Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 05

Marcel Dettling

Institute for Data Analysis and Process Design

Zurich University of Applied Sciences

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, March 21, 2011

Zurich University

Basic Idea for AR-Models

We have a time series where, resp. we model a time series such that the random variable depends on a linear combination of the preceding ones $X_{t-1}, ..., X_{t-p}$, plus a "completely independent" term called innovation E_t .

$$X_{t} = \alpha_{1}X_{t-1} + \dots + \alpha_{p}X_{t-p} + E_{t}$$

p is called the order of the AR-model. We write AR(p). Note that there are some restrictions to E_t .

AR(1)-Model

The simplest model is the AR(1)-model

 $X_t = \alpha_1 X_{t-1} + E_t$

where

$$E_t$$
 is i.i.d with $E[E_t] = 0$ and $Var(E_t) = \sigma_E^2$

Under these conditions, E_t is a white noise process, and we additionally require **causality**, i.e. E_t being an **innovation**:

 E_t is independent of X_s , s < t

Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 05

Causality

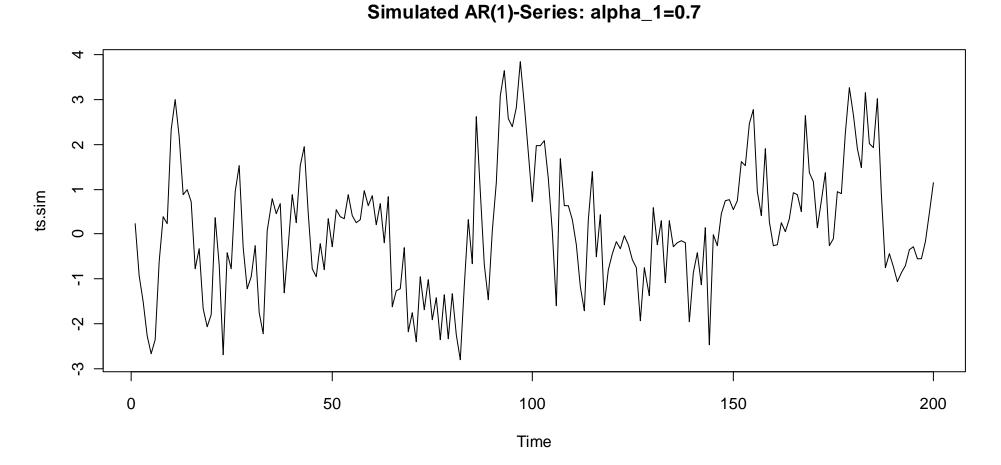
Note that causality is an important property that, despite the fact that it's missing in much of the literature, is necessary in the context of AR-modeling:

- E_t is an innovation process
- All E_t are independent

 $\rightarrow E_t \text{ all are independent}$ $\overleftarrow{E_t} \text{ is an innovation}$

Zurich University

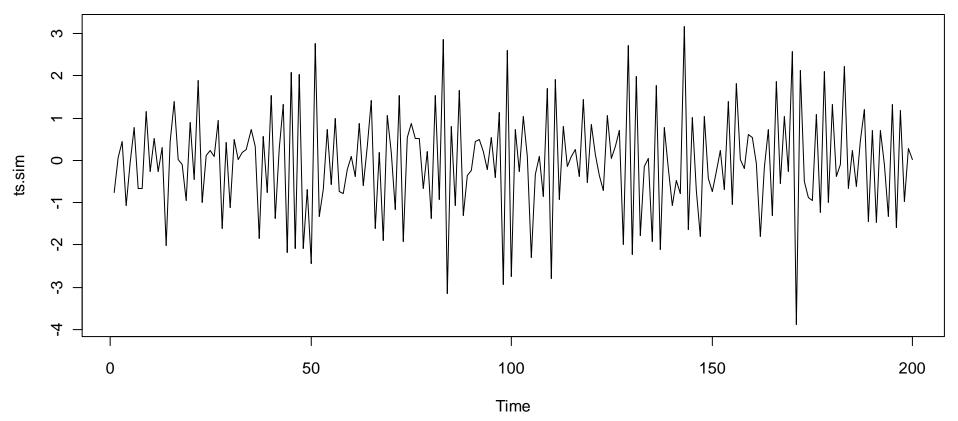
Simulated AR(1)-Series



Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 05

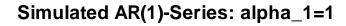
Simulated AR(1)-Series

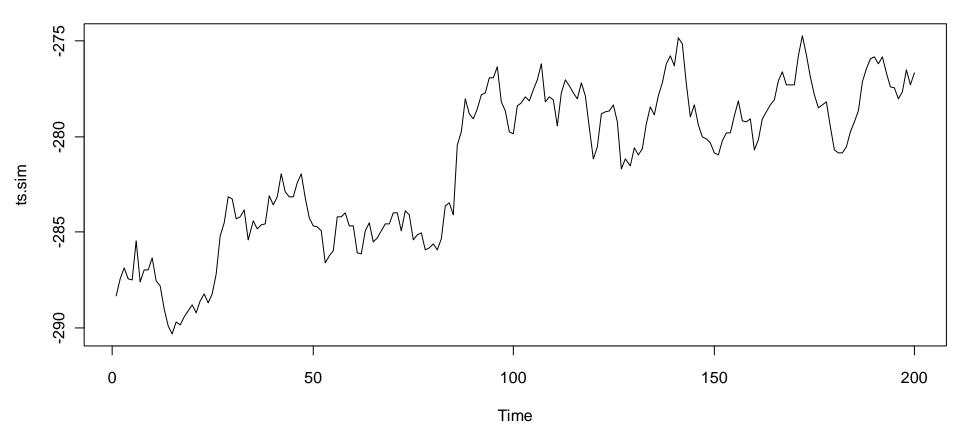


Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 05

Simulated AR(1)-Series





Zurich University

Moments of the AR(1)-Process

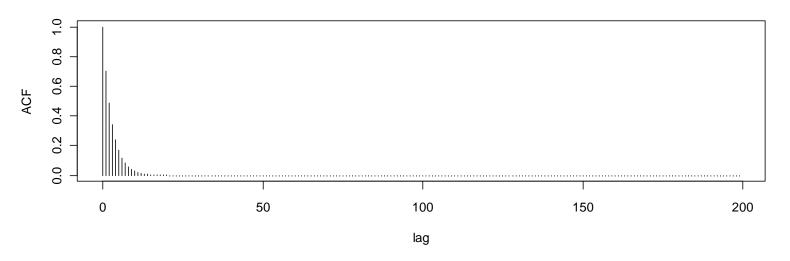
Some calculations with the moments of the AR(1)-process give insight into stationarity and causality

