Single Factor Experiments

- Topic:
 - Comparison of more than 2 groups
 - One-Way Analysis of Variance
 - F test
- Learning Aims:
 - Understand model parametrization
 - Carry out an anova
- Reason: Multiple t tests won't do!

Potatoe scab

- widespread disease
- causes economic loss
- known factors: variety, soil condition

Experiment with different treatments

- Compare 7 treatments for effectiveness in reducing scab
- Field with 32 plots, 100 potatoes are randomly sampled from each plot
- For each potatoe the percentage of the surface area affected was recorded. Response variable is the average of the 100 percentages.

Field plan and data

2	1	6	4	6	7	5	3
9	12	18	10	24	17	30	16
1	5	4	3	5	1	1	6
10	7	4	10	21	24	29	12
2	7	3	1	3	7	2	4
9	7	18	30	18	16	16	4
5	1	7	6	1	4	1	2
9	18	17	19	32	5	26	4

1-Factor Design

Plots, subjects

Randomisation

Group 1 Group 2 ... Group I

Complete Randomisation

- a) number the plots 1, ..., 32.
- b) construct a vector with 8 replicates of 1 and 4 replicates of 2 to 7.
- c) choose a random permutation and apply it to the vector in b).

```
in R:
> treatment=factor(c(rep(1,8),rep(2:7,each=4)))
> treatment
[1] 1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7
> sample(treatment)
[1] 6 4 3 4 7 3 1 2 3 5 5 6 1 7 1 1 2 1 3 2 1 5 7 4 2 1 7 6 6 1 5 4
```

Exploratory data analysis

Group		\bar{y}							
1	12	10	24	29	30	18	32	26	22.625
2	9	9	16	4					9.5
3	16	10	18	18					15.5
4	10	4	4	5					5.75
5	30	7	21	9					16.75
6	18	24	12	19					18.25
7	17	7	16	17					14.25

Graphical display

Two sample t tests

```
Group 1 – Group 2 :
                               H_0: \mu_1 = \mu_2
Group 1 – Group 3 :
                              H_0: \mu_1 = \mu_3
Group 1 - Group 4 : H_0: \mu_1 = \mu_4
Group 1 - Group 5 : H_0: \mu_1 = \mu_5
Group 1 - Group 6 : H_0: \mu_1 = \mu_6
Group 1 – Group 7 :
                              H_0: \mu_1 = \mu_7
\alpha = 5\%, P(Test not significant |H_0\rangle = 95\%
7 groups, 21 independent tests:
P(\text{ none of the tests sign. } | H_0) = 0.95^{21} = 0.34
P( at least one test sign. |H_0)=0.66 (more realistic: 0.42)
                     1 - (1 - \alpha)^n
```

Bonferroni correction

Choose α_T such that

$$1 - (1 - \alpha_T)^n = \alpha_E = 5\%$$

($\alpha_T = \alpha$ "testwise", $\alpha_E = \alpha$ "experimentwise")

Since $1 - (1 - \frac{\alpha}{n})^n \approx \alpha$, the significance level for a single test has to be divided by the number of tests.

Overcorrection, not very efficient.

Analysis of variance

- Comparison of more than 2 groups
- for more complex designs
- global F test

Idea:

Comparison of components

 $\begin{array}{lll} \mbox{total} &= & \mbox{treatment} & + & \mbox{experimental error} \\ \mbox{total} &= & \mbox{variability of plots with} & + & \mbox{variability of plots with} \\ \mbox{different treatments} & & \mbox{the same treatment} \\ \mbox{} & \sigma^2 + \mbox{treatment effect} & \sigma^2 \end{array}$

Definitions

- Factor: categorical, explanatory variable Level: value of a factor
 - Ex 1: Factor= soil treatment, 7 levels 1-7.
 - → One-way analysis of variance
 - Ex 2: 3 varieties with 4 quantities of fertilizer
 - → Two-way analysis of variance
- Treatment: combination of factor levels
- Plot, experimental unit: smallest unit to which a treatment can be applied Ex: feeding (chicken, chicken-houses), dental medicine (families, people, teeth)

