
Tutorial (Unix Version)
S.f.Statistik, ETHZ April 11, 2011

Introduction
This tutorial will give you some basic knowledge about working with R. It will also help
you to familiarize with an environment to work with R as it is provided in the computing
labs in the ETH main building.

About R
R is free software (copyright: GNU public license) and is available from http://stat.

ethz.ch/CRAN/. At this URL you find a comprehensive Documentation, Manual, “An
Introduction to R” (about 100 pages pdf) and a shorter introduction Contributed, “R for
Beginners / R pour les débutants” (31 pages, English/French).

R-environments
A “professional” way of working with R is to edit R-script files in an editor and to transfer
the written code to a running R process. This can be set up on any platform. Below,
we will describe one possible setting under Linux which was chosen for this exercise class.
However, this is not the only possibility. Depending on which platform you are working
on, we recommend the following:

linux Emacs with the add-on package Emacs Speaks Statistics (http://stat.ethz.ch/
ESS/)

mac The built-in editor is already quite powerful (http://cran.r-project.org/bin/
macosx/)

windows: TinnR (http://www.sciviews.org/Tinn-R/) and WinEdt (http://www.
winedt.com/ and http://cran.r-project.org/web/packages/RWinEdt/index.

html) both support R syntax highlighting and direct submission of R code

platform independent Java GUI for R (http://jgr.markushelbig.org/JGR.html) or
Eclipse (http://www.eclipse.org/) with StatEt (http://www.walware.de/goto/
statet/)

This tutorial will focus on working under Linux with the editor gedit. It will also introduce
a web-application (LEMUREN) to submit the code which you want to hand in. Your exam
will use R in this Linux environment (without internet access).

Getting started on a dual-boot machine
The computers in the computing labs of the ETH main building are dual-boot machines
with Windows and Linux installed. If your computer is running under Windows, restart
the machine and choose Linux when prompted to specify the operating system.

When the login screen is displayed, enter your account information and log in (nethz name
and password).

1

Getting started with gedit
We use R from within the gedit text editor. To start it:

1. Click on the ”Fedora applications” in the Taskbar (the big blue ”f” in a corner of
your screen). Choose Accessories → gedit Text editor1. (If it is not the first
time you use gedit with R integration, then skip points 2-4).

Figure 1: Fedora applications menu, opened gedit and gedit Plugins window. Make sure
R-integration is ticked (as in the figure).

2. Choose in the menu bar Edit → Preferences. A window will appear, click on
Plugins (upper right), then tick the package ”R-integration”, and click on Close.
The menu R will appear in the menu bar.

3. close and restart gedit.

4. Click on R → Show/hide toolbar → Show toolbar only for R files... (it
will be not ticked!)

5. From now on you can use gedit as R compiler! You should have two windows in
gedit, the editor-window and the R-window (see Figure 2)

Figure 2: The working environment is set up: R-code can be executed in the R-window.

1Alternative: Open a terminal by clicking on the corresponding icon in the Taskbar. Type gedit

followed by <RETURN>

2

R-basics
Type in the R-window:
> x <- 2 <RETURN>

> x <RETURN>

Result: [1] 2

The assignment operator <- has created an object x. R is vector-oriented, so x is a vector
with one element of value 2.

Next try (all commands have to be confirmed by <RETURN>; this is omitted from now
on):
> y <- c(3,5) (c for combine)
> y

Result: [1] 3 5, a vector with two elements.

ls() shows all objects you have already generated. To remove x, use rm(x).

Note that many functions are already defined in R (for example c, t, max, . . .). We
advise you to use different names for your variables to avoid confusion.

R includes demonstrations for many functions. You can get a list of all demonstrations
with demo(). For example, take a look at the graphics demo of R: demo(graphics). This
will display a variety of plots generated by R. Hitting <RETURN>in the R-window will
allow you to go from one graphic to the next one.

Working with an .R (script-)file
Click in the editor window. Save the file as tutorial.R via File → Save As.... From
Now on, your R instructions should by typed in this script-file. Make sure to comment
your code (with the symbol #) as you go on.

In the editor window tutorial.R, type z <- c(8,13,21) as first line and 2*z as second
line.

You have several options to send your R-code to the R-window:

1. Click on the menu R → Run the whole file through R.... All the code of your
script is sent to the R-window.

2. Point the cursor on the first line. Then click on R → Run current line through

R.... Only the selected line (first) is be sent to the R-window. The cursor now
points on the next line (second). Redo R → Run current line through R... to
send the second line to the R-window, and so on.

3. Select the code to be sent to the R-window. Then click on R → Run selection

line through R....

In the toolbar you can find icons with the same meaning as the commands cited above.

It might be handy to define a shortcut for some commands. To set a new shortcut, go
to R → Configure R interface, then click on Keyboard Shortcuts. Enter a shortcut
of your choice by writing the corresponding key combination (e.g. <Shift><Ctrl>R). Do
not choose a key combination that is already in use for another command. Once you have
chosen your combination, quit the setup window by clicking twice on OK. Close and restart
gedit.

