Single Factor Experiments

■ Topic:

- Comparison of more than 2 groups
- One-Way Analysis of Variance
- F test
- Learning Aims:
- Understand model parametrization
- Carry out an anova

■ Reason: Multiple t tests won't do!

Potatoe scab

- widespread disease
- causes economic loss
- known factors: variety, soil condition

Experiment with different treatments

- Compare 7 treatments for effectiveness in reducing scab
- Field with 32 plots, 100 potatoes are randomly sampled from each plot
\square For each potatoe the percentage of the surface area affected was recorded. Response variable is the average of the 100 percentages.

Field plan and data

2	1	6	4	6	7	5	3
9	12	18	10	24	17	30	16
1	5	4	3	5	1	1	6
10	7	4	10	21	24	29	12
2	7	3	1	3	7	2	4
9	7	18	30	18	16	16	4
5	1	7	6	1	4	1	2
9	18	17	19	32	5	26	4

1-Factor Design

Plots, subjects

Randomisation

Group 1 Group 2 ... Group I

\times	\times		\times
\times	\times		\times
\times	\times	\ldots	\times
\times	\times		\times
\times	\times		\times

Complete Randomisation

a) number the plots $1, \ldots, 32$.
b) construct a vector with 8 replicates of 1 and 4 replicates of 2 to 7 .
c) choose a random permutation and apply it to the vector in b).
in R :

```
> treatment=factor(c(rep(1,8),rep (2:7,each=4)))
```

> treatment
[1] $11 \begin{array}{lllllllllllllllllllllllllllllll} & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 & 5 & 5 & 5 & 5 & 6 & 6 & 6 & 6 & 7 & 7 & 7 & 7\end{array}$
> sample(treatment)
[1] $64 \begin{array}{lllllllllllllllllllllllllllllll} & 4 & 3 & 4 & 3 & 1 & 2 & 3 & 5 & 5 & 6 & 1 & 7 & 1 & 1 & 2 & 1 & 3 & 2 & 1 & 5 & 7 & 4 & 2 & 1 & 7 & 6 & 6 & 1 & 5 & 4\end{array}$

Exploratory data analysis

Group	y								\bar{y}
1	12	10	24	29	30	18	32	26	22.625
2	9	9	16	4					9.5
3	16	10	18	18					15.5
4	10	4	4	5					5.75
5	30	7	21	9					16.75
6	18	24	12	19					18.25
7	17	7	16	17					14.25

Graphical display

Treatment
Treatment

Two sample t tests

$$
\begin{array}{lllll}
\text { Group 1 } & \text { - Group 2 } & \vdots & H_{0}: \mu_{1} & =\mu_{2} \\
\text { Group 1 } & \text { - Group 3 } & \vdots & H_{0}: \mu_{1} & =\mu_{3} \\
\text { Group 1 } & \text { - Group 4 } & \vdots & H_{0}: \mu_{1} & =\mu_{4} \\
\text { Group 1 } & \text { - Group 5 } & \vdots & H_{0}: \mu_{1} & =\mu_{5} \\
\text { Group 1 } & \text { - Group 6 } & \vdots & H_{0}: \mu_{1} & =\mu_{6} \\
\text { Group 1 } & \text { - Group 7 } & : & H_{0}: \mu_{1}=\mu_{7}
\end{array}
$$

$\alpha=5 \%, P\left(\right.$ Test not significant $\left.\mid H_{0}\right)=95 \%$
7 groups, 21 independent tests:
$P\left(\right.$ none of the tests sign. $\left.\mid H_{0}\right)=0.95^{21}=0.34$
$P\left(\right.$ at least one test sign. $\left.\mid H_{0}\right)=0.66$ (more realistic: 0.42)

$$
1-(1-\alpha)^{n}
$$

Bonferroni correction

Choose α_{T} such that

$$
1-\left(1-\alpha_{T}\right)^{n}=\alpha_{E}=5 \%
$$

($\alpha_{T}=\alpha$ „testwise", $\alpha_{E}=\alpha$ „experimentwise")
Since $1-\left(1-\frac{\alpha}{n}\right)^{n} \approx \alpha$, the significance level for a single test has to be divided by the number of tests.

Overcorrection, not very efficient.

Analysis of variance

■ Comparison of more than 2 groups
\square for more complex designs

- global F test

Idea:

total $=$	treatment	+	experimental error
total $=$	variability of plots with	+	variability of plots with
	different treatments		the same treatment

Definitions

■ Factor: categorical, explanatory variable
Level: value of a factor
Ex 1: Factor= soil treatment, 7 levels 1-7.
\Longrightarrow One-way analysis of variance
Ex 2: 3 varieties with 4 quantities of fertilizer \Longrightarrow Two-way analysis of variance

- Treatment: combination of factor levels
- Plot, experimental unit: smallest unit to which a treatment can be applied
Ex: feeding (chicken, chicken-houses), dental medicine (families, people, teeth)

One-way analysis of variance

Model:

$$
\begin{gather*}
\text { response }=\text { treatment }+ \text { error (Plot) } \\
Y_{i j}=\mu+A_{i}+\quad \epsilon_{i j} \tag{1}\\
i=1, \ldots, I ; j=1, \ldots, J_{i}
\end{gather*}
$$

$\mu=$ overall mean
$A_{i}=$ ith treatment effect
$\epsilon_{i j}=$ random error, $\mathcal{N}\left(0, \sigma^{2}\right)$ iid.

