05e-05 ***						
Residual standard error: 2.95 on 27 degrees of freedom							
Multiple R-	squared: 0.7773,Adjusted R-squared: 0.7608						

F-statistic: 47.12 on 2 and 27 DF, p-value: 1.563e-09

Applied Time Series Analysis FS 2011 – Week 09

Pollutant Example

> summary(erg.poll,corr=F)

Call: lm(formula = Oxidant ~ Wind + Temp, data = pollute)

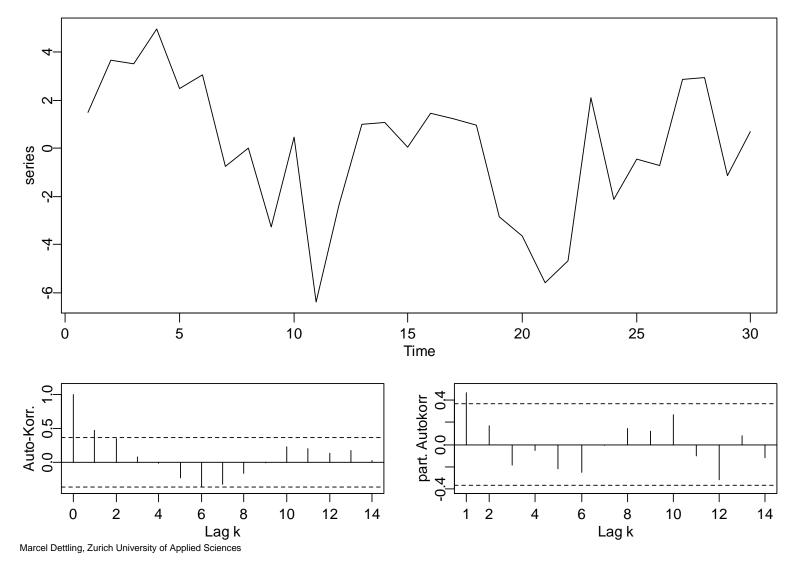
Coefficients:

Estimate Std. Error t value Pr(>|t|)

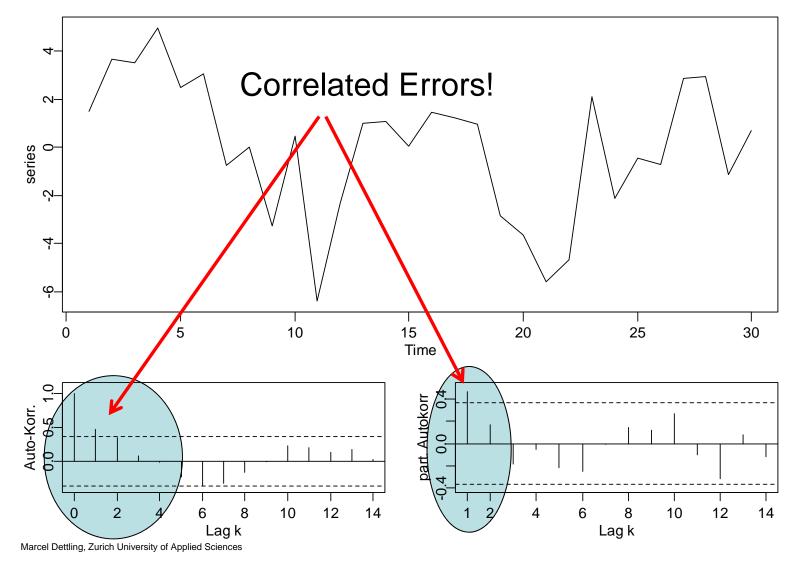
(Intercept)	-5.20334	11.11810	-0.468	0.644
Wind	-0.42706	0.08645	-4,940-3	.58e-05 ***
Temp	0.52035	0.10813	4.812 5	.05e-05 ***

Residual standard error: 2.95 on 27 degrees of freedom Multiple R-squared: 0.7773, Adjusted R-squared: 0.7608 F-statistic: 47.12 on 2 and 27 DF, p-value: 1.563e-09

Pollutant Example



Pollutant Example



Durbin-Watson Test

also see the blackboard...

- The Durbin-Watson approach is a dull test for (auto)correlated errors in regression modeling
- Many statistics software packages automagically yield a decision or p-value for this test
- A rejection of its null hypothesis should always be taken as a serious hint for correlated errors
- A non-rejection doesn't mean much!
- → Better to check ACF/PACF of residuals!

Zurich University

Pollutant Example

We observe clearly correlated errors/residuals in the pollutant example. They need to be taken into account.

