
Seminar on Statistics, FS 2008

Bayesian Statistics:
Computational Aspects

Mattia Bergomi & Cinzia Pedrazzoli (D-MATH)

May 6, 2008

Contents
1 Introduction 2

2 Generation of Random Variables with an arbitrary Distribution in low Di-
mensions 2
2.1 Direct Quantile Simulation . 2
2.2 Accept-Reject Method . 3

3 Monte Carlo Methods 4

4 Markov Chains 5

5 MCMC Methods: Metropolis-Hastings Algorithm & Gibbs Sampler 7
5.1 The Metropolis-Hastings Algorithm (MHA) 8

5.1.1 The Metropolis-Hastings Algorithm - Discrete Case 9
5.1.2 Remarks to the Metropolis-Hastings Algorithm 11

5.2 The Gibbs Sampler . 11
5.2.1 Remarks to the Gibbs Sampler 12

6 The Ising Model 12

7 Examples 14
7.1 Metropolis-Hastings: Example 1 . 14
7.2 Gibbs Sampler: Example 2 . 15
7.3 Gibbs Sampler: Example 3 . 19

8 Bibliography 21

1

1 Introduction
Given the data x which are realizations of X ∼ f(x|θ), a prior distribution π(θ) and a
loss function L, for a Bayes decision we need to minimize the Bayes risk∫ ∫

L(θ, δ)f(x|θ)π(θ) dx dθ.

This is equivalent to choosing the estimator δ that minimizes the posterior expected
loss for each x:

d(x) = arg min
δ

E[L(θ, δ)|x] = arg min
δ

∫
Θ

L(θ, δ)π(θ|x) dθ

The calculation of d has two hindrances:

1. The explicit computation of π(θ|x) may be impossible because of the normaliz-
ing constant.

2. In many cases the above integration cannot be computed analytically, even if
π(θ|x) is known.

To avoid the usage of simple prior distributions (namely conjugate priors) and simple
losses, we need approximation methods, such as numerical methods or simulations.

2 Generation of Random Variables with an arbitrary
Distribution in low Dimensions

In this paper we deal with the following problem: given a distribution π on a space X
(with a σ−algebra F) and the possibility to generate infinitely-many uniform random
variables U1, U2, ... (e.g. by a pseudo-random number generator on a PC), we want to
generate random variables X1, X2, ... on X such that they are all i.i.d. π-distributed. In
other words, we would like to simulate from π!

If X is only 1−dimensional (w.l.o.g. let us assume X = R), then a lot of algorithms
exist for our purpose (accept/reject, ratio of uniforms, polar coordinates relations, im-
portance sampling, etc.: we will present the accept-reject method, since we will also
need it later), but if X is high-dimensional (again let us assume X = Rn with n large),
then things start to become difficult, and we will need to use Markov Chains for this
purpose.

For the rest of this chapter we will hence assume X = R (i.e. 1−dimensional) as
well as the target distribution π having density f and cumulative distribution function F
(we remark again that for our purposes on Bayesian statistics, π represents the posterior
density π(θ|y)).

2.1 Direct Quantile Simulation
Definition 1 The function F−1(u)=inf {x|F (x) ≥ u} , u ∈ (0, 1) is called quantile
function.

Not every distribution admits an analytical computation of F−1 (e.g. it is impos-
sible for the normal distribution), but assuming it to be calculable (directly, if F is
explicitely invertible, or by numerical approximations otherwise) we immediately ob-
tain the following algorithm/result:

2

Theorem 1 If U ∼ Unif(0, 1), then X := F−1(U) ∼ F .

Proof: We assume F to be invertible (otherwise the proof becomes too technical).

Then: P [X ≤ k] = P [F−1(U) ≤ k]
F invertible︷︸︸︷

= P [U ≤ F (k)]
U∼Unif(0,1)︷︸︸︷

= F (k)

This is the simplest and easiest way to simulate from F , but for some distributions
(normal-, beta-, gamma-) numerical approximations are needed, hence the method is
not appropriate.

2.2 Accept-Reject Method
A smarter way to get rid of this obstacles is the Accept-Reject Method (ARM for short,
Verwerfungsmethode in German), which already introduces a background idea that will
also be used in the Metropolis-Hastings algorithm for higher-dimensional X’s. The
main idea is to firstly simulate from another distribution τ , called the proposal, and
then ”correct” the result such that it fits well for the distribution π. We may assume that
π and τ have densities f, g with respect to a common measure µ (often, in the discrete
case it is the counting-measure and in the continuous case the Lebesgue-measure). The
proposal τ must be chosen such that it is easy for us to simulate from it (otherwise the
problem remains the same) and such that it is defined for all x with f(x) > 0.

Theorem 2 If the quotient f(x)/g(x) (called importance ratio) is bounded by a con-
stant M <∞, i.e.

a(x) :=
f(x)
g(x)

≤M <∞,∀x

then for X ∼ τ and U ∼ Unif(0, 1) we have that X|(a(X) ≥ U) is π-distributed,
i.e. we can simulate from π by using P [X ∈ A|U ≤ a(X)] = π(A).

a(x) is called the ”acceptance probability”, since it represents the probability to
accept a generated X and not to reject it. We can hence formulate the last theorem as
an algorithm for simulating from a target π.

