Zurich University of Applied Sciences

zh

Applied Time Series Analysis FS 2011 – Week 04

Marcel Dettling

Institute for Data Analysis and Process Design

Zurich University of Applied Sciences

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, March 14, 2011

Marcel Dettling, Zurich University of Applied Sciences

Where are we?

For most of the rest of this course, we will deal with (weakly) stationary time series. They have the following properties:

- $E[X_t] = \mu$
- $Var(X_t) = \sigma^2$
- $Cov(X_t, X_{t+h}) = \gamma_h$

If a time series is non-stationary, we know how to decompose into deterministic and stationary, random part.

Our forthcoming goals are:

- understanding the dependency in a stationary series
- modeling this dependency and generate forecasts

Autocorrelation

The aim of this section is to explore the dependency structure within a time series.

Def: Autocorrelation

$$Cor(X_{t+k}, X_t) = \frac{Cov(X_{t+k}, X_t)}{\sqrt{Var(X_{t+k}) \cdot Var(X_t)}}$$

The autocorrelation is a dimensionless measure for the amount of linear association between the random variables collinearity between the random variables X_{t+k} and X_t .

Autocorrelation Estimation: lag k

How does it work?

→ Plug-in estimate with sample covariance

$$\hat{\rho}(k) = \frac{\hat{\gamma}(k)}{\hat{\gamma}(0)} = \frac{Cov(X_t, X_{t+k})}{Var(X_t)}$$

where
$$\hat{\gamma}(k) = \frac{1}{n} \sum_{s=1}^{n-k} (x_{s+k} - \overline{x})(x_s - \overline{x})$$

and
$$\overline{x} = \frac{1}{n} \sum_{t=1}^{n} x_t$$

Application: Variance of the Arithmetic Mean

Practical problem: we need to estimate the mean of a realized/observed time series. We would like to attach a standard error.

- If we estimate the mean of a time series without taking into account the dependency, the standard error will be flawed.
- This leads to misinterpretation of tests and confidence intervals and therefore needs to be corrected.
- The standard error of the mean can both be over-, but also underestimated. This depends on the ACF of the series.
- → For the derivation, see the blackboard...

Outlook to AR(p)-Models

Suppose that Z_t is an i.i.d random process with zero mean and variance σ_Z^2 . Then a random process X_t is said to be an autoregressive process of order p if

$$X_{t} = \alpha_{1}X_{t-1} + ... + \alpha_{p}X_{t-p} + Z_{t}$$

This is similar to a multiple regression model, but X_t is regressed not on independent variables, but on past values of itself. Hence the term auto-regressive.

We use the abbreviation AR(p).

of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 04

Partial Autocorrelation Function (PACF)

The k^{th} partial autocorrelation coefficient π_k is defined as the correlation between the random variables X_{t+k} and X_t , given all the values in between.

$$\pi_k = Cor(X_{t+k}, X_t \mid X_{t+1} = X_{t+1}, ..., X_{t+k-1} = X_{t+k-1})$$

Their meaning is best understood by drawing an analogy to simple and multiple linear regression. The ACF measures the "simple" dependence between X_{t+k} and X_t , whereas the PACF measures that dependence in a "multiple" fashion.

Facts About the PACF and Estimation

We have:

$$\bullet \quad \pi_1 = \rho_1$$

•
$$\pi_2 = \frac{\rho_2 - \rho_1^2}{1 - \rho_1^2}$$
 for AR(1) models, we have $\pi_2 = 0$, because $\rho_2 = \rho_1^2$

 For estimating the PACF, we utilize the fact that for any AR(p) model, we have: $\pi_p = \alpha_p$ and $\pi_k = 0$ for all k > p.

Thus, for finding $\hat{\pi}_{p}$, we fit an AR(p) model to the series for various orders p and set $\hat{\pi}_p = \hat{\alpha}_p$

Facts about the PACF

- Estimation of the PACF is implemented in R.
- The first PACF coefficient is equal to the first ACF coefficient.
 Subsequent coefficients are not equal, but can be derived from each other.
- For a time series generated by an AR(p)-process, the p^{th} PACF coefficient is equal to the p^{th} AR-coefficient. All PACF coefficients for lags k>p are equal to 0.
- Confidence bounds also exist for the PACF.