The two major options are:

- 1) Cochrane-Orcutt (for AR(p) correlation structure only) stepwise approach: i) β , ii) α , iii) β
- 2) GLS (Generalized Least Squares, for ARMA(p,q)) simultaneous estimation of β and α

Cochrane-Orcutt

Stepwise approach: i) β , ii) α , iii) β

→ see blackboard...

Applied Time Series Analysis FS 2011 – Week 09

Generalized Least Squares

simultaneous estimation of β and α

→ see blackboard...

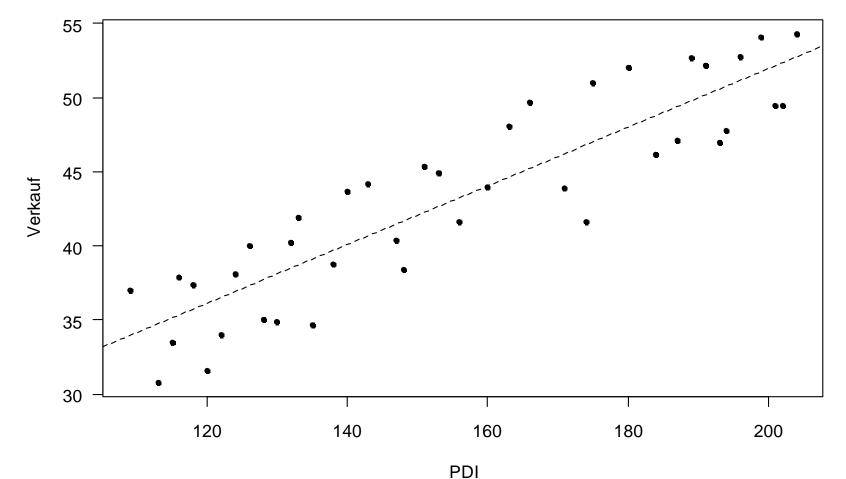
Zurich University

Missing Input Variables

- (Auto-)correlated errors are often caused by the nonpresence of crucial input variables.
- In this case, it is much better to identify the not-yet-present variables and include them in the analysis.
- However, this isn't always possible.
- → regression with correlated errors can be seen as a sort of emergency kit for the case where the non-present variables cannot be added.