Algorithm 2.1 Accept-Reject(π)

1. Choose an appropriate proposal distribution τ s.t. simulating from τ is easy.
Define f = density(π), g = density(τ).

2. Simulate X ∼ τ , U ∼ Unif(0, 1).

3. If U ≤ f(X)
M ·g(X) accept X as result, otherwise reject it and repeat from step 2.

Proof:

• It holds:

P [X ∈ A,U ≤ a(X)] = E[P [X ∈ A,U ≤ a(X)|X]] =
∫

1A(x)·a(x)τ(dx) =

=
∫

1A(x) · f(x)
M · g(x)

g(x)µ(dx) =
1
M

∫
A

f(x)µ(dx) =
π(A)
M

.

3

• Setting A = X we obtain: P [U ≤ a(X)] = 1
M · 1.

• Therefore: P [X ∈ A|U ≤ a(X)] = P [X∈A,U≤a(X)]
P [U≤a(X)] = π(A)

M ·M = π(A).

Figure 1: Illustration of the Accept-Reject Method: the top curve is the approximation
proposal Mg(x) of the lower curve f . As required, Mg ≥ f holds everywhere. The
blue vertical line represents a sample from g, accepted only with probability equal to
the ratio of the heights of the two curves.

A good approximate density g should be roughly proportional to f : the ideal sit-
uation would therefore be g ∝ f (where, with a suitable M , we accept almost every
draw), while when g is not nearly proportional to f , the bound M must be set so large
that almost every sample is rejected, turning the method to be (even if still working in
theory) practically useless (see Figure 1 to understand why). In fact we have that the
expected number of trials before a value is accepted is exactly M , since the acceptance
probability P [U ≤ a(X)] equals 1/M .

This happens in particular in high dimensions, where two probability distributions
π, τ are typically ”almost singular”, i.e. there exists an E with π(E) ≈ 1, τ(E) ≈ 0.

3 Monte Carlo Methods
The Monte Carlo methods are numerical methods originally developed in the fifties by
physicists (Metropolis, Ulam and Von Neuman) to use random number generation for
computing integrals.

To compute an integral
∫ b
a
h(x)dx we decompose h(x) in a function f(x) and a

density p(x) defined over (a, b), then the integral can be expressed as an expectation of
f(x) over p(x): ∫ b

a

h(x)dx =
∫ b

a

f(x)p(x)dx = Ep(x)[f(x)]

Thus, if we draw a large number of random variables x1, · · · , xn from p(x), then∫ b

a

h(x)dx = Ep(x)[f(x)] ' 1
n

n∑
i=1

f(xi).

4

This method is called Monte Carlo Integration.
In particular, to approximate the integral

∫
Θ
g(θ)f(x|θ)π(θ)dθ we generate random

variables θ1, · · · , θn from π(θ), then

1
n

n∑
i=1

g(θi)f(x|θi)
a.s.−−−−→
n→∞

∫
Θ

g(θ)f(x|θ)π(θ)dθ

according to the law of large numbers. In a similar way, the generation of an i.i.d.
sample of θi’s from π(θ|x) leads to the convergence

1
n

n∑
i=1

g(θi) −−−−→
n→∞

∫
Θ
g(θ)f(x|θ)π(θ)dθ∫
Θ
f(x|θ)π(θ)dθ

= E[g(θ)|x].

If the posterior variance var(g(θ)|x) is finite then, thanks to the central limit theorem,
the distribution of 1

n

∑n
i=1 g(θi) is approximately normal with mean E[g(θ)|x] and

variance var(g(θ)|x)/n for n large, i.e.

√
n

(
1
n

n∑
i=1

g(θi)− E[g(θ)|x]

)
d−−−−→

n→∞
N(0, var(g(θ)|x)).

From this normal distribution we can build confidence regions with an error of order
1/
√
n.

We therefore need a method to simulate the θi’s ∼ π(·|x).

4 Markov Chains
Let X be a space with σ −Algebra F .

Definition 2 A Transition Kernel (or Transition Probability) is a functionK : X×F →
[0, 1] such that

1. K(x, ·) is a probability measure on (X,F),

2. K(·, A) is a measurable function for each A ∈ F .

A kernel defines a function on the set of the probabilities on (X,F) given by:

νK(A) :=
∫
K(x,A)ν(dx)

as well as a function on the set of the bounded, measurable functions on (X,F) given
by:

Kf(x) :=
∫
f(y)K(x, dy).

Further, two kernels can be combined to obtain a new kernel using the construction:

K1K2(x,A) :=
∫
K2(y,A)K1(x, dy).

Remark: If X is finite, K is a matrix (K(i, j))i,j with K(i, j) ≥ 0, ∀ i, j and∑
j K(i, j) = 1, following the rules of matrix operations.

The transition kernel also defines a probability measure on the state space, and we
assume that the density k exists, i.e. K(x,A) = K(A|Xn = x) =

∫
A
k(x, y)dy.