Basics of Modeling

Simulation

(Time Series) Model → Data

Estimation

Inference Residual Analysis

Data → (Time Series) Model

Marcel Dettling, Zurich University of Applied Sciences

A Simple Model: White Noise

A time series $(W_1, W_2, ..., W_n)$ is a White Noise series if the random variables $W_1, W_2, ...$ are independent and identically distributed with mean zero.

This imples that all variables $W_{_t}$ have the same variance $\sigma_{_W}^2$, and

$$Cov(W_i, W_j) = 0$$
 for all $i \neq j$.

Thus, there are no autocorrelations either: $\rho_k = 0$ for all $k \neq 0$.

If in addition, the variables also follow a Gaussian distribution, i.e. $W_t \sim N(0, \sigma_W^2)$, the series is called Gaussian White Noise.

Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 04

Time Series Modeling

There is a wealth of time series models

AR autoregressive model

MA moving average model

ARMA combination of AR & MA

- ARIMA non-stationary ARMAs

- SARIMA seasonal ARIMAs

- . . .

Autoregressive models are among the simplest and most intuitive time series models that exist.

Marcel Dettling, Zurich University of Applied Sciences

Basic Idea for AR-Models

We have a time series where, resp. we model a time series such that the random variable depends on a linear combination of the preceding ones $X_{t-1},...,X_{t-p}$, plus a "completely independent" term called innovation E_t .

$$X_{t} = \alpha_{1}X_{t-1} + ... + \alpha_{p}X_{t-p} + E_{t}$$

p is called the order of the AR-model. We write AR(p). Note that there are some restrictions to E_t .

Marcel Dettling, Zurich University of Applied Sciences

AR(1)-Model

The simplest model is the AR(1)-model

$$X_{t} = \alpha_{1} X_{t-1} + E_{t}$$

where

$$E_t$$
 is i.i.d with $E[E_t] = 0$ and $Var(E_t) = \sigma_E^2$

Under these conditions, E_t is a white noise process, and we additionally require **causality**, i.e. E_t being an **innovation**:

$$E_t$$
 is independent of X_s , $s < t$

Causality

Note that causality is an important property that, despite the fact that it's missing in much of the literature, is necessary in the context of AR-modeling:

 E_{t} is an innovation process

All E_t are independent

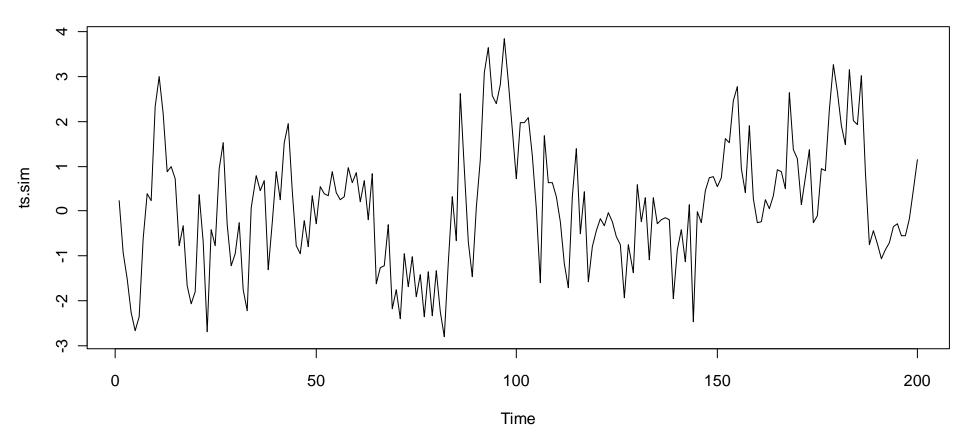
 $\rightarrow E_{t}$ all are independent