Zurich University of Applied Sciences

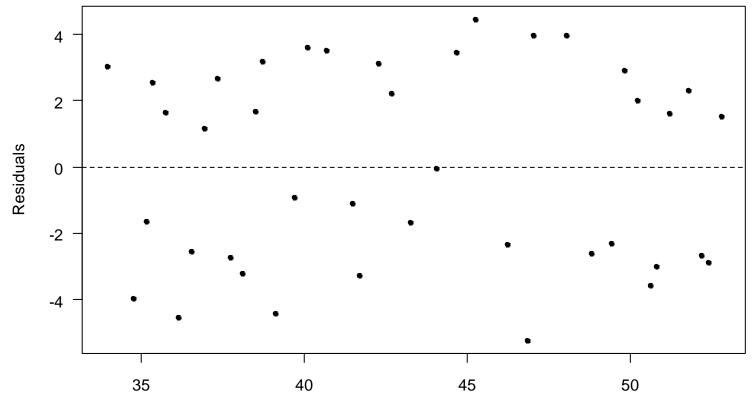
Example: Ski Sales



Ski Sales

Zurich University

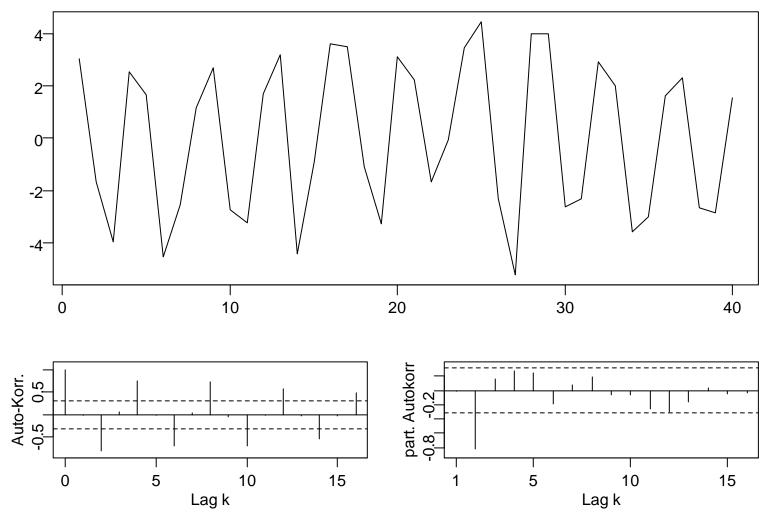
Example: Ski Sales



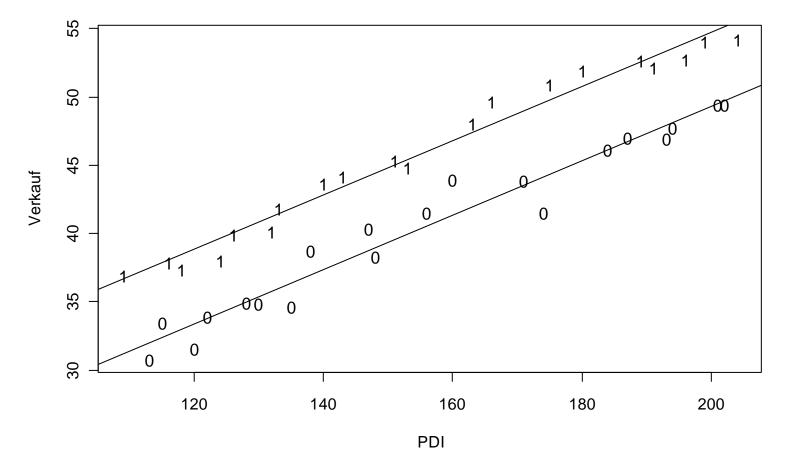
Tukey-Anscombe-Plot

Fitted Values

Example: Ski Sales



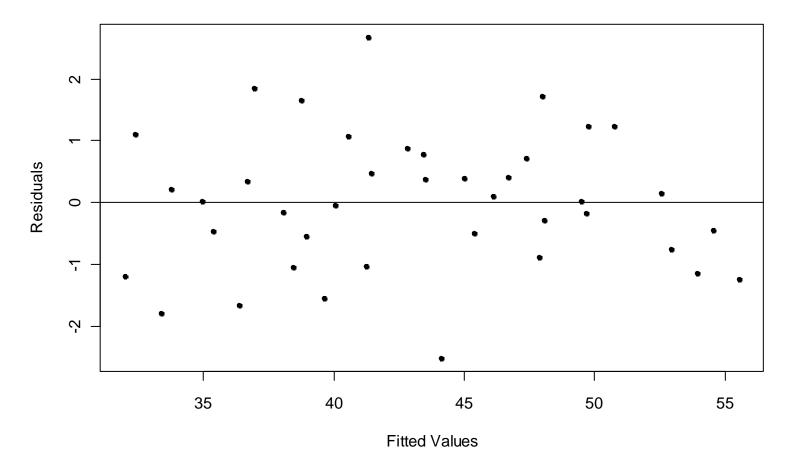
Example: Ski Sales



Applied Time Series Analysis FS 2011 – Week 09

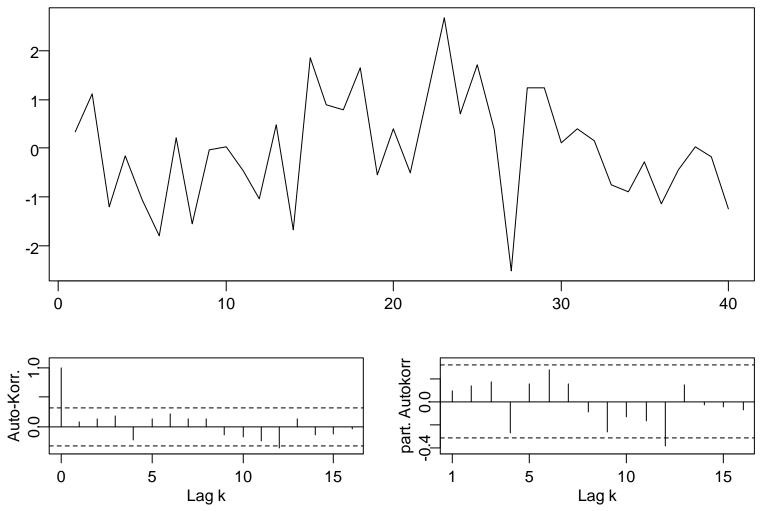
zh aw

Example: Ski Sales



Tukey-Anscombe-Plot

Example: Ski Sales



Zurich University

Ski Sales: Summary

- the first model (sales vs. PDI) showed correlated errors
- the Durbin-Watson test failed to indicate this correlation
- this apparent correlation is caused by ommitting the season
- adding the season removes all error correlation!
- → the emergency kit "time series regression" is, after careful modeling, not even necessary in this example. This is quite often the case!