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Where are we?

For most of the rest of this course, we will deal with (weakly)
stationary time series. They have the following properties:

° E[Xt]:/u
. Var(X,)=o"
e Cov(X,,X..,)=7:

If a time series Is non-stationary, we know how to decompose
Into deterministic and stationary, random part.

Our forthcoming goals are:
- understanding the dependency in a stationary series
- modeling this dependency and generate forecasts
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Autocorrelation

The aim of this section is to explore the dependency structure
within a time series.

Def: Autocorrelation
Cov(X,, ., X,)
\/Var(xt+k) Var(x )

The autocorrelation i1s a dimensionless measure for the
amount of linear association between the random variables
collinearity between the random variables X,,, and X..

COr(xt+k
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Autocorrelation Estimation

Our next goal is to estimate the autocorrelation function (acf) from
a realization of weakly stationary time series.

Luteinizing Hormone in Blood at 10min Intervals
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Autocorrelation Estimation: lag k>1
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Idea 1: Compute the sample correlation for all pairs (X, X, )

k=2, cor=0.19
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Autocorrelation Estimation: lag k

ldea 2: Plug-in estimate with sample covariance

How does it work?

- see blackboard...
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Autocorrelation Estimation: lag k

ldea 2: Plug-in estimate with sample covariance

7(K) _ Cov(X,, X i)
7(0)  Var(X,)

p(k) =

" 1 X _ _
where y(K) =HZ(XS+k —X)(X, —X)
s=1

1 n
and X==)X,
o

Standard approach in time series
analysis for computing the acf
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Comparison Idea 1 vs. Idea 2

- see blackboard for some more information

Comparison between lagged sample correlations and acf
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What is important about ACF estimation?

Marcel Dettling,

Correlations are never to be trusted without a visual
Inspection with a scatterplot.

The bigger the lag k, the fewer data pairs remain for
estimating the acf at lag k.

Rule of the thumb: the acf is only meaningful up to about

a) lag 10*log,,(n)
b) lag n/4

The estimated sample ACs can be highly correlated.

The correlogram is only meaningful for stationary series!!!

Zurich University of Applied Sciences
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Correlogram

A useful aid in interpreting a set of autocorrelation coefficients is
the graph called correlogram, where the p(k) are plotted
against the lag k.

Interpreting the meaning of a set of autocorrelation coefficients
IS not always easy. The following slides offer some advice.

Series |h
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Random Series — Confidence Bands

If a time series Is completely random, I.e. consists of i.i.d. random

variables X, the (theoretical) autocorrelations p(k) are equal to 0.

However, the estimated p(K) are not. We thus need to decide,
whether an observed p(k) # 0 is significantly so, or just appeared
by chance. This is the idea behind the confidence bands.

Series |h
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Random Series — Confidence Bands

For long i.i.d. time series, it can be shown that the p(K) are
approximately N (0,1/n) distributed.

Thus, if a series is random, 95% of the estimated o(k) can be
expected to lie within the interval +2 / Jn

I.1.d. Series with n=300
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Random Series — Confidence Bands

Thus, even for a (long) I.I.d. time series, we expect that 5% of the
estimated autocorrelation coeffcients exceed the confidence
bounds. They correspond to type | errors.

Note: the probabilistic properties of non-normal i.i.d series are
much more difficult to derive.

I.i.d. Series with n=300

Q _|
o
" —
o <
<C o
ol - .
o [_____ | Lo L
[ [ [ [ [
0 5 10 15 20
Marcel Dettling, Zurich University of Applied Sciences 13

Lag



Zurich University
of Applied Sciences

Applied Time Series Analysis Zh
FS 2011 — Week 03 aw

Short Term Correlation

Simulated Short Term Correlation Series
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Short Term Correlation

Stationary series often exhibit short-term correlation, characterized
by a fairly large value of (1), followed by a few more coefficients
which, while significantly greater than zero, tend to get successively
smaller. For longer lags k, they are close to O.

A time series which gives rise to such a correlogram, is one for
which an observation above the mean tends to be followed by one
or more further observations above the mean, and similarly for
observations below the mean.

A model called an autoregressive model may be appropriate for
series of this type.

Marcel Dettling, Zurich University of Applied Sciences 15
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Alternating Time Series

Simulated Alternating Correlation Series

Marcel Dettling, Zurich University of Applied Sciences

Lag

o
o~
o
! “
0? —
| | | | |
0 50 100 150 200
Time
ACF of Simulated Alternating Correlation Series
o —
—
Ln _ |
o
o [l T S B
© r ....... L I | [ 4 ...............
Lo
.
| | | | |
0 5 10 15 20

|||||||||||||||||
eeeeeeeeeeeeeeee

16



|||||||||||||||||
eeeeeeeeeeeeeeee

Applied Time Series Analysis Zh
FS 2011 — Week 03 aw

Non-Stationarity in the ACF: Trend

Simulated Series with a Trend
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Non-Stationarity in the ACF: Seasonal Pattern

De-Trended Mauna Loa Data
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ACF of the Raw Airline Data
Airline Data
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Outliers and the ACF

Outliers in the time series strongly affect the ACF estimation!