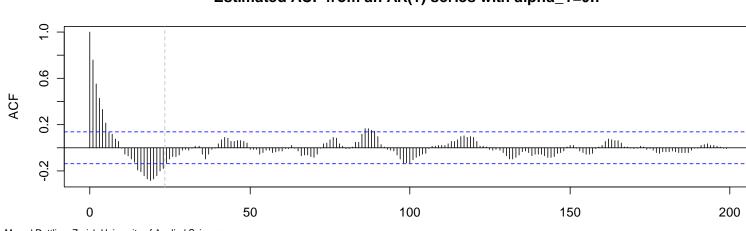
Proof: See blackboard...

zh aw

Theoretical vs. Estimated ACF

True ACF of AR(1)-process with alpha_1=0.7



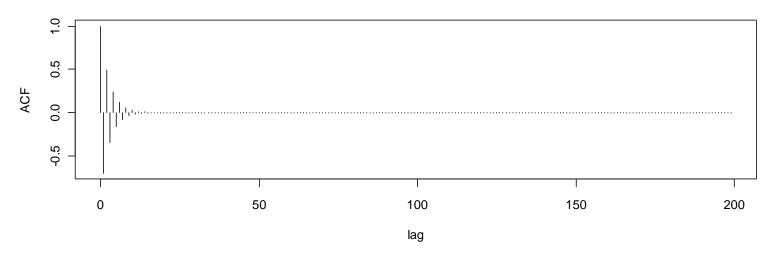


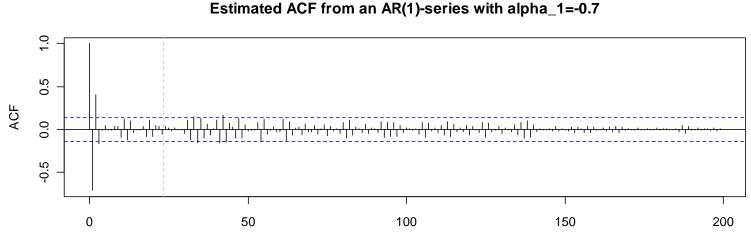
Estimated ACF from an AR(1)-series with alpha_1=0.7

zh aw

Theoretical vs. Estimated ACF

True ACF of AR(1)-process with alpha_1=-0.7





AR(p)-Model

We here introduce the AR(p)-model

$$X_t = \alpha_1 X_{t-1} + \ldots + \alpha_p X_{t-p} + E_t$$

where again

$$E_t$$
 is i.i.d with $E[E_t] = 0$ and $Var(E_t) = \sigma_E^2$

Under these conditions, E_t is a white noise process, and we additionally require **causality**, i.e. E_t being an **innovation**:

$$E_t$$
 is independent of X_s , $s < t$

Zurich University

Mean of AR(p)-Processes

As for AR(1)-processes, we also have that:

 $(X_t)_{t \in T}$ is from a stationary AR(p) => $E[X_t] = 0$

- Thus: If we observe a time series with $E[X_t] = \mu \neq 0$, it cannot be, due to the above property, generated by an AR(p)process
- But: In practice, we can always de-"mean" (i.e. center) a stationary series and fit an AR(p) model to it.

Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 05

Yule-Walker-Equations

On the blackboard...

We observe that there exists a linear equation system built up from the AR(p)-coefficients and the ACF-coefficients of up to lag p. These are called Yule-Walker-Equations.

We can use these equations for fitting an AR(p)-model:

1) Estimate the ACF from a time series

- 2) Plug-in the estimates into the Yule-Walker-Equations
- 3) The solution are the AR(p)-coefficients

Stationarity of AR(p)-Processes

We need:

- 1) $E[X_t] = \mu = 0$
- 2) Conditions on $(\alpha_1, ..., \alpha_p)$

All (complex) roots of the characteristic polynom

$$1 - \alpha_1 z - \alpha_2 z^2 - \alpha_p z^p = 0$$

need to lie outside of the unit circle. This can be checked with R-function polyroot()

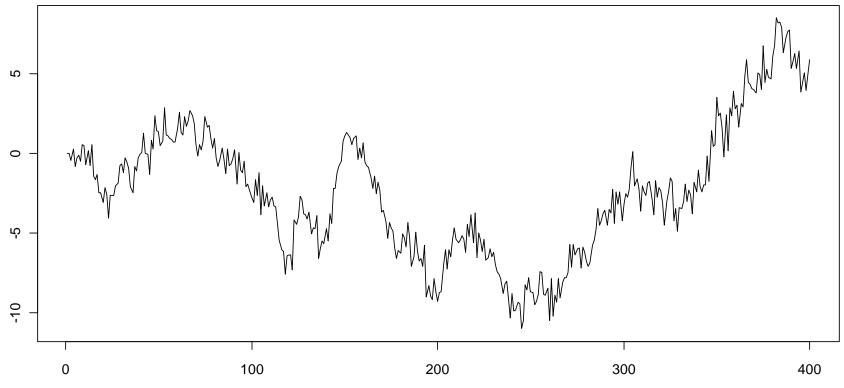
Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 05

A Non-Stationary AR(2)-Process

 $X_{t} = \frac{1}{2}X_{t-1} + \frac{1}{2}X_{t-2} + E_{t}$ is not stationary...

