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ARMA(p,q)-Models
An ARMA(p,q)-model combines AR(p) and MA(q):

where      are i.i.d. innovations (=a white noise process). 

It‘s easier to write an ARMA(p,q) with the characteristic polynom:

, where

is the cP of the AR-part, and

is the cP of the MA-part
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Properties of ACF/PACF in ARMA(p,q)
ACF PACF

AR(p) exponential decay cut-off at lag p

MA(q) cut-off at lag q exponential decay

ARMA(p,q) as AR(p) for k>q as MA(q) for k>p

 all linear time series processes can be approximated by
an ARMA(p,q) with possibly large p,q. They are thus are 
very rich class of models.
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Fitting ARMA(p,q)
What needs to be done?

1) Achieve stationarity
 transformations, differencing, modeling, …

2) Choice of the order
 determining (p,q)

3) Parameter estimation
 Estimation of   

4) Residual analysis
 if necessary, repeat 1), and/or 2)-4) 

2, , , E   
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Forecasting with ARMA(p,q) 
There are 3 main sources of uncertainty:

1) Does the data generating model from the past 
also apply in the future?

2) Is the ARMA(p,q)-model we fitted to the data
correctly chosen?

3) Are the parameters    ,    ,       and
accurately estimated?

 we will here restrict to short-term forecasting!
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How to Forecast?
Probabilistic principle for point forecasts:

 we forecast the expected value, given our observations

Probabilistic principle for prediction intervals:

 we use the conditional variance
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How to Apply the Principles?
• The principles provide a nice setup, but are only useful and 

practicable under additional assumptions.

• Whereas for AR(p), knowing the last p observations is 
sufficient for coming up with a forecast, ARMA(p,q) models 
require knowledge about the infinite past.

• In practice, one is using recursive formulae

 see blackboard for the derivation in the MA(1) case!
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MA(1) Forecasting: Summary
• We have seen that for an MA(1)-process, the k-step

forecast for k>1 is equal to . 

• In case of k=1, we obtain for the MA(1)-forecast:

The conditional expectation is (too) difficult to compute

• As a trick, we not only condition on observations 1,…,n, 
but on the infinite past:
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MA(1) Forecasting: Summary
• We then write the MA(1) as an AR(∞) and solve the model

equation for :

• In practice, we plug-in the time series observations
where available. For the „early“ times, where we don‘t
have observations, we plug-in . 

• This is of course only an approximation to the true MA(1)-
forecast, but it works well in practice, because of:
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ARMA(p,q) Forecasting
As with MA(1)/MA(q) forecasting, we face problems with

which is difficult to compute. We use the same tricks as for 
MA(1) and obtain

where …
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ARMA(p,q) Forecasting
…where

if t≤n

if t>n

and

if t≤n

0 if t>n 
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ARMA(p,q) Forecasting: Douglas Fir
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ARMA(p,q) Forecasting: Example
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Forecasting the Differenced Douglas Fir Series