One-way analysis of variance

Model:

$$response = treatment + error (Plot)$$

$$Y_{ij} = \mu + A_i + \epsilon_{ij}$$

$$i=1,...,I; j=1,...,J_i$$

$$(1)$$

 $\mu = ext{overall mean}$ $A_i = ext{ith treatment effect}$ $\epsilon_{ij} = ext{random error}, \, \mathcal{N}(0, \sigma^2) \, ext{iid.}$

Illustration of model (1)

Necessary constraint

Model (1) is overparametrized, a restriction is needed.

usual constraint:

$$\sum J_i A_i = 0$$
, $\sum A_i = 0$ if $J_i = J$ for all i A_i denotes the deviation from overall mean.

■ $A_1 = 0$, resp. $A_I = 0$ First (or last) group is reference group.

Decomposition of the deviation of a response from the overall mean

$$y_{ij}-y_{..}=\underbrace{y_{i.}-y_{..}}+\underbrace{y_{ij}-y_{i.}}$$
 deviation of deviation from the group mean

$$y_{i.} = \frac{1}{J_i} \sum_j y_{ij}$$
 mean of group i , $y_{..} = \frac{1}{N} \sum_i \sum_j y_{ij}$ overall mean, $N = \sum_i J_i$.

Analysis of variance identity

$$\sum_{i} \sum_{j} (y_{ij} - y_{..})^2 = \sum_{i} \sum_{j} (y_{i.} - y_{..})^2 + \sum_{i} \sum_{j} (y_{ij} - y_{i.})^2$$
total variability variability between groups variability within groups

total sum = treatment sum + residual sum of squares of squares of squares

$$SS_{tot} = SS_{treat} + SS_{res}$$

Mean squares

Total mean square: $MS_{tot} = SS_{tot}/(N-1)$ Residual mean square: $MS_{res} = SS_{res}/(N-I)$

$$\frac{SS_{res}}{N-I} = \frac{\sum_{i} (J_i - 1)S_i^2}{\sum_{i} (J_i - 1)}, \quad S_i^2 = \frac{\sum_{j} (y_{ij} - y_{i.})^2}{J_i - 1}$$

$$MS_{res} = \hat{\sigma}^2 = \widehat{Var(Y_{ij})}, \quad E(MS_{res}) = \sigma^2$$

Treatment mean square: $MS_{treat} = SS_{treat}/(I-1)$

$$E(MS_{treat}) = \sigma^2 + \sum_{i} J_i A_i^2 / (I - 1)$$

$$df_{tot} = df_{treat} + df_{res}, \quad N-1 = I-1+N-I$$

F test

 $H_0: \quad \text{all } A_i = 0$

 H_A : at least one $A_i \neq 0$

Since $\epsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$, $F = \frac{MS_{treat}}{MS_{res}}$ has under H_0 an F distribution with I-1 and N-I degrees of freedom.

one-sided test: reject H_0 if $F > F_{95\%,I-1,N-I}$

Chisquare and t distribution

Let $Z_1, \ldots, Z_n \sim \mathcal{N}(0,1), iid$. Then

$$X = Z_1^2 + Z_2^2 + \dots + Z_n^2$$

has a χ^2 distribution with n df, $X \sim \chi_n^2$

Let $Z \sim \mathcal{N}(0,1)$ and $X \sim \chi_n^2$ be independent random variables. The distribution of

$$T = \frac{Z}{\sqrt{X/n}}$$

is called the t distribution with n df, $T \sim t_n$

F distribution

Let $X_1 \sim \chi_n^2$ and $X_2 \sim \chi_m^2$ be independent random variables. The distribution of

$$F = \frac{X_1/n}{X_2/m}$$

is called the F distribution with n and m df, $F \sim F_{n,m}$

Properties:
$$F_{1,m} = t_m^2$$

 $E(F_{n,m}) = \frac{m}{m-2}$

R: anova table

F test is significant, there are significant treatment differences.