Non-Stationary AR(2)



Marcel Dettling, Zurich University of Applied Sciences

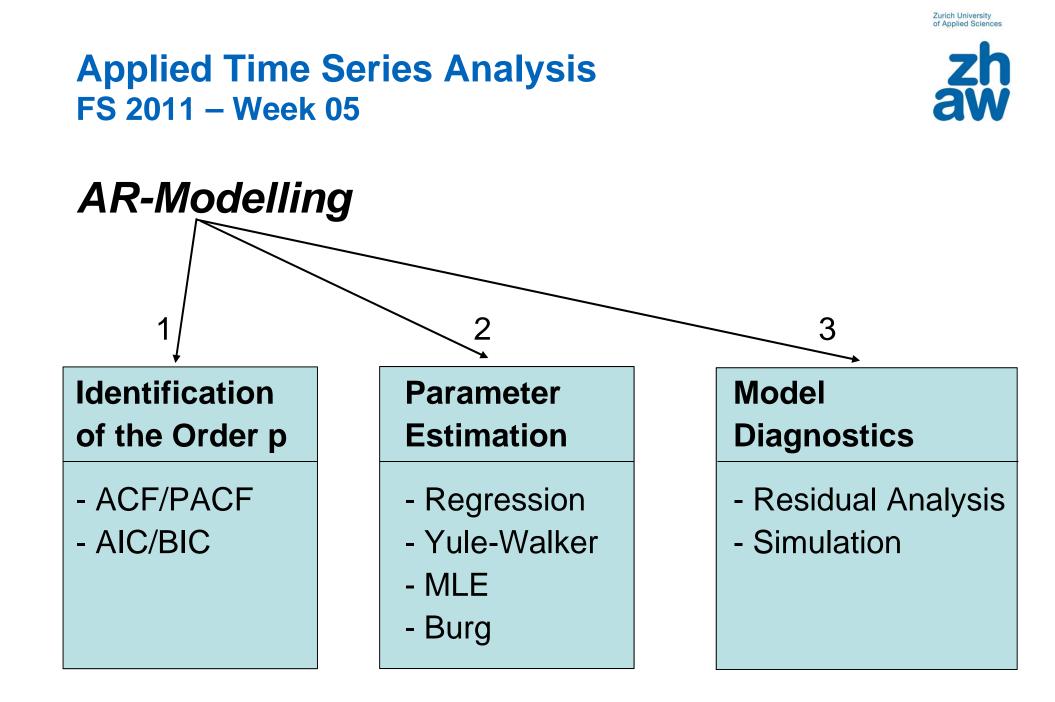
Fitting AR(p)-Models

This involves 3 crucial steps:

- 1) Is an AR(p) suitable, and what is p?
 - will be based on ACF/PACF-Analysis

2) Estimation of the AR(p)-coefficients

- Regression approach
- Yule-Walker-Equations
- and more (MLE, Burg-Algorithm)
- 3) Residual Analysis
 - to be discussed



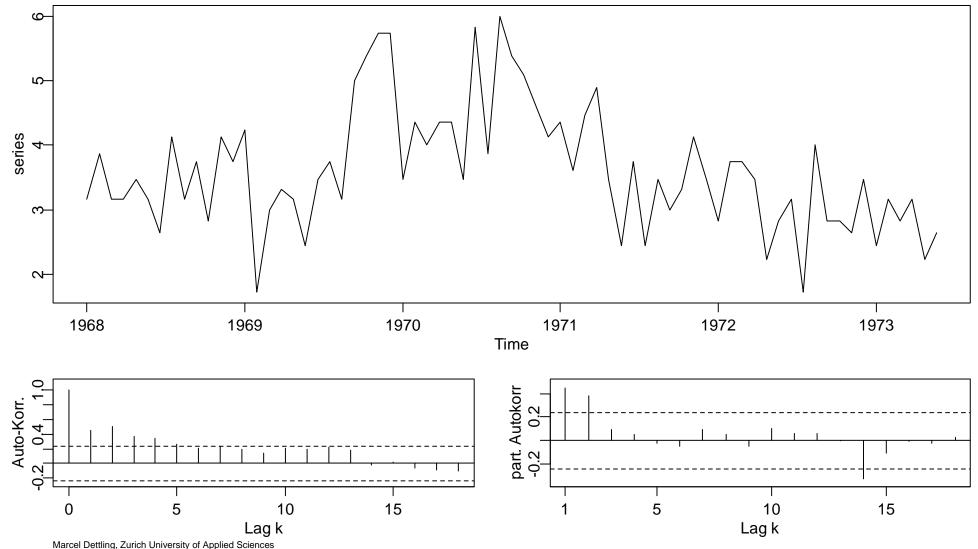
Is an AR(p) suitable, and what is p?

- For all AR(p)-models, the **ACF** decays exponentially quickly, or is an exponentially damped sinusoid.
- For all AR(p)-models, the PACF is equal to zero for all lags k>p.

If what we observe is fundamentally different from the above, it is unlikely that the series was generated from an AR(p)-process. We thus need other models, maybe more sophisticated ones.

Remember that the sample ACF has a few peculiarities and is tricky to interpret!!!

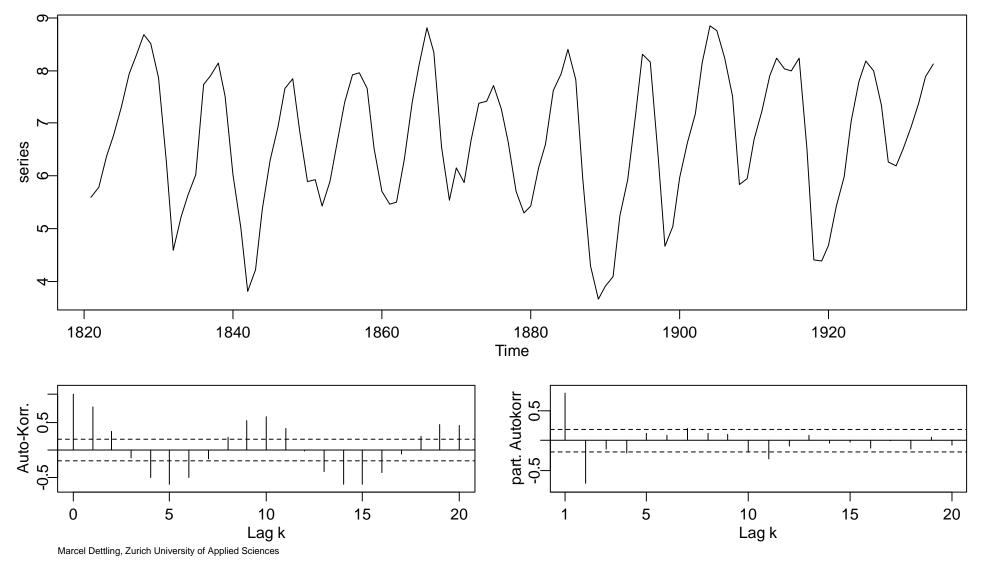
Applied Time Series Analysis FS 2011 – Week 05 Model Order for sqrt(purses)



Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 05 Model Order for log(lynx)

Zurich University



Basic Idea for Parameter Estimation

We consider the stationary AR(p)

$$(X_{t} - \mu) = \alpha_{1}(X_{t-1} - \mu) + \dots + \alpha_{p}(X_{t-p} - \mu) + E_{t}$$

where we need to estimate

- $\alpha_1, ..., \alpha_p$ model parameters
- σ_E^2 innovation variance
- μ general mean

Approach 1: Regression

Response variable: X_t , t = 1,...,nExplanatory variables: X_{t-1} , t = 2,...,n X_{t-2} , t = 3,...,n.... X_{t-n} , t = p+1,...,n

We can now use the regular LS framework. The coefficient estimates then are the estimates for $\alpha_1, ..., \alpha_p$. Moreover, we have

$$\sigma_{E}^{2} = \frac{1}{n - 2p - 1} \sum_{i=1}^{n-p} r_{i}^{2} \text{ and } \hat{\mu} = \frac{\hat{\alpha}_{0}}{1 - \hat{\alpha}_{1} - \hat{\alpha}_{2} - \dots - \hat{\alpha}_{p}}$$

Zurich University

Approach 1: Regression

Preparing the design matrix

- > d.Psqrt <- sqrt(Purses)</pre>
- > d.Psqrt.mat <- ts.union(Y=d.Psqrt,X1=lag(d.Psqrt,-1),X2=lag(d.Psqrt,-2))</pre>
- > d.Psqrt.mat[1:5,]

	Y	X1	X2
[1,]	3.162	NA	NA
[2,]	3.873	3.162	NA
[3,]	3.162	3.873	3.162
[4,]	3.162	3.162	3.873
[5,]	3.464	3.162	3.162

Approach 1: Regression

Fitting the LS model

	Estimate Std.	Error t	value	Pr(> t)	
(Intercept)	1.117	0.448	2.49	0.01513	*
X1	0.283	0.113	2.50	0.01474	*
X2	0.403	0.114	3.53	0.00077	* * *

Approach 1: Regression

Output from the LS model

Residual standard error: 0.8 on 66 degrees of freedom Multiple R-Squared: 0.332, Adjusted R-squared: 0.312 F-statistic: 16.4 on 2 and 66 DF, p-value: 1.64e-006

Thus we have:

$$\hat{\alpha}_{1} = 0.283, \hat{\alpha}_{2} = 0.403$$
$$\hat{\mu} = \frac{1.117}{1 - 0.283 - 0.403} = 3.56$$
$$\hat{\sigma}_{E}^{2} = (0.8004)^{2} = 0.64$$

Overview of the Estimates

	Regression	Yule-Walker	MLE	Burg
\hat{lpha}_1	0.283	-	-	-
$\hat{lpha}_{_2}$	0.403	-	-	-
$\hat{\mu}$	3.56	-	-	-
$\hat{\sigma}_{\scriptscriptstyle E}^2$	0.64	-	-	-

Approach 2: Yule-Walker

The Yule-Walker-Equations yield a LES that connects the true ACF with the true AR-model parameters. We plug-in the estimated ACF coefficients

$$\hat{\rho}(k) = \hat{\alpha}_1 \hat{\rho}(k-1) + ... + \hat{\alpha}_p \hat{\rho}(k-p)$$
 for k=1,...,p

and can solve the LES to obtain the AR-parameter estimates.

 $\hat{\mu}$ is the arithmetic mean of the time series $\hat{\sigma}_{E}^{2}$ is the estimated variance of the residuals

→ see example on the blackboard for an AR(2)-model

Approach 2: Yule-Walker

The Yule-Walker-Estimation is implemented in R

```
> ar.yw(sqrt(purses))
```

Call:

ar.yw.default(x = sqrt(purses))

Coefficients:

1 2

0.2766 0.3817

Order selected 2 sigma² estimated as 0.639

Overview of the Estimates

	Regression	Yule-Walker	MLE	Burg
\hat{lpha}_1	0.283	0.277	_	-
\hat{lpha}_2	0.403	0.382	-	-
$\hat{\mu}$	3.56	3.61	-	-
$\hat{\sigma}_{\scriptscriptstyle E}^{\scriptscriptstyle 2}$	0.64	0.64	-	-

Zurich University

Approach 3: Maximum-Likelihood-Estimation

- **Idea**: Determine the parameters such that, given the observed time series $x_1, ..., x_n$, the resulting model is the most plausible (i.e. the most likely) one.
- → This requires the choice of a probability distribution for the time series $X = (X_1, ..., X_n)$

Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 05

Approach 3: Maximum-Likelihood-Estimation

If we assume the AR(p)-model

$$(X_{t} - \mu) = \alpha_{1}(X_{t-1} - \mu) + \dots + \alpha_{p}(X_{t-p} - \mu) + E_{t}$$

and i.i.d. normally distributed innovations

$$E_t \sim N(0, \sigma_E^2)$$

the time series vector has a multivariate normal distribution

$$X = (X_1, ..., X_n) \sim N(\mu \cdot \underline{1}, V)$$

with covariance matrix V that depends on the model parameters α and $\hat{\sigma}_{E}^{2}$.

Approach 3: Maximum-Likelihood-Estimation

We then maximize the density of the multivariate normal distribution with respect to the parameters

$$lpha$$
 , μ and $\hat{\sigma}_{_E}^2$.

The observed x-values are hereby regarded as fixed values.

This is a highly complex non-linear optimization problem that requires sophisticated algorithms.

