Exercise Sheet 7

1. In an experiment on water quality, 16 independent water samples were taken downstream of a sewage processing plant, and X_{i} (in $\mu \mathrm{gNH} H_{4}-\mathrm{N} / \mathrm{l}$), the concentration of ammonia found in each, was measured. The average of these samples was found to be $\bar{x}=204.2$.

We would subsequently like to know whether these data show (at level 5%) that the concentration of ammonia exceeds the legal limit, which is $\mu \mathrm{gNH}_{4}-\mathrm{N} / \mathrm{l}$.
a) Assume that the standard deviation of such measurements is known from prior studies to be 10 $\mu \mathrm{gNH}_{4}-\mathrm{N} / \mathrm{l}$.
Carry out a z test using this assumption, and ascertain whether or not a breach of the limit can be shown.
Write down the model assumptions, H_{0} and H_{A}, the rejection set, the value of the test statistic and the outcome of the test explicitly.
b) How probable is this proof (at 5%) of the breach of the limit with 16 independent water samples if the true ammonia concentration is $205 \mu \mathrm{gNH}_{4}-\mathrm{N} / \mathrm{l}$?
c) How probable is mistakenly showing a breach of the limit using 16 independent water samples (at 5%) when the true ammonia concentration is exactly at the limit of $200 \mu \mathrm{gNH}_{4}-\mathrm{N} / 1 ?$
2. In this exercise, we shall investigate the effect of the Central Limit Theorem by means of simulation. We start out with a random variable X whose distribution is as follows: each of the values 0,10 and 11 have probability $\frac{1}{3}$. Then we simulate the distribution of X and the distribution of the average of multiple copies of X.
a) Simulate X. Plot its distribution using a histogram of 1000 realizations of X and compare them to the normal distribution using the normal plot.

```
> par(mfrow=c(4,2)) # Several plots in a block
> werte <- c(0,10,11) # Possible values of X
> sim <- sample(werte, 1000, replace = T) # Simulate X
> hist(sim, main = "Original") # Create a histogram
> qqnorm(sim) # Create a normal plot
```

b) Now simulate $\bar{X}=\frac{X_{1}+X_{2}+X_{3}+X_{4}+X_{5}}{5}$, where the random variables X_{i} each have the same distribution of X_{i} and are independent. die gleiche Verteilung haben wie X und unabhängig sind. Plot the distribution of \bar{X} using 1000 samples \bar{X}, and compare it to the normal distribution.

```
> n <- 5
> ## Simulate X_1, ..., X_n and put into a matrix with n rows (columns)
> sim <- matrix(sample(werte, n*1000, replace = T), ncol=n)
> sim.mean <- apply(sim, 1, "mean") # Compute row means
> hist(sim.mean, main = paste("Means of", n, "observations"))
> qqnorm(sim.mean)
```

c) Now simulate the distribution of \bar{X} when \bar{X} is the average of 10 or 200 copies of X_{i}, respectively.

Tabulated values of the cumulative normal distribution $\Phi(z)=\mathrm{P}[Z \leq z], Z \sim \mathcal{N}(0,1)$

Example: $\mathrm{P}[Z \leq 1.96]=0.975$