5

Definition 3 A Markov Chain on (X,F) with initial distribution ν0 and transition
probability K is a sequence of random variables (Xn)n≥0 on X such that

1. P [X0 ∈ A] = ν0(A)

2. P [Xt+1 ∈ A|Xt = xt, . . . , X0 = x0] = P [Xt+1 ∈ A|Xt = xt] = K(xt, A)

That means: given the present state, future states are independent of the past.

Simple consequences are:

• P [Xt+k ∈ A|Xt = xt, . . . , X0 = x0] = Kk(xt, A)

• E[f(Xt+k)|Xt = xt] = Kkf(xt)

• P [Xt ∈ A] = ν0K
t(A)

• The joint distribution of (X0, · · · , Xn) is ν0(dx0)
t∏

s=1
K(xs−1, dxs).

For our purposes, we would like the distribution of the chain to be p(θ|y), but since
we don’t know this distribution, we want to generate a chain which converges to the
distribution p(θ|y).

We consider a probability distribution Π, assuming its densitiy π to exist: Π(A) =∫
A
π(x)dx.

Definition 4 A probability distribution Π on (X,F) is invariant or stationary for a
transition kernel K if

ΠK(A) =
∫
K(x,A)Π(dx) = Π(A)

Definition 5 A probability distribution Π on (X,F) is reversible for a transition kernel
K if

k(x, y)π(x) = k(y, x)π(y)

Theorem 3 If Π is reversible, then Π is stationary.

Proof: By integration:∫
k(y, x)π(y)dy =

∫
k(x, y)π(x)dy = π(x)

∫
k(x, y)dy = π(x)

Thus, since we want p(θ|y) to be the stationary distribution of our chain, using the
above theorem we can consider a chain for which p(θ|y) is reversible. The reversibility
condition will be helpful in the Metropolis-Hastings algorithm, which will produce the
requested chain.

Definition 6 A Markov chain is irreducible if for each A with Π(A) > 0 and for each
x ∈ X there exists an n such that Kn(x,A) > 0.

6

In other words, an irreducible chain can reach every state starting from every other
state. We will see that the construction in the Metropolis-Hastings altorithm introduces
dependence between the θi’s by using the current value as new starting value. This
could be a problem, because the law of large numbers holds only if the random vari-
ables are independent and identically distributed. However, the ergodic theorem, which

states the convergence of 1
N

N∑
n=1

g(θn) against Eπ[g(θ)|x] (if Eπ[|g(θ)||x] < ∞), re-

moves this problem. Ergodicity vanishes the influence of the starting value. Our chain
is then convergent to a unique stationary distribution, and the average converges to the
corresponding expectation, as the following theorem states:

Theorem 4 Suppose that {Xt} is irreducible with transition kernel K and invariant
distribution π. Then π is the only invariant distribution. Moreover, if

∫
|g(x)|π(dx) <

∞, then

P

[
1

N + 1

N∑
t=0

g(Xt) −−−−→
N→∞

∫
g(x)π(dx) | X0 = x

]
= 1

for π-almost all starting values x (under some additional conditions the ”π-almost”
even disappears...).

5 MCMC Methods: Metropolis-Hastings Algorithm &
Gibbs Sampler

Markov Chain Monte Carlo Method (MCMC for short) is a general (and nowadays
standard) way of simulating draws from distributions in high dimensions. The idea is to
draw values of θ from an approximate distribution (which plays an analogue role to the
proposal distribution seen in the Accept-Reject Method) and then correct those draws
to better approximate the target posterior distribution p(θ|y). The samples (θt)t=1,2,...

are drawn sequentially, where each draw only depends on the last value drawn; hence,
the draws form a Markov Chain. Our target is to construct a Markov Chain P such that
for values of t large enough, θt has approximatively the right distribution p(θ|y).

MCMC is obviously used only when it is not possible to sample θ directly from
p(θ|y); instead, we sample it iteratively in such a way that at every step of our algo-
rithm the distribution of the last draw becomes always closer to the target p(θ|y).

Since this method is much more general and also has a lot of applications in non-
Bayesian statistics, we describe the method in a general way by letting again the tar-
get distribution be indicated by π (for our purposes we should therefore simply set
π := p(θ|y)...).

We also notice that, after the process converged, not every draw computed during
the steps has an approximate distribution π, since we started from an arbitrary distri-
bution and ”moved” towards π. To diminish the effect of the starting distribution, we
discard the early iterations of the simulation runs: this process is known as the burn-in.
A usual convention says to discard the first half of the iterations and to concentrate on
the second half, however this is not a general rule and other strategies can be consid-
ered.

7

Our job is therefore now to construct a Markov Chain (i.e. its kernel P) that satisfies
the following properties:

• π is invariant (stationary) for P , i.e. πP = π.

• π is the unique stationary distribution of P .

• We are able to simulate from P (at least easier than from π).

And then simply generate a Markov Chain Xt with transition P .

There are also some interesting questions as:

• Will the process converge for any starting distribution?

• How long do we have to wait until the process has converged ”enough” (burn-in
strategy)?

• ...

In the following we denote the density of P by p(y|x).