 E_t is an innovation

Marcel Dettling, Zurich University of Applied Sciences

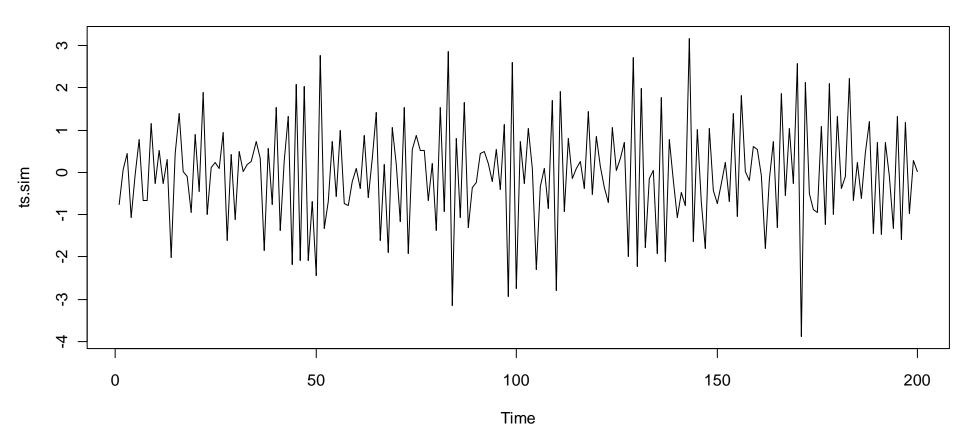
Simulated AR(1)-Series

Simulated AR(1)-Series: alpha_1=0.7



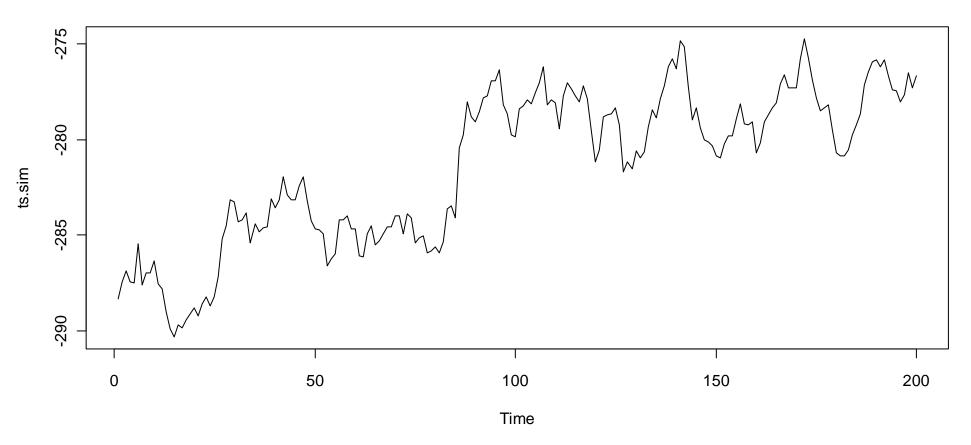
Simulated AR(1)-Series

Simulated AR(1)-Series: alpha_1=-0.7



Simulated AR(1)-Series

Simulated AR(1)-Series: alpha_1=1



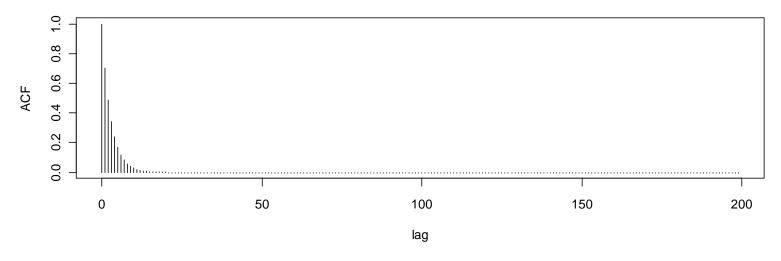
Moments of the AR(1)-Process

Some calculations with the moments of the AR(1)-process give insight into stationarity and causality

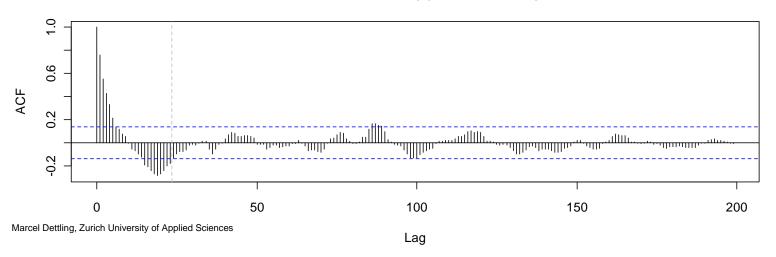
Proof: See blackboard...