3

From now on you can send your R-script (or highlighted parts of it) to the R-window by
pressing the defined key combination (e.g. <Shift><Ctrl>R).

Remark 1:
Sometimes the evaluation of an R-file takes too long (usually if you have errors in some
loops). At any time you can interrupt the evaluation by clicking at the R-window and
then typing on <Ctrl>Q or on <Esc>.

From now on you should write (almost) all R-instructions into the *.R-file to evaluate
them from there. At the end, you can save your script file by clicking on File → Save.

Remark 2:
By closing gedit, all what you have in the R-window is lost (variables, functions,...).
Therefore you should resend your R-script to the R-window every time you open it.

Computing with vectors
Type fib <- c(1,1,2,3,5,z) as next line of tutorial.R (gives the first eight Fibonacci-
numbers). Evaluate the line, and take a look at fib. Type 2*fib+1, fib*fib and
log(fib) as next three lines of tutorial.R. Mark all three lines with the left mouse button
and send them to the Console. This evaluates all marked lines. Check the results. Do you
understand them?

Now create the sequence 2, 4, 6 as object s: s<-2*(1:3), alternatively s<-seq(2,6,by=2).
Take a look at fib[3], fib[4:7], fib[s], fib[c(3,5)] and fib[-c(3,5)].

Create a vector x with 8 elements, some of which are positive, some negative. Check x > 0

and fib[x > 0].

Don’t forget to put comments in your script file. Up to now, it could for example look
like this:

Computational Statistics -- R tutorial

Author: Hans Muster

Date: 26 Feb 2010

getting started

z <- c(8,13,21)

2*z

computing with vectors

fib <- c(1,1,2,3,5,z) # vector with first 8 Fibonacci numbers

fib

2*fib + 1 # element-wise operations

fib*fib # element-wise multiplication

log(fib) # takes the log of each element

s <- 2*(1:3) # vector holding 2, 4, 6

s1 <- seq(2,6,by=2) # same vector as s

fib[3] # 3rd element of vector fib

fib[4:7] # 4th, 5th, 6th and 7th element of fib

fib[s] # 2nd, 4th and 6th element of fib

fib[c(3,5)] # elements 3 and 5 of fib

fib[-c(3,5)] # vector fib without elements 3 and 5

4

x <- c(1,-3,5,-1,8,9,-2,1) # new vector x

x > 0 # elements 1, 3, 5, 6 and 8 of x are > 0

fib[x > 0] # elements 1, 3, 5, 6 and 8 of fib

Matrices: creation and computation
Create two vectors x <- 1:4 and y <- 5:8 and the matrices mat1 <- cbind(x,y) and
mat2 <- rbind(x,y,x+y) (cbind means column-bind, rbind means row-bind). Take a
look at the whole matrices mat1 and mat2 and try mat2[3,2], mat2[2,] and mat2[,1].

Computation with matrices using +, * etc. follows the same rules as computation with
vectors, namely element-wise. For the matrix product, use %*%, e.g. mat2 %*% mat1.

Data Frames
A data frame is a generalized matrix. The main difference between data frames and
matrices is that matrices need all elements to be of the same type (e.g. numeric, character),
while data frames allow every column to have another type.

Reading and looking at datasets
ASCII-data is most easily read by the function read.table, which generates a data frame.
read.table works also for datasets from the web. Try:
no2 <- read.table("http://stat.ethz.ch/Teaching/Datasets/no2Basel.dat",

header=TRUE)

You may examine the created object directly by typing no2 in the R-window. Single
variables are accessible by no2[,"NO2"]. You may take a look at the original file, in
particular its first line, to understand why R knows the name of the variable. This can
be done by calling the above URL from a web browser, e.g. Firefox. The parameter
header=TRUE of read.table tells R that the variable names are in the first line. no2 is
still small enough, but in general it is useful to use the function str first, which displays the
structure and type of an object, but not every single element: str(no2). summary(no2)

displays information about the columns of no2. summary extracts the most important
information from lots of R-objects, e.g., the results of statistical tests or regression fits.

An alternative to read.table is the function scan, which reads vectors and lists. A list
is a more general structure which may contain elements of different types and sizes, e.g.
vectors of varying lengths, data frames, sublists, etc.

Graphics
Draw a histogram of the NO2-values of the no2-data.

par(mfrow = c(1,2)) # Number of pictures one below the

other [1] or side by side [2]

Important to save paper!

hist(no2[,"NO2"]) # draw histogram.

Now compute the regression line of the NO2-content against temperature and show it
graphically next to the histogram:

5

lm.T <- lm(NO2 ~ Temp, data = no2) # fits regression.

plot(NO2 ~ Temp, data = no2)

abline(lm.T, col = 4, lty = 2) # col: colour; lty=2: dashed line

summary(lm.T) # regression summary (details later)

title("Title xy") adds a title to your graphic and dev.print() prints the graphic.

Note that there is a distinction between “high-level”- (such as plot, hist) and “low-level”-
graphics functions (such as abline). The former make up a new graphic, while the latter
add something to existing graphics.