5.1 The Metropolis-Hastings Algorithm (MHA)
The Metropolis-Hastings Algorithm (that has been considered one of the top 10 algo-
rithms of the millennium!) was invented by Nicholas Constantine Metropolis (in 1953,
with some limitations in it) and later generalized by W. Keith Hastings (in 1970) to the
actual form. It is nowadays (together with the Gibbs Sampler that we will see later) the
standard way to sample from high-dimensional probability distributions. The original
form of the algorithm had some limitations (the most important was that the proposal
distribution must be symmetric) that have been fixed in the Metropolis-Hastings form:
we will therefore directly talk about the definitive version of the algorithm.

From the conditions of the last section, we want to construct a kernel P such that
π is its unique stationary distribution and we are able to simulate from P . Using the
properties seen on the Chapter about Markov Chains, we can restate these requests as
follows:

• P is irreducible (⇒ unique invariant distribution).

• π is reversible for P (⇒ π is stationary).

• We can construct an easy method for simulating from P (x,A).

• Eventually, P is aperiodic (which ensures that Pn(x, ·)→ π(·) for π-almost all
x).

The condition of reversibility states:

p(y|x)π(x) = p(x|y)π(y).

If we make a proposal q (admissible, i.e. q(·|x) is defined where π(x) > 0), then this
will not generally satisfy the above needed equation (assume w.l.o.g. q(y|x)π(x) >
q(x|y)π(y)), but we can find a factor 0 ≤ a(x, y) ≤ 1 s.t.

q(y|x)π(x) · a(x, y) = q(x|y)π(y)

8

i.e.

a(x, y) = min
{
q(x|y)π(y)
q(y|x)π(x)

, 1
}

The transition kernel corresponding to the modified equation is then:

p(A|x) =
∫
A

q(y|x)a(x, y)dy︸ ︷︷ ︸
A proposed & accepted

+ 1x∈A

(
1−

∫
X
q(y|x)a(x, y)dy

)
︸ ︷︷ ︸

staying

Algorithm 5.1 Metropolis-Hastings(π)

1. Choose an admissible proposal kernel q(·|·), from which it is easy to simulate.

2. Choose a starting point X0 (e.g. uniformly at random).

3. For t=1...N

(a) Simulate Y ∼ q(Y |Xt−1) and U ∼ Unif(0, 1).

(b) Compute a(Xt−1, Y) = min
{

q(Xt−1|Y)π(Y)
q(Y |Xt−1)π(Xt−1) , 1

}
If U ≤ a(Xt−1, Y) then set Xt = Y else set Xt = Xt−1

End For

4. Burn-in: Delete the first X1...r, since possibly meaningless.

In order to understand why this works, we would better consider accurately the
discrete case (where the kernel being a matrix helps a lot in understanding concretely
what’s going on...):

5.1.1 The Metropolis-Hastings Algorithm - Discrete Case

The condition of reversibility now simply states:

π(i)P (i, j) = π(j)P (j, i)

We see that, once a component P (a, b) is determined, the other one P (b, a) is already
uniquely defined. The components P (a, a) are instead free for this condition. Since
the Kernel must be a stochastic matrix, we also need

∑
j P (i, j) = 1, that cannot be

achieved by simply choosing the components P (i, j), i ≤ j at random. Starting from
the observation that, if the sum

∑
j 6=i P (i, j) is < 1, we can easily ”correct” by setting

P (i, i) = 1−
∑
j 6=i P (i, j), we arrive at the following construction:

Start with any transition matrix Q(i, j) (i.e. stochastic matrix, the proposal distri-
bution) that only satisfies the (not too strong) condition Q(i, j) > 0 ⇔ Q(j, i) > 0
(we will need this when defining the minimum later...).
Set P (i, j) = Q(i, j) OR P (j, i) = Q(j, i) (and the other value according to the rule
above) in such a way that both P (i, j) ≤ Q(i, j) AND P (j, i) ≤ Q(j, i). Therefore:∑

j 6=i

P (i, j) ≤
∑
j 6=i

Q(i, j) ≤ 1

9

and with P (i, i) := 1−
∑
j 6=i P (i, j) we get the desired stochastic condition.

The choice of P (i, j) = Q(i, j) OR P (j, i) = Q(j, i) is easy to achieve, since:

P (i, j) = Q(i, j)⇒ P (j, i) =
π(i)Q(i, j)

π(j)
!
≤ Q(j, i)⇔ π(i)Q(i, j)

!
≤ π(j)Q(j, i)

We can write this more compactly (and in a known way) as:

P (i, j) := min
{
Q(i, j),

π(j)
π(i)

Q(j, i)
}

= Q(i, j) ·

=:a(i,j)≤1︷ ︸︸ ︷
min

{
1,
π(j)Q(j, i)
π(i)Q(i, j)

}
P (i, i) := 1−

∑
j 6=i

P (i, j)

As we will see immediately, a(i, j) represents again an acceptance probability, that
plays almost the same role as in the Accept-Reject Algorithm.

Theorem 5 Simulating from P is now simple by using the following algorithm:

Algorithm 5.2 Metropolis-Hastings-Discrete(π)

1. Choose proposal kernel Q(i, j) that satisfies Q(i, j) > 0⇔ Q(j, i) > 0,
from which it is easy to simulate.

2. Choose a starting point X0 (e.g. uniformly at random).

3. For t=1...N

(a) Simulate Y ∼ Q(Xt−1, ·) and U ∼ Unif(0, 1).

