Prof. P. Bühlmann Statistics for D-UWIS, D-ERDW \& D-AGRL Spring semester 2011

Solutions to Exercise Sheet 6

1. a) Sketch:

b) Let X denote the lead content of lettuces. We have:

$$
X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \quad \text { where } \mu=32 \text { and } \sigma^{2}=6^{2}
$$

If we are not using a computer, we should work with the standardized random variable $Z=(X-\mu) / \sigma$ for practical reasons (table). We obtain: $Z \sim \mathcal{N}(0,1)$.

$$
\mathrm{P}[X \leq 40]=\mathrm{P}\left[Z \leq \frac{40-32}{6}\right]=\mathrm{P}[Z \leq 1.33]=\Phi(1.33)=0.9082
$$

c)

$$
\mathrm{P}[X \leq 27]=\mathrm{P}[Z \leq-0.83]=\Phi(-0.83)=1-\Phi(0.83)=0.2033
$$

d)

$$
\mathrm{P}[X \leq c]=0.975=\mathrm{P}\left[Z \leq \frac{c-32}{6}\right]=\Phi\left(\frac{c-32}{6}\right) .
$$

Using the table, we find that $\Phi(1.96)=0.975$. Thus:

$$
\frac{c-32}{6}=1.96 \text { and therefore } c=32+1.96 * 6=43.76
$$

e) From the table: $\Phi(1.28)=0.9$ and $\Phi(-1.28)=1-0.9=0.1$. Thus

$$
c=32-1.28 * 6=24.31
$$

Statistics for D-UWIS, D-ERDW \& D-AGRL (Spring semester 2011) — Solutions to Exercise Sheet 6 -
f)

$$
\Phi(1)-\Phi(-1)=2 * \Phi(1)-1=2 * 0.8413-1=0.6826 .
$$

2. a) We associate the random variable X to the i-th person, setting $X_{i}=1$ if they buy something and $X_{i}=0$ if they do not. We already know that

$$
\mathrm{P}\left[X_{i}=1\right]=0.3 .
$$

Let Y denote the total number of sales, i.e.

$$
Y=\sum_{i=1}^{10} X_{i}
$$

Thus $Y \sim \operatorname{Bin}(10,0.3)$.
b) No-one buys anything:

$$
\mathrm{P}[Y=0]=(1-0.3)^{10}=0.7^{10} \approx 0.028
$$

At least 2 people buy something:

$$
\mathrm{P}[Y \geq 2]=1-\mathrm{P}[Y<2]=1-\mathrm{P}[Y=0]-\mathrm{P}[Y=1]
$$

We have $\mathrm{P}[Y=1]=10 \cdot 0.3 \cdot 0.7^{9} \approx 0.121$. Thus

$$
\mathrm{P}[Y \geq 2] \approx 1-0.028-0.121 \approx 0.85
$$

c) Normal approximation:

$$
Y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

where $\mu=200 \cdot 0.3=60, \sigma^{2}=200 \cdot 0.3 \cdot 0.7=42$.
We now standardize to obtain

$$
\mathrm{P}[50 \leq Y \leq 60]=\mathrm{P}[-1.54 \leq Z \leq 0]=\Phi(0)-\Phi(-1.54)=0.4382
$$

using the fact that $\Phi(-1.54)=1-\Phi(1.54)=1-0.9382=0.0618$ (see the table).