Getting help
If you want to know the details about functions, you can use the R-online help. For
example, help(plot) explains the plot-function. Type q to exit the help window. You
can execute the example at the end of the help page by example(plot).

An alternative to the help-function: help.start() starts the html-help of R in a web
browser.

If you look for help about some topic without knowing the function names, e.g., about
histograms, help.search("histogram") delivers a list of functions which correspond to
the keyword. In parentheses you find the name of the package to which the function
belongs. Most functions used by us in the beginning are contained in the package “base”,
which is automatically loaded. Other packages must be loaded by library(package),
before their functions and help pages are accessible.

Ending R
You can save your work by saving the file of instructions tutorial.R (see above; of course
it is useful to use new files for new projects, e.g., exercise1.R, exercise2.R, . . .). The
instructions have to be evaluated again to restore your work. R-objects may be saved also
by the functions save and write or by creating a new output file and use of the copy, cut
and paste facilities of the editor.

The function q() terminates the R-session. Answer n to the question
Save workspace image? [y/n/c] or use q("no").

More to come
R can be used to create complex programs and functions. You may take a look at
help(for) for control-flow constructs or at help(function) for creating functions.

Handing in your homework
If you want us to correct your solutions to the exercises, you should:

1. Print out important R-output and plots. Don’t forget to add your interpretation of
the R-output and plots and to answer the questions on the exercise sheet. A very
elegant way to hand in your solution is to combine everything in a single file (for
example by generating a pdf with LATEX or OpenOffice).

2. Submit your code on the LEMUREN web-interface. We will only correct code that
has been submitted through this interface (don’t print it out, don’t send it to us by
email). Also, we will only correct well documented code.

6

You have to open a web browser to access the LEMUREN interface: click on the Firefox
icon in the Taskbar. Use the URL that was sent to you by email (something like http:

//karoline.ethz.ch/dka/?role=student&key=xxxxx).

In the upper left corner of the browser window you will see your name. In the menu below
you can access the exercise sheets. You can download/open an exercise sheet by clicking
on the corresponding pdf link. If you move the cursor of the mouse on to the name of
an exercise sheet (for example “Exercise 1”) you will see the deadline to hand in your
solution. By clicking on the + sign in front of an exercise you can access the different
tasks.

Click on the + in front of “Tutorial”. Then click on “task”. You see four panels (see
Figure 3). The upper left one corresponds to the editor panel. The upper right one will
display the R-output. The third one will display the content of the “.R” and “.Rout” files
in your working directory. The last one is a tool to easliy access the R help.

Figure 3: The LEMUREN interface: a handy tool to submit your solutions to the exercises
and to get feedback regarding your code from the teaching assistants.

Switch back to the editor gedit. Copy all the instructions contained in your file tutorial.R
and paste them into the editor panel in LEMUREN. Click in the field script name: and
provide a name for your script. Do not include the “.R” in the name. Click on the button
run. If there is no error in your script, all R instructions are carried out, and you see the
output from R in the R-output panel. At the end of the buffer the message run finished

without an R error should be displayed.

In addition, several files have been created and are now available in the working directory
panel. Your script has been saved under the name you chose with the extension “.R”. The
output of R has been saved under the same filename with the extension “.Rout”. If your
code generated any plots, a file holding all the plots has been generated with the same
filename with the extension “.pdf”.

You can click on the file names in the working directory. If you click on a “.pdf” file, you
can open/download it. If you click on a “.R” or “.Rout” file, the content of the file is
displayed in the buffer. You can delete files that you do not need anymore by checking
the corresponding boxes and then clicking on delete selected.

7

The teaching assistants will be able to see all the files that you have in your working
directories.

To use the help panel, simply click in the field function: and type the name of the
R function for which you would like to read the help file. If the function does not be-
long to a standard package, you also have to specify the name of the package in the field
package:. Try for example to call the help file for the function lm. Now try to call the
help file for the function regsubsests without specifying a package, and then try again
while specifying the package leaps.

A few things to keep in mind:

• When you click on the “run” button, the whole script is evaluated in R (not sub-
mitted line by line). Before being evaluated, your script is parsed (with the function
parse). A syntax error (including an incomplete expression) will return an error.

• Instead of clicking on the “run” button, you can also type <Shift> + <RETURN> in
the editor panel to evaluate your script.

• While your script is being evaluated, a wheel is turning next to the “run” button.

• If you want to stop the evaluation of a script, click on the “interrupt” button.

• If you want to save your plots one by one, you can use the function pdf in your
script.

• If you need help from the teaching assistants for a particular problem, you can
prepare a script called help request.R. Once you submitted your help request in
LEMUREN, send an email to compstat@stat.math.ethz.ch with the indication
where we can find your code (for example in “Exercise 1”, “Task 2”). Make sure to
structure your requests for help as it is mentioned in the “organizational sheet” of
the lecture.

• LEMUREN is a nice tool to submit your code and requests for help. However, we
strongly advise you not to develop your code on LEMUREN. It is better to become
familiar with an editor to which you will still have access after this lecture is over.
Therefore, develop your scripts with the editor of your choice, then submit your code
via the LEMUREN web interface.

8