Theoretical vs. Estimated ACF

True ACF of AR(1)-process with alpha_1=0.7

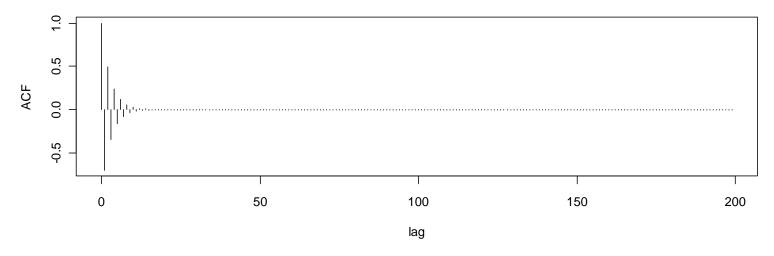


Estimated ACF from an AR(1)-series with alpha_1=0.7

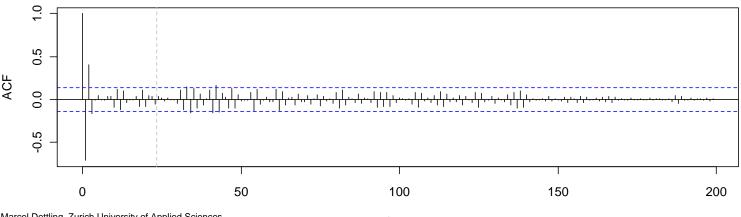


Theoretical vs. Estimated ACF

True ACF of AR(1)-process with alpha_1=-0.7



Estimated ACF from an AR(1)-series with alpha_1=-0.7



AR(p)-Model

We here introduce the AR(p)-model

$$X_{t} = \alpha_{1}X_{t-1} + ... + \alpha_{p}X_{t-p} + E_{t}$$

where again

$$E_t$$
 is i.i.d with $E[E_t] = 0$ and $Var(E_t) = \sigma_E^2$

Under these conditions, E_t is a white noise process, and we additionally require **causality**, i.e. E_t being an **innovation**:

$$E_t$$
 is independent of X_s , $s < t$

Mean of AR(p)-Processes

As for AR(1)-processes, we also have that:

 $(X_t)_{t \in T}$ is from a stationary AR(p) => $E[X_t] = 0$

Thus: If we observe a time series with $E[X_t] = \mu \neq 0$, it cannot be, due to the above property, generated by an AR(p)-process

But: In practice, we can always de-"mean" (i.e. center) a stationary series and fit an AR(p) model to it.

Yule-Walker-Equations

On the blackboard...

We observe that there exists a linear equation system built up from the AR(p)-coefficients and the ACF-coefficients of up to lag p. These are called Yule-Walker-Equations.

We can use these equations for fitting an AR(p)-model:

- 1) Estimate the ACF from a time series
- 2) Plug-in the estimates into the Yule-Walker-Equations
- 3) The solution are the AR(p)-coefficients

Stationarity of AR(p)-Processes

We need:

1)
$$E[X_t] = \mu = 0$$

2) Conditions on $(\alpha_1,...,\alpha_p)$

All (complex) roots of the characteristic polynom

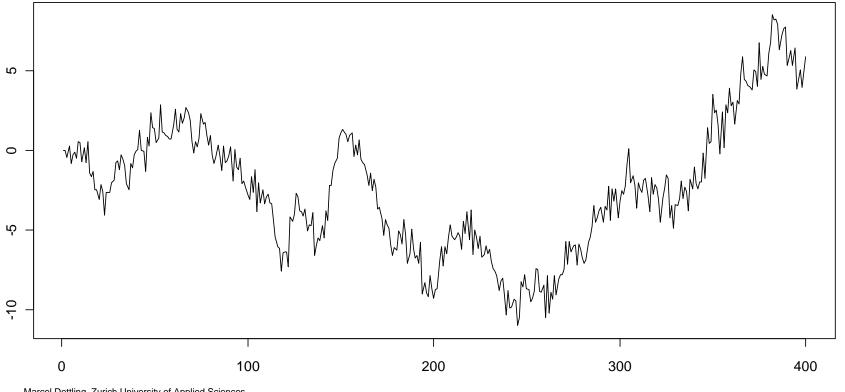
$$1 - \alpha_1 z - \alpha_2 z^2 - \alpha_p z^p = 0$$

need to lie outside of the unit circle. This can be checked with R-function polyroot()

A Non-Stationary AR(2)-Process

$$X_{t} = \frac{1}{2}X_{t-1} + \frac{1}{2}X_{t-2} + E_{t} \text{ is not stationary...}$$

Non-Stationary AR(2)



Fitting AR(p)-Models

This involves 3 crucial steps:

- 1) Is an AR(p) suitable, and what is p?
 - will be based on ACF/PACF-Analysis
- 2) Estimation of the AR(p)-coefficients
 - Regression approach
 - Yule-Walker-Equations
 - and more (MLE, Burg-Algorithm)
- 3) Residual Analysis
 - to be discussed