Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 03

Marcel Dettling

Institute for Data Analysis and Process Design

Zurich University of Applied Sciences

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, March 7, 2011

Where are we?

- $E[X_t] = \mu$
- $Var(X_t) = \sigma^2$
- $Cov(X_t, X_{t+h}) = \gamma_h$

If a time series is non-stationary, we know how to decompose into deterministic and stationary, random part.

Our forthcoming goals are:

- understanding the dependency in a stationary series
- modeling this dependency and generate forecasts

Zurich University of Applied Science

Zurich University

Autocorrelation

The aim of this section is to explore the dependency structure within a time series.

Def: Autocorrelation

$$Cor(X_{t+k}, X_t) = \frac{Cov(X_{t+k}, X_t)}{\sqrt{Var(X_{t+k}) \cdot Var(X_t)}}$$

The autocorrelation is a dimensionless measure for the amount of linear association between the random variables collinearity between the random variables X_{t+k} and X_t .

Zurich University

Autocorrelation Estimation

Our next goal is to estimate the autocorrelation function (acf) from a realization of weakly stationary time series.

Luteinizing Hormone in Blood at 10min Intervals

Autocorrelation Estimation: lag k>1

Marcel Dettling, Zurich University of Applied Sciences

Autocorrelation Estimation: lag k

Idea 2: Plug-in estimate with sample covariance

How does it work?

→ see blackboard...

Autocorrelation Estimation: lag k

Idea 2: Plug-in estimate with sample covariance

$$\hat{\rho}(k) = \frac{\hat{\gamma}(k)}{\hat{\gamma}(0)} = \frac{Cov(X_t, X_{t+k})}{Var(X_t)}$$

$$\hat{\gamma}(k) = \frac{1}{n} \sum_{s=1}^{n-k} (x_{s+k} - \overline{x})(x_s - \overline{x})$$

$$\overline{x} = \frac{1}{n} \sum_{t=1}^{n} x_t$$

Standard approach in time series analysis for computing the acf

Zurich University

Comparison Idea 1 vs. Idea 2

→ see blackboard for some more information

Comparison between lagged sample correlations and acf

Marcel Dettling, Zurich University of Applied Sciences

What is important about ACF estimation?

- Correlations are never to be trusted without a visual inspection with a scatterplot.
- The bigger the lag k, the fewer data pairs remain for estimating the acf at lag k.
- Rule of the thumb: the acf is only meaningful up to about

a) lag 10*log₁₀(n) b) lag n/4

The estimated sample ACs can be highly correlated.

The correlogram is only meaningful for stationary series!!!

Correlogram

Zurich University

A useful aid in interpreting a set of autocorrelation coefficients is the graph called correlogram, where the $\hat{\rho}(k)$ are plotted against the lag k.

Interpreting the meaning of a set of autocorrelation coefficients is not always easy. The following slides offer some advice.

Series Ih

Lag

Zurich University

Random Series – Confidence Bands

If a time series is completely random, i.e. consists of i.i.d. random variables X_t , the (theoretical) autocorrelations $\rho(k)$ are equal to 0.

However, the estimated $\hat{\rho}(k)$ are not. We thus need to decide, whether an observed $\hat{\rho}(k) \neq 0$ is significantly so, or just appeared by chance. This is the idea behind the confidence bands.

Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 03

Random Series – Confidence Bands

For long i.i.d. time series, it can be shown that the $\hat{\rho}(k)$ are approximately N(0, 1/n) distributed.

Thus, if a series is random, 95% of the estimated $\hat{\rho}(k)$ can be expected to lie within the interval $\pm 2/\sqrt{n}$

i.i.d. Series with n=300

Random Series – Confidence Bands

Thus, even for a (long) i.i.d. time series, we expect that 5% of the estimated autocorrelation coeffcients exceed the confidence bounds. They correspond to type I errors.

Note: the probabilistic properties of non-normal i.i.d series are much more difficult to derive.

Short Term Correlation

Zurich University of Applied Sciences

Zurich University

Short Term Correlation

Stationary series often exhibit short-term correlation, characterized by a fairly large value of $\hat{\rho}(1)$, followed by a few more coefficients which, while significantly greater than zero, tend to get successively smaller. For longer lags k, they are close to 0.

A time series which gives rise to such a correlogram, is one for which an observation above the mean tends to be followed by one or more further observations above the mean, and similarly for observations below the mean.

A model called an autoregressive model may be appropriate for series of this type.

zh

Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 03

Alternating Time Series

Simulated Alternating Correlation Series

Time

Non-Stationarity in the ACF: Trend

Simulated Series with a Trend

Time

Zurich University

Non-Stationarity in the ACF: Seasonal Pattern

Time

ACF of the Raw Airline Data

Airline Data

Zurich University

Outliers and the ACF

Outliers in the time series strongly affect the ACF estimation!