Zurich University

Approach 3: Maximum-Likelihood-Estimation

- > r.Pmle <- arima(d.Psqrt,order=c(2,0,0),include.mean=T)</pre>
- > r.Pmle

Call: arima(x=d.Psqrt, order=c(2,0,0), include.mean=T)

Coefficients:

	ar1	ar2	intercept	
	0.275	0.395	3.554	
s.e.	0.107	0.109	0.267	
sigma	$^{2} = 0.$	6: log	likelihood = -82.9,	aic = 173.8

Overview of the Estimates

	Regression	Yule-Walker	MLE	Burg
$\hat{lpha}_{_1}$	0.283	0.277	0.275	-
\hat{lpha}_2	0.403	0.382	0.395	-
$\hat{\mu}$	3.56	3.61	3.55	-
$\hat{\sigma}_{\scriptscriptstyle E}^{\scriptscriptstyle 2}$	0.64	0.64	0.6	-

Zurich University

Approach 4: Burg's Algorithm

- Idea: Use non-linear optimization to minimize the in-sample forecasting error of a time-reversible stationary process.
- → This estimation is distribution free!

$$\sum_{t=p+1}^{n} \left\{ \left(X_{t} - \sum_{k=1}^{p} \alpha_{k} X_{t-k} \right)^{2} + \left(X_{t-p} - \sum_{k=1}^{p} \alpha_{k} X_{t-p+k} \right)^{2} \right\}$$

In R: > ar.burg(d.Psqrt, order=2, demean=TRUE)

Overview of the Estimates

	Regression	Yule-Walker	MLE	Burg
$\hat{lpha}_{_1}$	0.283	0.277	0.275	0.272
\hat{lpha}_2	0.403	0.382	0.395	0.397
$\hat{\mu}$	3.56	3.61	3.55	3.61
$\hat{\sigma}_{\scriptscriptstyle E}^2$	0.64	0.64	0.6	0.6

Summary of Estimation Methods Regression:

- + simple, no specific procedures required
- resulting AR(p) non-stationary, distribution assumption

Yule-Walker:

- + easy to understand, no specific procedures required
- estimates will be biased, especially for short series

MLE:

- + solves the problem "as a whole", good theory behind
- heavy computation, convergence, distribution assumption

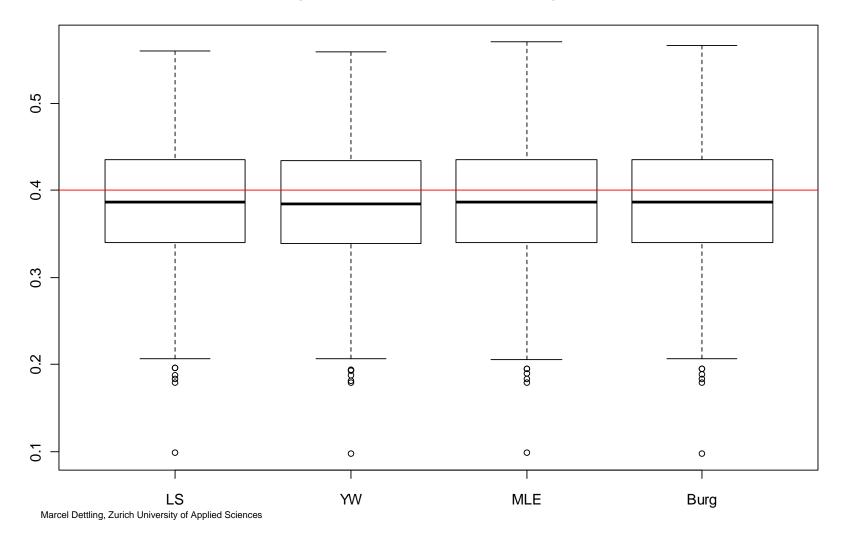
Burg:

+ prediction oriented, no distribution assumption

Zurich University of Applied Sciences

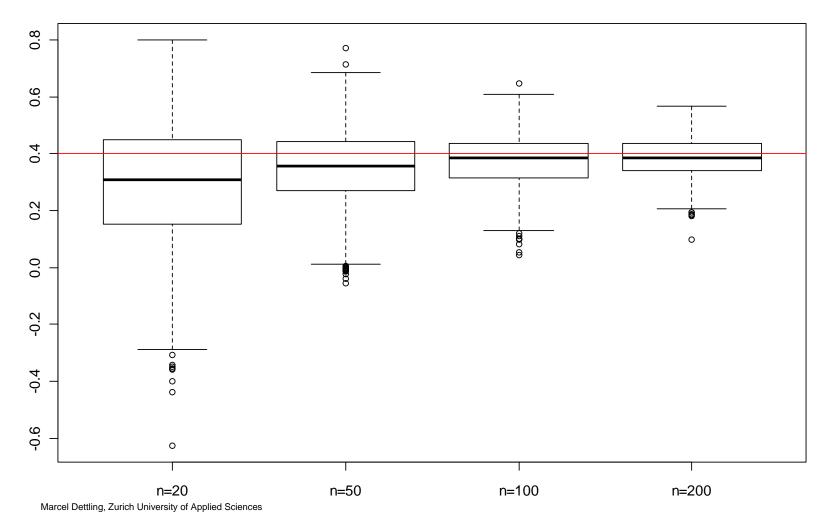
Comparison: Alpha Estimation vs. Method

Comparison of Methods: n=200, alpha=0.4



Comparison: Alpha Estimation vs. n

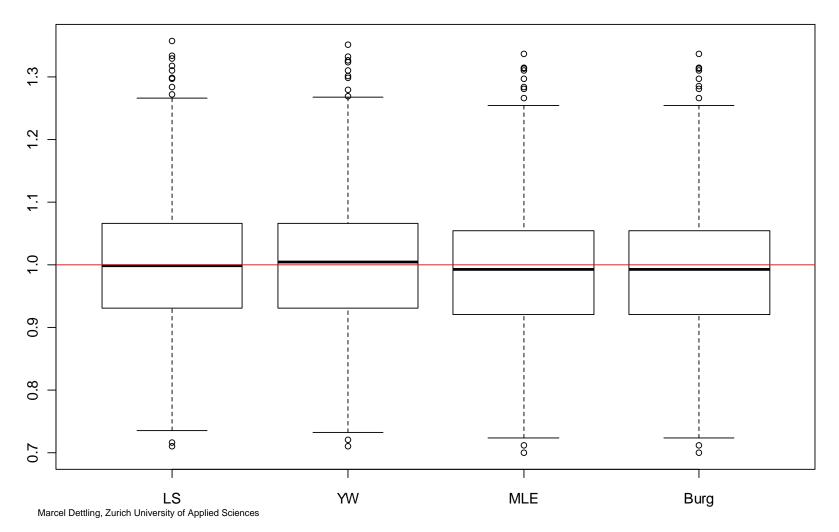
Comparison for Series Length n: alpha=0.4, method=Burg