(b) If U ≤ a(Xt−1, Y) then set Xt = Y else set Xt = Xt−1

End For

4. Burn-in: Delete the first X1...r, since possibly meaningless.

Proof: Having defined P as P (i, j) := Q(i, j) · a(i, j) and P (i, i) := 1 −∑
j 6=i P (i, j) it is easy to see that in fact we are really simulating from P :

P [Xt = j|Xt−1 = i] =

proposed︷︸︸︷
Qi,j ·

accepted︷︸︸︷
ai,j = Pi,j ,∀j 6= i

P [Xt = i|Xt−1 = i] = Qi,i · ai,i︸ ︷︷ ︸
proposed+accepted

+
∑
j 6=i

Qi,j(1− ai,j)︸ ︷︷ ︸
not moving

= 1−
∑
j 6=i

Qi,jai,j = Pi,i

10

5.1.2 Remarks to the Metropolis-Hastings Algorithm

• The role played by a(i, j) is a bit different from the AR Method, since now even
if we don’t accept a drawn value Y , this counts as a step of the algorithm and the
unchanged value Xt = Xt−1 counts as a new valid draw!

• The target distribution π needs only to be known up to a normalizing constant,
since this cancels in the computation of a(i, j). This is very important, since in
our examples we will always only know π ∝

• The possibility of using non-symmetric proposals helps in increasing the speed
of the convergence.

• The ideal situation would be to sample proposals directly from the target distri-
bution π, where the ratio would always be = 1 ⇒ every draw is accepted (as it
should be).

• An empirical way for checking convergence is to let 2 or more different chains
run in parallel (see Example 7.2) and see if they are concentrating ”on the same
place”.

• A good proposal should be chosen such that:

– The ratio is easy to compute.

– Each jump moves ”reasonably much” (otherwise the chain moves to slowly).

– The jumps are not rejected too often (otherwise we always stay at the same
places).

• Often we allow the proposal to change during the iteration (i.e. to depend on
the number t of the iteration: q(·, ·) = qt(·, ·)), using for example parameters
computed during the previous steps (see the proof of ”Gibbs Sampler = special
case of Metropolis-Hastings” for an example).

• Some common choices for q are:

– Symmetric: q(x|y) = q(y|x), since the ratio simplifies a lot (but con-
vergence could be slow). If q only depends on |y − x|, then it is called
Metropolis Random Walk.

– Independent: q(y|x) = q(y), and it is called Independence Metropolis.

5.2 The Gibbs Sampler
The Gibbs Sampler (also called Alternating Conditional Sampling) is a special case of
the Metropolis-Hastings Algorithm, where only a part of the vector X is updated at a
time, conditioned on the others entries. More concretely, let’s consider a subdivision
X = (X1, ..., Xd) of X in d subvectors (usually one can set d = n and consider the
single components of X as a subdivision). Each iteration of the Gibbs Sampler cycles
through the subvectors of X , drawing each subset conditional on the value of all the
others (there are thus d steps during iteration t). At each iteration t an order of the d
subvectors is chosen (usually simply going straightforward 1, 2, .., d) and each Xt

j is
sampled from the conditional distribution given all the other components of X (using
the most recent ones):

11

Xt
j ∼ π(Xj |Xt−1

−j)

where the notation is:

Xt−1
−j := (Xt

1, ..., X
t
j−1, X

t−1
j+1, ..., X

t−1
d)

Thus, each subvector Xj is updated conditional on the latest values of the other
components of X .

5.2.1 Remarks to the Gibbs Sampler

• Is the simplest of the MCMC Methods and the first choice for conditionally con-
jugate models, where we can directly sample from each conditional distribution.
Recall for this the last seminar about Hierarchical Models!

• A general problem is when the parameters are highly correlated in the target
distribution, then the convergence could be very slow (see Example 7.2). Usually
this can be fixed by a reparameterization of the parameters of interest.

• If some of the conditional posteriors can be sampled and some cannot, then
a usual practice is to update the parameters one by one, with Gibbs Sampling
where possible and one-dimensional Metropolis Hastings otherwise. This method
is therefore a Combination of Gibbs Sampler and Metropolis-Hastings: for pa-
rameters whose conditional posterior distributions have standard forms, use Gibbs
Sampler, otherwise use Metropolis Jumps.

• Gibbs Sampling is indeed a special case of the Metropolis-Hastings Algorithm,
where each iteration t consists of d steps (i.e. the whole vector Xt−1 is updated
during 1 iteration), where at step j the proposal kernel is defined as:

qGibbsj,t (X̂|Xt−1) =

{
π(X̂j |Xt−1

−j) X̂−j = Xt−1
−j

0 otherwise

i.e. the only possible jumps are between vectors with only the j− th component
possibly different. Under this jumping distribution, the ratio is always = 1, hence
every step is always accepted.

• Sometimes, if the conditional density π(Xj |Xt−1
−j) is not computable, one ap-

proximates it with another easier function π̃.