Beaver Body Temperature
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Outliers and the ACF

Lagged Scatterplot with k=1 for Beaver Data
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Outliers and the ACF

The estimates p(k) are very sensitive to outliers. They can be
diagnosed using the lagged scatterplot, where every single outlier
appears twice.

Strategy for dealing with outliers:
- If it Is an outlier: delete the observation
- replace the now missing observations by either:

a) global mean of the series
b) local mean of the series, e.g. +/- 3 observations
c) fit a time series model and predict the missing value

Marcel Dettling, Zurich University of Applied Sciences 22
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General Remarks about the ACF

a) Appearance of the series => Appearance of the ACF
Appearance of the series %3( Appearance of the ACF

b) Compensation

n-1 ~ 1
pk)=—=

All autocorrelation coefficients sum up to -1/2. For large
lags k, they can thus not be trusted, but are at least
damped. This is a reason for using the rule of the thumb.

ich University of Applied Sciences 23
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ACF vs. Lagged Sample Correlations

Comparison between lagged sample correlations and acf
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How Well Can We Estimate the ACF?
What do we know already?

- The ACF estimates are biased
- At higher lags, we have few observations, and thus variability
- There also is the compensation problem...

- ACF estimation is not easy, and interpretation is tricky.
For answering the question above:

- For an AR(1) time series process, we know the true ACF
- We generate a number of realizations from this process
- We record the ACF estimates and compare to the truth

ich University of Applied Sciences 25
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Theoretical vs. Estimated ACF

True ACF of AR(1)-process with alpha_1=0.7
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How Well Can We Estimate the ACF?

A) For AR(1)-processes we understand the theoretical ACF

B) Repeat for i=1, ..., 1000

Simulate a length n AR(1)-process
Estimate the ACF from that realization

End for

C) Boxplot the (bootstrap) sample distribution of ACF-estimates
Do so for different lags k and different series length n

ich University of Applied Sciences 27
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How Well Can We Estimate the ACF?

Variation in ACF(1) estimation
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How Well Can We Estimate the ACF?

Variation in ACF(2) estimation
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How Well Can We Estimate the ACF?

Variation in ACF(5) estimation
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How Well Can We Estimate the ACF?

Variation in ACF(10) estimation
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Trivia ACF Estimation

* In short series, the ACF is strongly biased. The consistency
kicks in and kills the bias only after ~100 observations.

« The variability in ACF estimation is considerable. We observe
that we need at least 50, or better, 100 observations.

* For higher lags k, the bias seems a little less problematic, but
the variability remains large even with many observations n.

 The confidence bounds, derived under independence, are
not very accurate for (dependent) time series.

- Interpreting the ACF is tricky!

ich University of Applied Sciences 32
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Application: Variance of the Arithmetic Mean

Practical problem: we need to estimate the mean of a realized/
observed time series. We would like to attach a standard error.

« If we estimate the mean of a time series without taking into
account the dependency, the standard error will be flawed.

* This leads to misinterpretation of tests and confidence
Intervals and therefore needs to be corrected.

» The standard error of the mean can both be over-, but also
underestimated. This depends on the ACF of the series.

- For the derivation, see the blackboard...

ich University of Applied Sciences 33
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Partial Autocorrelation Function (PACF)

The k™ partial autocorrelation coefficient ,Opart(k) IS defined as the
correlation between the random variables X, ., and X,, given all
the values in between.

ppart(k) = COr(xt+k’ Xt | Xt+1 = Xt+1’ " Xt+k—1 = Xt+k—1)

Their meaning is best understood by drawing an analogy to simple
and multiple linear regression. The ACF measures the ,simple“
dependence between X, , and X, whereas the PACF measures
that dependence in a ,multiple” fashion.

Marcel Dettling, Zurich University of Applied Sciences 34



Applied Time Series Analysis Zh
FS 2011 — Week 03 aw

Facts about the PACF

- Estimation of the PACF is complicated and will not be
discussed in the course. R cando it ;-)

- The first PACF coefficient is equal to the first ACF
coefficient. Subsequent coefficients are not equal, but can
be derived from each other.

- For a time series generated by an AR(p)-process, the pth
PACF coefficient is equal to the pth AR-coefficient. All
PACF coefficients for lags k>p are equal to O.

- Confidence bounds also exist for the PACF.

ich University of Applied Sciences 35
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Outlook to AR(p)-Models

Suppose that Z, is an I.i.d random process with zero mean and
. 2 . .

variance o;. Then a random process X, is said to be an auto-

regressive process of order p if

Xi=o X+ +a X _ +7Z

This is similar to a multiple regression model, but X, is regressed
not on independent variables, but on past values of itself. Hence
the term auto-regressive.

We use the abbreviation AR(p).

Marcel Dettling, Zurich University of Applied Sciences 36