Illustration of model (1)

Necessary constraint

Model (1) is overparametrized, a restriction is needed.

■ usual constraint:
$\sum J_{i} A_{i}=0, \sum A_{i}=0$ if $J_{i}=J$ for all i
A_{i} denotes the deviation from overall mean.

- $A_{1}=0$, resp. $A_{I}=0$

First (or last) group is reference group.

Decomposition of the deviation of a response from the overall mean

$$
y_{i j}-y_{. .}=\underbrace{y_{i .}-y_{.}}_{\begin{array}{c}
\text { deviation of } \\
\text { the group mean }
\end{array}}+\underbrace{\text { the group mean }}_{\text {deviation from }}
$$

$y_{i .}=\frac{1}{J_{i}} \sum_{j} y_{i j}$ mean of group i,
$y_{. .}=\frac{1}{N} \sum_{i} \sum_{j} y_{i j}$ overall mean, $N=\sum J_{i}$.

Analysis of variance identity

total sum $=$ treatment sum + residual sum of squares of squares of squares

$$
S S_{\text {tot }}=S S_{\text {treat }}+\quad S S_{\text {res }}
$$

Mean squares

Total mean square: $M S_{t o t}=S S_{t o t} /(N-1)$ Residual mean square: $M S_{\text {res }}=S S_{r e s} /(N-I)$

$$
\begin{gathered}
\frac{S S_{\text {res }}}{N-I}=\frac{\sum_{i}\left(J_{i}-1\right) S_{i}^{2}}{\sum_{i}\left(J_{i}-1\right)}, \quad S_{i}^{2}=\frac{\sum_{j}\left(y_{i j}-y_{i .}\right)^{2}}{J_{i}-1} \\
\left.M S_{r e s}=\hat{\sigma}^{2}=\widehat{\operatorname{Var}\left(Y_{i j}\right.}\right), \quad E\left(M S_{\text {res }}\right)=\sigma^{2}
\end{gathered}
$$

Treatment mean square: $M S_{\text {treat }}=S S_{\text {treat }} /(I-1)$

$$
\begin{array}{r}
E\left(M S_{\text {treat }}\right)=\sigma^{2}+\sum J_{i} A_{i}^{2} /(I-1) \\
d f_{\text {tot }}=d f_{\text {treat }}+d f_{\text {res }}, \quad N-1=I-1+N-I
\end{array}
$$

F test

$$
\begin{aligned}
& H_{0}: \quad \text { all } A_{i}=0 \\
& H_{A}: \text { at least one } A_{i} \neq 0
\end{aligned}
$$

Since $\epsilon_{i j} \sim \mathcal{N}\left(0, \sigma^{2}\right), F=\frac{M S_{\text {treat }}}{M S_{\text {res }}}$ has under H_{0} an F distribution with $I-1$ and $N-I$ degrees of freedom.
one-sided test:
reject H_{0} if $F>F_{95 \%, I-1, N-I}$

Chisquare and t distribution

■ Let $Z_{1}, \ldots, Z_{n} \sim \mathcal{N}(0,1)$, iid. Then

$$
X=Z_{1}^{2}+Z_{2}^{2}+\cdots+Z_{n}^{2}
$$

has a χ^{2} distribution with n df, $X \sim \chi_{n}^{2}$

- Let $Z \sim \mathcal{N}(0,1)$ and $X \sim \chi_{n}^{2}$ be independent random variables. The distribution of

$$
T=\frac{Z}{\sqrt{X / n}}
$$

is called the t distribution with $n \mathrm{df}, T \sim t_{n}$

F distribution

\square Let $X_{1} \sim \chi_{n}^{2}$ and $X_{2} \sim \chi_{m}^{2}$ be independent random variables. The distribution of

$$
F=\frac{X_{1} / n}{X_{2} / m}
$$

is called the F distribution with n and $m \mathrm{df}$, $F \sim F_{n, m}$

Properties: $\quad F_{1, m}=t_{m}^{2}$

$$
E\left(F_{n, m}\right)=\frac{m}{m-2}
$$

R: anova table

```
> modl=aov(y~}treatment,data=scab
> summary(mod1)
    Df Sum Sq Mean Sq F value Pr(>F)
treatment 6 972.34 162.06 3.608 0.0103 *
Residuals 25 1122.88 44.92
```

F test is significant, there are significant treatment differences.