6 The Ising Model
The Ising Model (that won a nobel price!) is a way to model the behaviour of the
spins of the atoms of a ferromagnete. The particles (i.e. atoms) of the ferromagnete are
supposed to sit on a d-dimensional lattice (grid) L = {1; 2; ...;n}d (we will consider
the 2D case, i.e. d = 2) and each particle i has a spin up (σi = +1) or down (σi =
−1). A Configuration of the system is therefore a matrix σ ∈ {−1; +1}L. Every
pair of particles has an interaction energy of Ji,jσiσj , i.e. dependent from spins and
distance (we remark that, usually, the atoms who interact are the neighbor ones). To
a configuration σ we can associate a lot of properties as the total energy E(σ) =

12

−
∑
i,j Ji,jσiσj , the total magnetization Mn ={arithmetic mean of the σi’s}, etc.

Every configuration σ is modeled to be random (due to thermal noise) with:

π(σ) =
1
C
e

1
T E(σ) = π(−σ)

where C is only a normalization constant and T is the absolute temperature of the
system. This model is well appropriated for a Gibbs-Sampling simulation for the dis-
tribution π, also noting that a single spin modification produces only a small variation
of the energy ∆E. A simulation for the configuration σ needs also an input parameter
T , the temperature, that will be crucial for the behaviour of the ferromagnete: it exists a
critical temperature Tcritical such that for T > Tcritical the shape of the spins remains
more or less equidistributed (like a noise-pattern), while for T < Tcritical the shape is
completely destroyed having all the spins in a unique direction.

Figure 2: Illustration of the Ising Model with Gibbs Sampling: the critical temperature
is Tcritical = 2.269 (Images produced with the R-Code of [3], 1000 Iterations)

Another question could be about the distribution of the total magnetization Mn for
n large. The answer is that for T < Tcritical the shape always remains the one of the
bimodal distribution (symmetric around zero).

13

7 Examples
Let’s just recall the main definitions/properties:

Prior Density π(θ)

Density of Observations f(y|θ)

Joint Density f(y, θ) = f(y|θ) · π(θ)

Posterior Density π(θ|y) = π(θ)f(y|θ)∫
Θ π(θ)f(y|θ)dθ ∝ π(θ)f(y|θ)

Predictive Density f(yfuture|y) =
∫
f(yfuture|y, θ)π(θ|y)dθ

Our aim is to simulate the posterior density π(θ|y) under some model assumptions.

7.1 Metropolis-Hastings: Example 1
Let’s consider the Weibull Distribution for our data, with density

fα,η(y) = αηyα−1e−y
αη

This doesn’t belong to the exponential family and explicit posteriors for α, η are not
analytically computable. Let’s further consider the (independent) priors for the param-
eters:

π(α) ∝ e−α

π(η) ∝ ηβ−1 · e−βη
⇒ π(α, η) ∝ e−α · ηβ−1 · e−βη

with observations Y = [0.2, 0.1, 0.25].

We want to approximate the posterior π(α, η|Y) using the Metropolis-Hastings Algo-
rithm, using a proposal distribution

q(α′, η′|α, η) =
1
αη
e
−
(
α′
α + η′

η

)

(a product of two independent exponentials with means α and η) (we remark that the
kernel q is not symmetric, therefore the original Metropolis Algorithm would not suf-
fice). The ratio a(·, ·) used in algorithm becomes therefore (writingαprop = α′, ηprop =
η′):

q(α, η|α′, η′)π(α′, η′|Y)
q(α′, η′|α, η)π(α, η|Y)

=
q(α, η|α′, η′)π(α′, η′) · f(Y |α′, η′)
q(α′, η′|α, η)π(α, η) · f(Y |α, η)

=

=
(
α′η′

αη

)n−1

·
(
η′

η

)β−1

·eα−α
′+β(η−η′)+α′

α + η′
η −

α
α′−

η
η′ ·(y1·...·yn)α

′−α·
(
eηy

α
1 −η

′yα
′

1 · ... · eηy
α
n−η

′yα
′

n

)
Choosing an arbitrary starting point (for example α0 = 2, η0 = 2) and a parameter β
(for example β = 2) we can therefore use the following Matlab-Code (Algorithm 5.1)
to run the simulation.

Some interesting results we can see are:

14

• The run:
[alphas, etas] = MetropolisHastings1([0.2 0.1 0.25],
2, 2, 2, 10000, 5000, 0);

• The histogram of the generated αi’s and ηi’s:
hist(alphas,100); hist(etas,100);

• The plot of the generated points without lines:
plot(alphas, etas, ’.’)

• The empirical mean of the θi’s:
mean(alphas); mean(etas);

Figure 3: Illustration of Example 7.1 using Metropolis-Hastings on a Weibull Distri-
bution: plot(alphas, etas, ’.’)

7.2 Gibbs Sampler: Example 2
Consider a single observation (y1, y2) of a Bivariate Normal Distribution (the 2-dimensional
case of the normal distribution) with unknown mean θ = (θ1, θ2) and known covari-

ance matrix
(

1 ρ
ρ 1

)
.

Assuming a uniform prior θ ∼ Unif the posterior is:

p(
(
θ1

θ2

)
|y) ∼ N

((
y1

y2

)
,

(
1 ρ
ρ 1

))
From the multivariate normal distribution properties we know that:

X = (X1...Xn) i.i.d∼ N(0, 1)⇒ Y := µ+AX ∼ Nn(µ,AAT)

It would be therefore easy to directly simulate from p(θ|y) (e.g. by Cholesky de-
composition of Σ = AAT), but for the purpose of explanation we want to use here the
Gibbs Sampler (having therefore a way to control if the computed result is right or not).