Zurich University of Applied Sciences

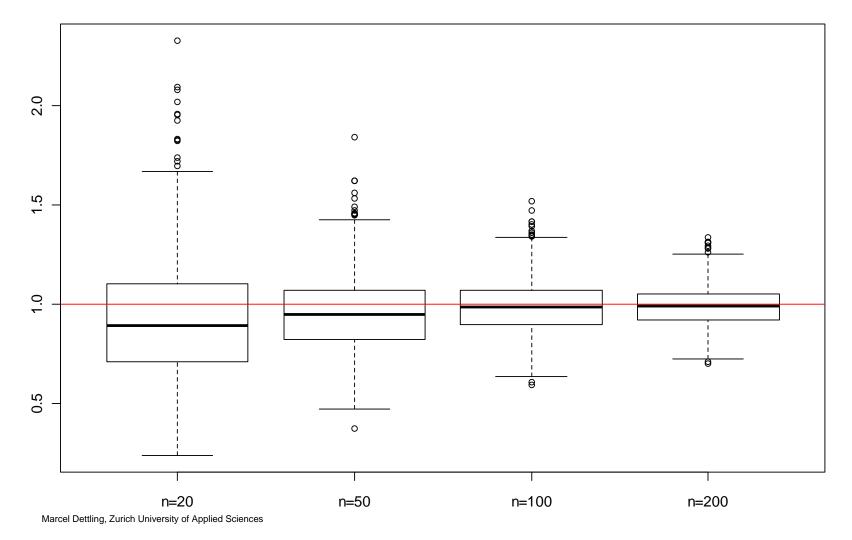
Comparison: Sigma Estimation vs. Method

Comparison of Methods: n=200, sigma=1



Comparison: Sigma Estimation vs. n

Comparison for Series Length n: sigma=1, method=Burg



Zurich University

Variance of the Arithmetic Mean

If we estimate the mean of a time series without taking into account the dependency, the standard error will be flawed.

This leads to misinterpretation of tests and confidence intervals and therefore needs to be corrected.

The standard error of the mean can both be over-, but also underestimated. This depends on the ACF of the series.

$$Var(\mu) = \frac{1}{n^2} \gamma(0) \left(n + 2 \cdot \sum_{k=1}^{n-1} (n-k) \cdot \gamma(k) \right)$$

Zurich University

Computation in Practice

For adjusting the variance of the arithmetic mean do either:

1) Estimate the theoretical ACF from the estimated AR-model

> ARMAacf(ar = ar.coef, lag.max = r, pacf = FALSE)
and plug-in the result into the formula

2) Work with function arima()

> arima(sqrt(purses),order=c(2,0,0),include.mean=T)

ar1 ar2 intercept 0.2745 0.3947 3.5544

s.e. 0.1075 0.1089 0.2673

This directly gives the mean's standard deviation.

Model Diagnostics

What we do here is Residual Analysis:

",residuals" = ",estimated innovations"
=
$$\hat{E}_t$$

= $(x_t - \hat{\mu}) - (\hat{\alpha}_1(x_{t-1} - \hat{\mu}) - ... - \hat{\alpha}_p(x_{t-p} - \hat{\mu}))$

Remember the assumptions we made:

$$E_t$$
 i.i.d, $E[E_t] = 0$, $Var(E_t) = \sigma_E^2$
and probably
 $E_t \sim N(0, \sigma_E^2)$

Model Diagnostics

We check the assumptions we made with the following means:

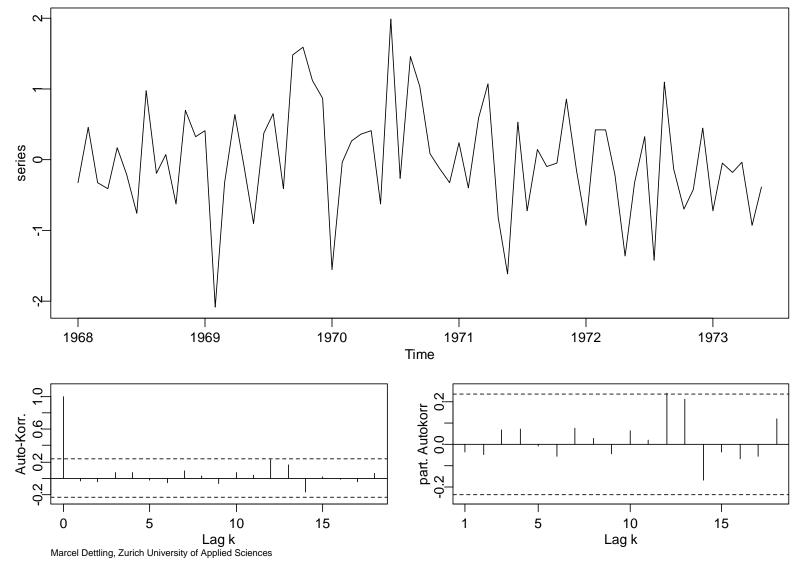
- a) Time series plot of \hat{E}_t
- b) ACF/PACF plot of \hat{E}_t
- c) QQ-plot of \hat{E}_t

\rightarrow The innovation time series \hat{E}_t should look like white noise

Purses example:

