Solutions to Exercise Sheet 2

1. a) The null hypothesis: there are an average of 10 purple Smarties in each packet.

The alternative hypothesis: there are, on average, less than 10 purple Smarties in each packet.
b) Each individual event has a very small probability.

Thus even finding exactly 10 purple Smarties in a packet - when the average per packet is 10 - is quite an improbable event.
To reject the null hypothesis, we must instead show that the probability (under the null hypothesis) of observing an event at least as exteme as this is very small.
Thus we must show that the probability (given the null hypothesis) of finding at most five purple Smarties in a packet is small.
c) We assume that the colours of Smarties in a packet are independent of each other. Then X, the number of purple Smarties, follows the binomial distribution

$$
X \sim \mathcal{B}\langle n, p\rangle
$$

where p the probability that a randomly chosen Smartie is purple. Under the null hypothesis, this probability is small:

$$
p=\frac{\text { average number of purple Smarties in a packet }}{\text { total number of Smarties in a packet }}=\frac{10}{1000}=1 \%
$$

As $n=1000$ is rather large (and p is small), the distribution of X can be approximated by a Poisson distribution with parameter

$$
\lambda=n \cdot p=10
$$

yielding

$$
P[X=k]=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

So under the null hypothesis, the probability of finding at most five purple Smarties in a packet is

$$
\begin{align*}
P[X \leq 5] & =P[X=0]+P[X=1]+\ldots+P[X=5] \tag{1}\\
& =e^{-\lambda} \frac{\lambda^{0}}{0!}+e^{-\lambda} \frac{\lambda^{1}}{1!}+e^{-\lambda} \frac{\lambda^{2}}{2!}+\ldots+e^{-\lambda} \frac{\lambda^{5}}{5!} \tag{2}\\
& =e^{-\lambda} \sum_{k=0}^{5} \frac{\lambda^{k}}{k!} \tag{3}\\
& =0.067=6.7 \% \tag{4}
\end{align*}
$$

NB: We also could have computed the exact probability using the binomial distribution (this was not required here, though). This yields the probability 6.61%. Thus the Poisson approximmation is not bad.
d) The probability we obtained is still a little bit too large to disprove the manufacturer's claim. Usually we ask for this probability (the p-value) to be less than 5% at the very least.
If however we had only found four purple Smarties in the packet, the manufacturer's claim could have beeen rejected (at the 5% level).
2. As the sample was taken randomly from a large batch, we can assume that the number of deficient test tubes in the sample - which we shall denote by X - follows a binomial distribution (cf. Problem 1 of Problem Sheet 2). The manufacturer would like to show that the proportion of deficient items in the batch is less than 10%. The null hypothesis chosen will be that 10% of the batch is deficient (the manufacturer would like to reject the null hypothesis).
a) $H_{0}: X \sim \mathcal{B}\left\langle n, \pi_{0}\right\rangle$, where $n=50$ and $\pi_{0}=0.1$
b) $H_{A}: X \sim \mathcal{B}\langle n, \pi\rangle$, where $n=50$ and $\pi<0.1$.
c) The rejection region for a one-sided test at significance level 5% can be computed quite simply in our example. The critical value satisfies the following condition:

$$
P_{0}\langle X \leq c\rangle=\sum_{k=0}^{c}\binom{n}{k} \pi_{0}^{k}\left(1-\pi_{0}\right)^{n-k} \leq 0.05
$$

We find that:

$$
\begin{array}{ll}
P_{0}\langle X=0\rangle=0.0052 & P_{0}\langle X \leq 0\rangle=0.0052 \\
P_{0}\langle X=1\rangle=0.0286 & P_{0}\langle X \leq 1\rangle=0.0338 \\
P_{0}\langle X=2\rangle=0.0779 & P_{0}\langle X \leq 2\rangle=0.1117
\end{array}
$$

The rejection region K at the significance level 5% is $K=\{X \leq 1\}$. Thus the acceptance region is $K^{c}=\{X>1\}$.
d) The observed event was that $X=3$ deficient test tubes were among the batch. This observation lies in the acceptance region. We say that the null hypothesis is kept, i.e. it is plausible that the whole batch contains 10% (or more) deficient test tubes, even though only 6% were found in the samplle. The observed event is not "extreme" (i.e. improbable) enough to justify the rejection of the null hypothesis.