15

Algorithm 7.1 Metropolis-Hastings - Weibull Distribution
function [alphas, etas] = MetropolisHastings1(Y, beta,

alpha0, eta0, Iter, BurnIn, stop)
clf; hold on;

n = length(Y);
alpha = alpha0;
eta = eta0;
alphas = [alpha];
etas = [eta];
plot(alpha0,eta0,’s’,’MarkerSize’,10);
pause;

for k=1:Iter % Metropolis-Hastings

alpha_prop = -alpha * log(rand()); % Quantile Simulation
eta_prop = -eta * log(rand());

alpha_old = alpha; % Only for the Picture
eta_old = eta;

ProdExpY = prod(exp(eta*Y.ˆalpha-eta_prop*Y.ˆalpha_prop));

ratio = (alpha_prop*eta_prop/alpha/eta)ˆ(n-1) * ...
(eta_prop/eta)ˆ(beta-1) * exp(alpha - ...
alpha_prop + beta*(eta-eta_prop)+ ...
alpha_prop/alpha + eta_prop/eta- ...
alpha/alpha_prop-eta/eta_prop) * ...
prod(Y)ˆ(alpha_prop-alpha)*ProdExpY;

a = min(ratio, 1);
if (rand() <= a), alpha = alpha_prop; eta=eta_prop; end;
alphas = [alphas alpha];
etas = [etas eta];

line([alpha_old,alpha],[eta_old,eta]);
if stop, pause(); end;

end

% BurnIn:
alphas = alphas(BurnIn:end);
etas = etas(BurnIn:end);

return;

16

To apply the Gibbs Sampler we only need the conditional posterior distributions
π(θi|θj , y) which, from the properties of the multivariate normal distribution, are sim-
ply given by:

θ1|θ2, y ∼ N(y1 + ρ(θ2 − y2), 1− ρ2)

θ2|θ1, y ∼ N(y2 + ρ(θ1 − y1), 1− ρ2)

Choosing an arbitrary starting point, we can therefore use the following Matlab-
Code (Algorithm 7.2) to simulate θ|y using the Gibbs Sampler.

Some interesting results we can show are:

• The run of several chains that converge on the same space by:
thetas = GibbsSampler1(0.8,[0;0],[-2.5,-2.5,-2.5,2.5,
2.5,-2.5,2.5,2.5],10000,0)

• The histogram of the generated θi’s:
hist(thetas(1,1:10001),100)

• The plot of the generated points (without lines):
plot(thetas(1,5000:10001),thetas(2,5000:10001),’.’)

• The empirical mean of the θi’s:
mean(thetas(1,5000:10001))

Figure 4: Illustration of Example 7.2 using Gibbs Sampling on a
Bivariate Normal Distribution: the figure is obtained by the call
GibbsSampler1(0.8,[0;0],[-2.5,-2.5,-2.5,2.5,2.5,-2.5,2.5,
2.5],100,0)

17

Algorithm 7.2 GibbsSampler - Bivariate Normal Distribution
function thetas = GibbsSampler1(rho, y, theta, Iter, stop)
%(Stop = boolean to stop after each iteration)

clf; hold on;
axis([-2.8, 2.8, -2.8, 2.8]);
n = length(theta)/2; % #of starting points = #of chains
thetas =[]; % Generated Points

for i=1:n %Different Chains
rand(’state’,i+1); Color = [rand() rand() rand()];
t(1)=theta(2*i-1); %Starting Points
t(2)=theta(2*i);
thetas = [thetas, t’];
plot(t(1),t(2),’s’,’MarkerFaceColor’,Color,

’MarkerEdgeColor’,Color, ’MarkerSize’,10);
pause;

for k=1:Iter %Gibbs Sampling
%Update theta(1)
old = t;
t(1)=y(1)+rho*(t(2)-y(2)) + randn()*(1-rhoˆ2);
line([old(1),t(1)],[old(2),t(2)],’Color’,Color);
if stop, pause(); end;

%Update theta(2)
old = t;
t(2)=y(2)+rho*(t(1)-y(1)) + randn()*(1-rhoˆ2);
line([old(1),t(1)],[old(2),t(2)],’Color’,Color);
if stop, pause(); end;
thetas = [thetas, t’];
end

end

return;

18

7.3 Gibbs Sampler: Example 3
Let’s now consider a more complicated example of a sample with independent priors:

Y1, ..., Yn
i.i.d∼ N(µ, 1/τ)

µ ∼ N(ξ, 1/κ)
τ ∼ Γ(α, β)

The joint distribution is:

f(Y, µ, τ) = [
∏n
i=1 f(Yi|µ, τ)]π(µ)π(τ)

=
[∏n

i=1

√
(τ)√
(2π)

e
−(Yi−µ)2τ

2

]
·
√
κ√
2π
e
−(µ−ξ)2κ

2 · τα−1 e
− τ
β

βαΓ(α)

=
√
κ√

2π
n+1·βαΓ(α)

