Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 08

Marcel Dettling

Institute for Data Analysis and Process Design

Zurich University of Applied Sciences

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, April 11, 2011

Zurich University

ARMA(p,q)-Models

An ARMA(p,q)-model combines AR(p) and MA(q):

$$X_{t} = \alpha_{1}X_{t-1} + \dots + \alpha_{p}X_{t-p} + E_{t} + \beta_{1}E_{t-1} + \dots + \beta_{q}E_{t-q}$$

where E_t are i.i.d. innovations (=a white noise process).

It's easier to write an ARMA(p,q) with the characteristic polynom:

$$\Phi(B)X_t = \Theta(B)E_t \text{, where}$$

$$\Phi(z) = 1 - \alpha_1 z - \dots \alpha_p z^p \text{ is the cP of the AR-part, and}$$

$$\Theta(z) = 1 - \beta_1 z - \dots \beta_q z^q \text{ is the cP of the MA-part}$$

Properties of ACF/PACF in ARMA(p,q)

	ACF	PACF
AR(p)	exponential decay	cut-off at lag p
MA(q)	cut-off at lag q	exponential decay
ARMA(p,q)	as AR(p) for k>q	as MA(q) for k>p

→ all linear time series processes can be approximated by an ARMA(p,q) with possibly large p,q. They are thus are very rich class of models.

Fitting ARMA(p,q)

What needs to be done?

1) Achieve stationarity

 \rightarrow transformations, differencing, modeling, ...

- 2) Choice of the order \rightarrow determining (p,q)
- 3) **Parameter estimation** \rightarrow Estimation of α , β , μ , σ_E^2
- 4) Residual analysis
 → if necessary, repeat 1), and/or 2)-4)

Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 08

Forecasting with ARMA(p,q)

There are 3 main sources of uncertainty:

- Does the data generating model from the past also apply in the future?
- 2) Is the ARMA(p,q)-model we fitted to the data $\{x_1, \ldots, x_n\}$ correctly chosen?
- 3) Are the parameters α , β , σ_{E}^{2} and μ accurately estimated?

→ we will here restrict to short-term forecasting!

How to Forecast?

Probabilistic principle for point forecasts:

$$\hat{X}_{n+k,n} = E\left[X_{n+k} \mid X_1^n\right]$$

 \rightarrow we forecast the expected value, given our observations

Probabilistic principle for prediction intervals:

$$Var(X_{n+k} \mid X_1^n)$$

$$\rightarrow$$
 we use the conditional variance

Zurich University

How to Apply the Principles?

- The principles provide a nice setup, but are only useful and practicable under additional assumptions.
- Whereas for AR(p), knowing the last p observations is sufficient for coming up with a forecast, ARMA(p,q) models require knowledge about the infinite past.
- In practice, one is using recursive formulae

→ see blackboard for the derivation in the MA(1) case!

MA(1) Forecasting: Summary

- We have seen that for an MA(1)-process, the k-step forecast for k>1 is equal to μ .
- In case of k=1, we obtain for the MA(1)-forecast: $\hat{X}_{n+1,n} = \mu + \beta_1 \cdot E[E_n \mid X_1^n]$

The conditional expectation is (too) difficult to compute

• As a trick, we not only condition on observations 1,...,n, but on the infinite past:

$$e_n \coloneqq E[E_n \mid X_{-\infty}^n]$$

Zurich University

MA(1) Forecasting: Summary

• We then write the MA(1) as an AR(∞) and solve the model equation for E_n :

$$E_{n} = \sum_{j=0}^{\infty} (-\beta_{1})^{j} \cdot (X_{n-j} - \mu)$$

- In practice, we plug-in the time series observations x_{n-j} where available. For the "early" times, where we don't have observations, we plug-in $\hat{\mu}$.
- This is of course only an approximation to the true MA(1)forecast, but it works well in practice, because of:

Zurich University

ARMA(p,q) Forecasting

As with MA(1)/MA(q) forecasting, we face problems with

 $E[E_{n+1-j} \mid X_{-\infty}^n]$

which is difficult to compute. We use the same tricks as for MA(1) and obtain

$$\hat{X}_{n+k,n} = \mu + \sum_{i=1}^{p} \alpha_i (E[X_{n+k-i} | X_{-\infty}^n] - \mu) + E[E_{n+k} | X_{-\infty}^n] - \sum_{j=1}^{q} \beta_j E[E_{n+k-j} | X_{-\infty}^n]$$

where ...

zh aw

ARMA(p,q) Forecasting

...where

$\mathbf{\Gamma}[\mathbf{V} \mid \mathbf{V}^n] =$	$\int X_t$	if t≤n
$\boldsymbol{L}[\boldsymbol{\Lambda}_{t} \mid \boldsymbol{\Lambda}_{-\infty}] = \neg$	$\hat{X}_{t,n}$	if t>n

and

with

$$e_{t} = x_{t} - \mu - \sum_{i=1}^{p} \alpha_{i} (x_{t-i} - \mu) + \sum_{j=1}^{q} \beta_{j} e_{t-j}$$

ARMA(p,q) Forecasting: Douglas Fir

ARMA(p,q) Forecasting: Example

Forecasting the Differenced Douglas Fir Series

Time