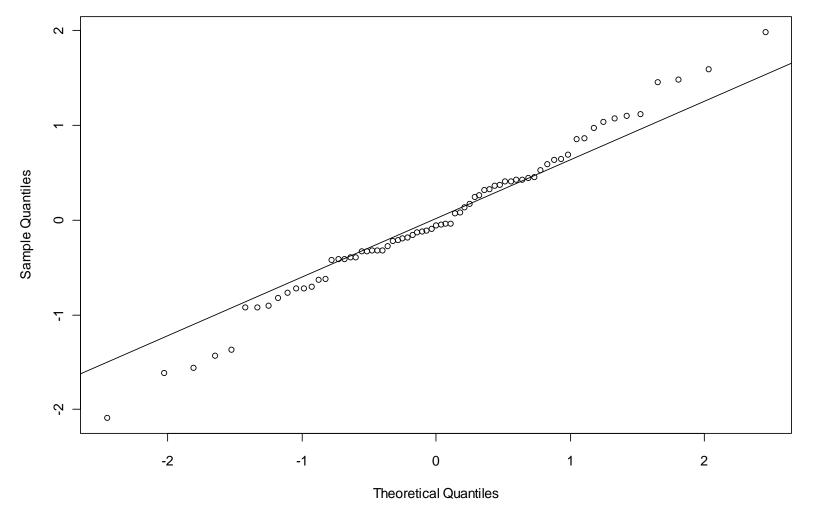
fit <- arima(sqrt(purses), order=c(2,0,0), include.mean=T)
f.acf(resid(fit))</pre>

Model Diagnostics: sqrt(purses) data, AR(2)



Model Diagnostics: sqrt(purses) data, AR(2)

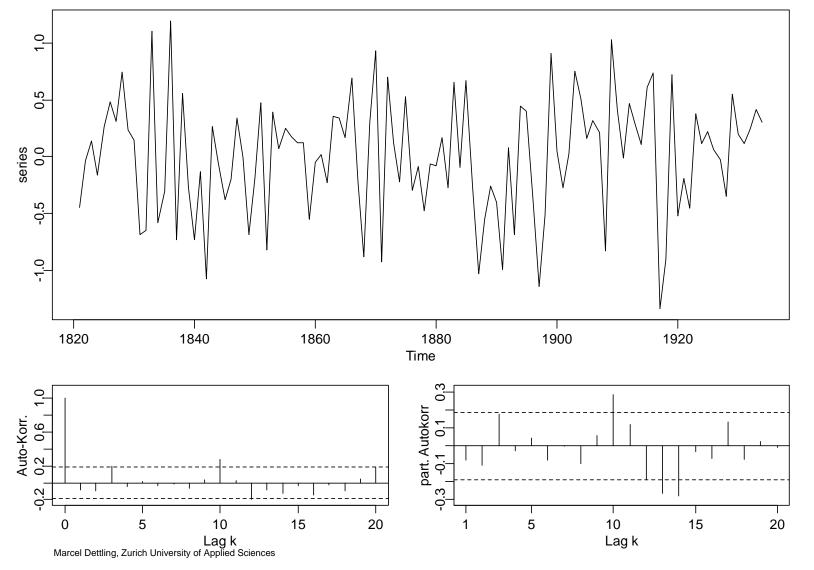
Normal Q-Q Plot



Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 05

Model Diagnostics: log(lynx) data, AR(2)

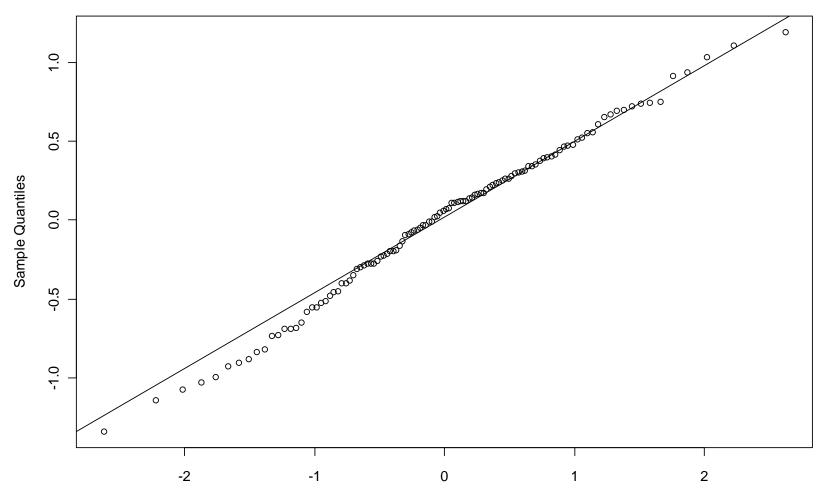


Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 05

Model Diagnostics: log(lynx) data, AR(2)

Normal Q-Q Plot



Theoretical Quantiles

If several alternative models show satisfactory residuals, using the information criteria AIC and/or BIC can help to choose the most suitable one:

> $AIC = -2\log(L) + 2p$ BIC = $-2\log(L) + 2\log(n)p$

where

AIC/BIC

 $L(\alpha, \mu, \sigma^2) = f(x, \alpha, \mu, \sigma^2) =$ "Likelihood Function" p is the number of parameters and equals p or p+1 n is the time series length

Goal: Minimization of AIC and/or BIC

Marcel Dettling, Zurich University of Applied Sciences

Zurich University

We need (again) a distribution assumption in order to compute the AIC and/or BIC criteria. Mostly, one relies again on i.i.d. normally distributed innovations. Then, the criteria simplify to:

$$AIC = n \log(\hat{\sigma}_E^2) + 2p$$

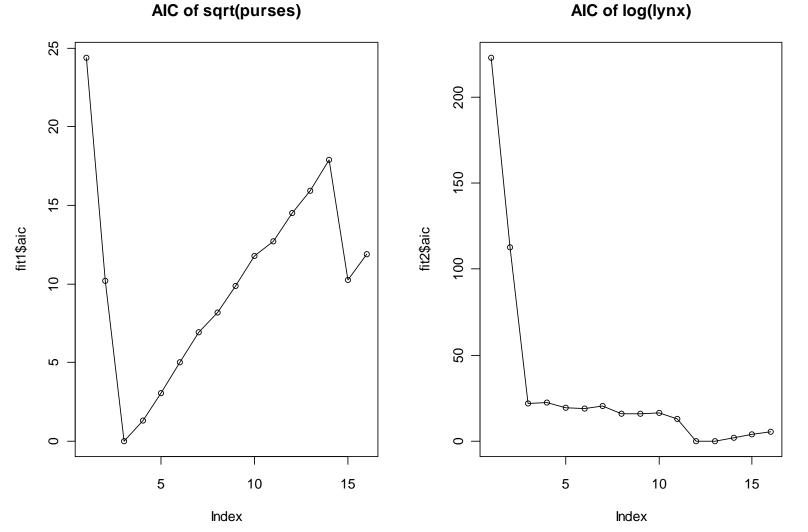
BIC = $n \log(\hat{\sigma}_E^2) + 2\log(n)p$