· τ n2 +α−1 · e− τ2 · e−κ2 (µ−ξ)2 · e− τ2
∑n
i=1(Yi−µ)2

To find the full conditional for µ (resp. τ) we select only the terms containing µ (resp.
τ) and normalizing:

π(µ|τ, Y) ∝ e−
τ
2

∑n
i=1(Yi−µ)2 · e−κ2 (µ−ξ)2

∝ e
− 1

2 (1+nτ)
(
µ− τ

∑n
i=1 Yi

1+nτ

)2

∼ N(τ
∑n
i=1 Yi

1+nτ , 1
1+nτ)

π(τ |µ, Y) ∝ τ
n
2 +α−1e−

τ
2

∑n
i=1(Yi−µ)2 · e−

τ
β

∼ Γ(2 + n
2 , 1 + 1

2

∑n
i=1(Yi − µ)2)

Let’s take ξ = 0, κ = 1, α = 2, β = 1, n = 30 and Yi ∼ N(1, 42) and again
use the Gibbs Sampler for the simulation (Matlab-Code in Algorithm 7.3). We can
plot/compute some interesting properties:

• Run: [mus, taus] = GibbsSampler2(30, 1, 1/16, 0, 2,
10000, 500)

• The histogram of the generated µ’s, τ ’s:
hist(mus,100); hist(taus,100);

• The plot of some generated points without lines:
axis([-2 4 0.02 0.16]);
plot(mus(7500:9500),taus(7500:9500),’.’)

• The empirical means:
mean(mus) -> 1.1934; mean(taus); -> 0.0653
We notice that the approximations are quite good, since we used µ = 1, τ =
1/16 = 0.0625.

19

Algorithm 7.3 GibbsSampler - Normal/Gamma Distribution
function [mus, taus] = GibbsSampler2(n, mu_r, tau_r, mu_0,

tau_0, Iter, BurnIn)
clf; hold on;
randn(’state’,10);

Y = mu_r + 1/sqrt(tau_r)*randn(1,n);
SumY = sum(Y);

mus = [mu_0]; taus = [tau_0];
mu = mu_0; tau = tau_0;
plot(mu_0,tau_0,’s’,’MarkerSize’,10);

for k=1:Iter %Gibbs Sampling
%Update mu
mu_new = (tau*SumY)/(1+n*tau) + randn()* sqrt(1/(1+n*tau));
line([mu,mu_new],[tau,tau]);
mus = [mus mu_new];
mu = mu_new;

%Update tau
tau_new = rand_gamma(2+n/2, 1 + sum((Y-mu).ˆ2)/2,1,1);
line([mu,mu],[tau,tau_new]);
taus = [taus tau_new];
tau = tau_new;

end

%Burn-In:
mus = mus (BurnIn:Iter+1);
taus = taus(BurnIn:Iter+1);

hold off; return;

20

Figure 5: Illustration of Example 7.3 using Gibbs Sampling on a Normal/Gamma Dis-
tribution: the figure shows the histograms of the obtained parameters µ, τ .

8 Bibliography

References
[1] Brani Vidakovic, MCMC: Metropolis and Family of Algorithms, Gibbs Sampler.

Handout in Bayesian Statistics
(http://www2.isye.gatech.edu/∼brani/isyebayes/handouts.html).

[2] Brani Vidakovic, Bayesian Computation, Numerical Algorithms and Monte Carlo
Methods; Importance Sampling and ARM. Handout in Bayesian Statistics
(http://www2.isye.gatech.edu/∼brani/isyebayes/handouts.html).

[3] Hansruedi Künsch, ”Stochastische Simulation”. Lecture Notes of the lecture in
HS07/08, ETHZ.

[4] Claudia Spellecchia, MCMC. Handout in Top10-Algorithms Seminar, 13.03.2008
ETHZ.

[5] Isabel Beichl, Francis Sullivan, The Metropolis Algorithm. Computing in Science
& Engineering - The Top10 Algorithms of the Millenium
(http://cise.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=
CSENFA000002000001000065000001&idtype=cvips).

[6] Christian P. Robert, The Bayesian Choice - From Decision-Theoretic Founda-
tions to Computational Implementation (Volume 2). Springer Science and Busi-
ness Media, 2nd edition, 2007.

[7] Andrew Gelman, John B. Carlin, Hal S. Stern, Donald B. Rubin. Bayesian Data
Analysis. Texts in Statistical Science. Chapman & Hall/CRC, 2nd edition, 2003.

21

	Introduction
	Generation of Random Variables with an arbitrary Distribution in low Dimensions
	Direct Quantile Simulation
	Accept-Reject Method

	Monte Carlo Methods
	Markov Chains
	MCMC Methods: Metropolis-Hastings Algorithm & Gibbs Sampler
	The Metropolis-Hastings Algorithm (MHA)
	The Metropolis-Hastings Algorithm - Discrete Case
	Remarks to the Metropolis-Hastings Algorithm

	The Gibbs Sampler
	Remarks to the Gibbs Sampler

	The Ising Model
	Examples
	Metropolis-Hastings: Example 1
	Gibbs Sampler: Example 2
	Gibbs Sampler: Example 3

	Bibliography