Beaver Body Temperature

zh

Zurich University of Applied Sciences

Outliers and the ACF

Zurich University

Outliers and the ACF

The estimates $\hat{\rho}(k)$ are very sensitive to outliers. They can be diagnosed using the lagged scatterplot, where every single outlier appears twice.

Strategy for dealing with outliers:

- if it is an outlier: delete the observation
- replace the now missing observations by either:

a) global mean of the series

- b) local mean of the series, e.g. +/- 3 observations
- c) fit a time series model and predict the missing value

Zurich University of Applied Science

General Remarks about the ACF

- a) Appearance of the series \Rightarrow Appearance of the ACF Appearance of the series \rightleftharpoons Appearance of the ACF
- b) Compensation

$$\sum_{k=1}^{n-1} \hat{\rho}(k) = -\frac{1}{2}$$

All autocorrelation coefficients sum up to -1/2. For large lags k, they can thus not be trusted, but are at least damped. This is a reason for using the rule of the thumb.

Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 03

ACF vs. Lagged Sample Correlations

Comparison between lagged sample correlations and acf

Zurich University of Applied Sciences

Applied Time Series Analysis FS 2011 – Week 03

How Well Can We Estimate the ACF?

What do we know already?

- The ACF estimates are biased
- At higher lags, we have few observations, and thus variability
- There also is the compensation problem...
- \rightarrow ACF estimation is not easy, and interpretation is tricky.

For answering the question above:

- For an AR(1) time series process, we know the true ACF
- We generate a number of realizations from this process
- We record the ACF estimates and compare to the truth

zh aw

Theoretical vs. Estimated ACF

True ACF of AR(1)-process with alpha_1=0.7

Estimated ACF from an AR(1)-series with alpha_1=0.7

Zurich University of Applied Sciences

Applied Time Series Analysis FS 2010 – Week 03

How Well Can We Estimate the ACF?

A) For AR(1)-processes we understand the theoretical ACF

B) Repeat for i=1, ..., 1000

Simulate a **length n** AR(1)-process Estimate the ACF from that realization

End for

C) Boxplot the (bootstrap) sample distribution of ACF-estimates Do so for different lags k and different series length n

How Well Can We Estimate the ACF?

Variation in ACF(1) estimation

How Well Can We Estimate the ACF?

Variation in ACF(2) estimation

How Well Can We Estimate the ACF?

Variation in ACF(5) estimation

How Well Can We Estimate the ACF?

Variation in ACF(10) estimation

Trivia ACF Estimation

- In short series, the ACF is strongly biased. The consistency kicks in and kills the bias only after ~100 observations.
- The variability in ACF estimation is considerable. We observe that we need at least 50, or better, 100 observations.
- For higher lags k, the bias seems a little less problematic, but the variability remains large even with many observations n.
- The confidence bounds, derived under independence, are not very accurate for (dependent) time series.

→ Interpreting the ACF is tricky!

Application: Variance of the Arithmetic Mean

Practical problem: we need to estimate the mean of a realized/ observed time series. We would like to attach a standard error.

- If we estimate the mean of a time series without taking into account the dependency, the standard error will be flawed.
- This leads to misinterpretation of tests and confidence intervals and therefore needs to be corrected.
- The standard error of the mean can both be over-, but also underestimated. This depends on the ACF of the series.
- → For the derivation, see the blackboard...

Partial Autocorrelation Function (PACF)

The kth partial autocorrelation coefficient $\rho_{part}(k)$ is defined as the correlation between the random variables X_{t+k} and X_t , given all the values in between.

$$\rho_{part}(k) = Cor(X_{t+k}, X_t \mid X_{t+1} = x_{t+1}, \dots, X_{t+k-1} = x_{t+k-1})$$

Their meaning is best understood by drawing an analogy to simple and multiple linear regression. The ACF measures the "simple" dependence between X_{t+k} and X_t , whereas the PACF measures that dependence in a "multiple" fashion.

Zurich University

Facts about the PACF

- Estimation of the PACF is complicated and will not be discussed in the course. R can do it ;-)
- The first PACF coefficient is equal to the first ACF coefficient. Subsequent coefficients are not equal, but can be derived from each other.
- For a time series generated by an AR(p)-process, the pth PACF coefficient is equal to the pth AR-coefficient. All PACF coefficients for lags k>p are equal to 0.
 - Confidence bounds also exist for the PACF.

Zurich University

Outlook to AR(p)-Models

Suppose that Z_t is an i.i.d random process with zero mean and variance σ_z^2 . Then a random process X_t is said to be an autoregressive process of order p if

$$X_{t} = \alpha_{1}X_{t-1} + \dots + \alpha_{p}X_{t-p} + Z_{t}$$

This is similar to a multiple regression model, but X_t is regressed not on independent variables, but on past values of itself. Hence the term auto-regressive.

We use the abbreviation AR(p).