Remarks:

AIC/BIC

- \rightarrow AIC tends to over-, BIC to underestimate the true p
- → Plotting AIC/BIC values against p can give further insight.
 One then usually chooses the model where the last significant decrease of AIC/BIC was observed

AIC/BIC



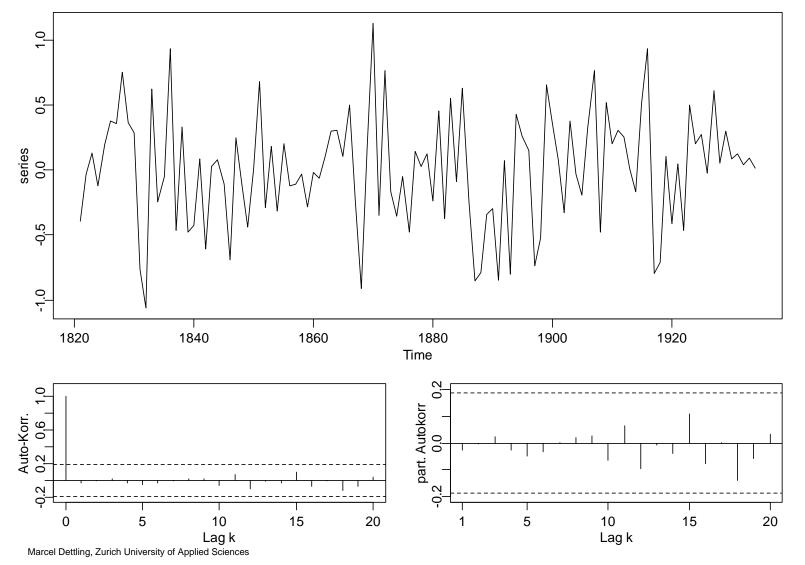
zh aw

Zurich University of Applied Sciences

Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 05

Model Diagnostics: log(lynx) data, AR(11)



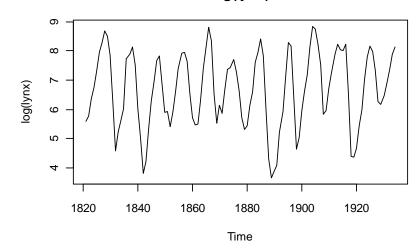
Zurich University of Applied Sciences

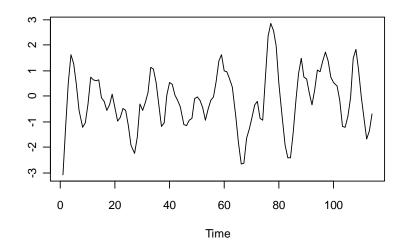
Diagnostics by Simulation

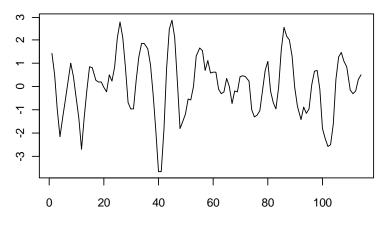
As a last check before a model is called appropriate, simulating from the estimated coefficients and visually inspecting the resulting series (without any prejudices) to the original can be done.

The simulated series should "look like" the original. If this is not the case, the model failed to capture (some of) the properties of the original data.

Applied Time Series Analysis FS 2011 – Week 05 Diagnostics by Simulation, AR(2)

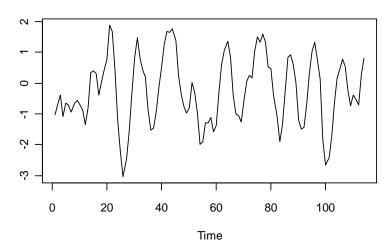




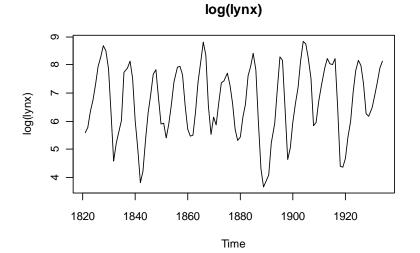


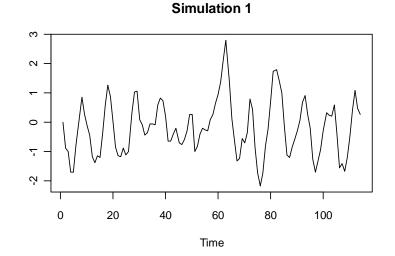
Time Marcel Dettling, Zurich University of Applied Sciences

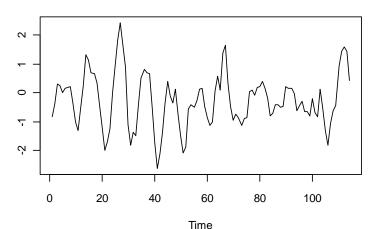
Simulation 3

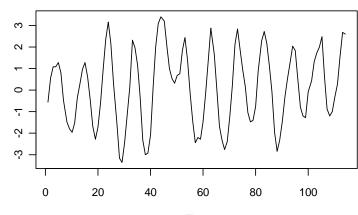


Applied Time Series Analysis FS 2011 – Week 05 Diagnostics by Simulation, AR(11)









Marcel Dettling, Zurich University of Applied Sciences

Time