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Time Series Regression
Idea:
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The Setup
• There is a response time series 

• There is one or several explanatory/descriptive
time series

• The goal is to infer the relation between X and Y, i.e. the

• As long as the error series is i.i.d, the usual regression
setup with LS-estimates is perfectly fine

 Caution and specific procedures are required if
the errors are correlated!
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Dealing with Correlated Errors
• In case of time series regression, the error term

is usually correlated and not i.i.d.

• Then, the estimated      are still unbiased, but the 
usual LS-procedure is no longer efficient and the 
standard errors can be grossly wrong

• There are procedures that correct for correlated errors:
- Cochrane-Orcutt-Method
- Generalized Least Squares

• They must be applied in case of correlated errors!
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Example 1
A few scenarios, where time series regression is met:

1) „Normal“ Time Series

(Oxidant)t = (Temp)t + (Wind)t + Et

 The data are from 30 consecutive measurement days at L.A.

 It‘s plausible that the pollutant levels is influenced by both
wind and temperature

 It’s well conceivable that there is day-to-day “memory” in the 
pollutant levels, which expresses itself in correlated errors 
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Example 2
A few scenarios, where time series regression is met:

2) Lagged Time Series

(Fish Caught)t = (Young Fish Introduced)t-1 + Et

 Data may be available from several years

 It‘s plausible that the fish caught are influenced by the young 
fish that were introduced

 It’s well conceivable that there is year-to-year “memory” in 
the fish levels, which expresses itself in correlated errors 
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Example 3
A few scenarios, where time series regression is met:

3) Parametric Input Terms (Time Series)

We are already familiar with:

 linear and quadratic trends

 intervention and increasing intervention models

 intervention with diminishing influence

 etc.
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Time Series Regression Model

-

- no feedback from onto the predictors (i.e. input series)

- are independent from        for all and all 

- (generally) are dependent (e.g. an ARMA(p,q)-process)
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Facts When Using Least Squares
In case of correlated errors, the effect on point estimates is:

- the estimated coefficients               are unbiased

- the estimates are no longer optimal: 

Important is the effect on the standard errors of the estimates:

- can be grossly wrong!

- often, the standard errors are underestimated

- too small CIs & spuriously significant results

1,..., q 
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Simulation Study: Model
We want to study the effect of correlated errors on the quality of 
estimates when using the least squares approach:

where Et is from an AR(1)-process with               and            .

We generate 100 realizations from this model and estimate the 
regression coefficient and its standard error by:

1) LS
2) GLS

/ 50tx t
22t t t ty x x E  

0.65   0.1 
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Simulation Study: Series
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Simulation Study: ACF of the Error Term
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Simulation Study: Results
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Pollutant Example
A few scenarios, where time series regression is met:

1) „Normal“ Time Series

(Oxidant)t = (Temp)t + (Wind)t + Et

 The data are from 30 consecutive measurement days at L.A.

 It‘s plausible that the pollutant levels is influenced by both
wind and temperature

 It’s well conceivable that there is day-to-day “memory” in the 
pollutant levels, which expresses itself in correlated errors 
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Pollutant Example
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Pollutant Example
> summary(erg.poll,corr=F)

Call: lm(formula = Oxidant ~ Wind + Temp, data = pollute)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -5.20334   11.11810  -0.468    0.644    

Wind        -0.42706    0.08645  -4.940 3.58e-05 ***

Temp         0.52035    0.10813   4.812 5.05e-05 ***

Residual standard error: 2.95 on 27 degrees of freedom

Multiple R-squared: 0.7773, Adjusted R-squared: 0.7608 

F-statistic: 47.12 on 2 and 27 DF,  p-value: 1.563e-09
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Pollutant Example
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Pollutant Example
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Pollutant Example

Correlated Errors!
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Durbin-Watson Test 
also see the blackboard...

• The Durbin-Watson approach is a dull test for (auto)-
correlated errors in regression modeling

• Many statistics software packages automagically yield a 
decision or p-value for this test

• A rejection of its null hypothesis should always be taken as 
a serious hint for correlated errors

• A non-rejection doesn‘t mean much!

 Better to check ACF/PACF of residuals!
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Pollutant Example
We observe clearly correlated errors/residuals in the pollutant
example. They need to be taken into account.

The two major options are:

1) Cochrane-Orcutt (for AR(p) correlation structure only)
stepwise approach: i) ,   ii) ,   iii) 

2) GLS (Generalized Least Squares, for ARMA(p,q))
simultaneous estimation of and










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Cochrane-Orcutt
Stepwise approach: i) ,   ii) ,   iii)

 see blackboard…

 
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Generalized Least Squares
simultaneous estimation of and

 see blackboard…

 
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Missing Input Variables
- (Auto-)correlated errors are often caused by the non-

presence of crucial input variables.

- In this case, it is much better to identify the not-yet-present -
variables and include them in the analysis.

- However, this isn‘t always possible.

 regression with correlated errors can be seen as a sort 
of emergency kit for the case where the non-present 
variables cannot be added.
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Example: Ski Sales
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Example: Ski Sales
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Example: Ski Sales
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Example: Ski Sales
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Example: Ski Sales

35 40 45 50 55

-2
-1

0
1

2

Fitted Values

R
es

id
ua

ls

Tukey-Anscombe-Plot



30Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
FS 2011 – Week 09

Example: Ski Sales
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Ski Sales: Summary
• the first model (sales vs. PDI) showed correlated errors

• the Durbin-Watson test failed to indicate this correlation

• this apparent correlation is caused by ommitting the season

• adding the season removes all error correlation!

 the emergency kit „time series regression“ is, 
after careful modeling, not even necessary in
this example. This is quite often the case!


