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1 Introduction

Model Choice deals with the comparison of models and the selection of a model.
It can be considered as a special case of testing where the sampling distribution
is depending on possibly infinitely many unknown parameters:

Mi : x ∼ fi(x | θi)

where Mi are the models in comparison, θi ∈ Θi the parameter space and i ∈ I
possibly infinite.
From another point of view model choice is closer to estimation than to testing.
It involves many possibilities M1,...,Mp and selecting a model is equivalent to
estimating the index of this model.
The purpose is estimating the true sampling distribution f, which is unknown,
by using posterior probabilities and Bayes factors.

2 Two approaches to Bayesian testing

Testing hypothesis H0 : θ ∈ Θ0 vs HA : θ ∈ Θ1 in Bayesian fashion is interesting
because the notion of probability of a hypothesis can only be defined trough this
way:

X | θ ∼ f(x | θ)
where θ has prior distribution π and θ ∈ Θ = Θ0 ∪Θ1 for Θ0 and Θ1 disjoint.
Two approaches to Bayesian testing are considered: decision theoretic approach
and Bayes factor.

2.1 Decision theoretic approach

Consider the action space {0, 1} and the test procedure ϕ.
If we use the generalized 0− 1 loss

L(θ, ϕ) =

 0, ϕ = I{θ ∈ Θ0}
K0, θ ∈ Θ0 and ϕ = 0
K1, θ /∈ Θ0 and ϕ = 1

then the Bayesian decision (which minimizes the posterior expected loss) is

ϕπ(x) =

{
1 if Pπ[θ ∈ Θ0 | x] > K1

K0+K1
= 1

K0
K1

+1

0 otherwise

The null hypothesis is rejected when the posterior probability is too small
(smaller than the acceptance level K1/(K0 +K1)). The Bayesian decision only
depends on the ratio K0/K1: the larger it is the smaller the posterior probabil-
ity of H0 needs to be (for H0 to be accepted).
Here the difficulty is the choice of K0 and K1, which usually are selected auto-
matically rather than from utility considerations.
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2.2 Bayes factor

Definition 1. The Bayes factor in favor of H0 is defined by

Bπ01(x) =
P [θ ∈ Θ0 | x]/P [θ ∈ Θ1 | x]

π(θ ∈ Θ0)/π(θ ∈ Θ1)

This factor evaluates the modification of the odds of Θ0 against Θ1 due to
the observation and measures the relative change in prior odds once the evidence
is collected.
Jeffreys developed a scale to judge the evidence in favor or against H0 brought
by the data:

- if log10(Bπ01) varies between 0 and 0.5, the evidence against H0 is poor,

- if it is between 0.5 and 1, it is sustantial,

- if it is between 1 and 2, it is strong, and

- if it is above 2, it is decisive

The precise bounds of this scaling separating one strength from another are a
matter of convention and they can be arbitrarily changed.
In the particular case where Θ0={θ0}, Θ1={θ1} and the prior probabilities are
π(θ = θ0) = π0 and π(θ = θ1) = π1 = 1− π0, the Bayes factor simplifies to the
usual likelihood ratio:

Bπ01(x) =
f(x | θ0)
f(x | θ1)

If the prior is a mixture of two priors, ξ0(θ) under H0 and ξ1(θ) under HA with
weights π0 and π1, i.e. π(θ) = π0ξ0(θ) + π1ξ1(θ), the bayes factor is:

Bπ01(x) =

∫
Θ0
f(x | θ0)π0ξ0(θ)dθ/

∫
Θ1
f(x | θ1)π1ξ1(θ)dθ

π0/π1
=
m0(x)
m1(x)

where m0 and m1 are the marginals under both hypotheses.

3 Some criticisms and remarks

3.1 Continuos prior distribution

In general model choice is incompatible with absolutely continuos (w.r.t. the
Lebesgue measure) prior distributions.
The motivation is that testing a point null hypothesis H0: θ = θ0 vs. HA:
θ 6= θ0 with a continuos prior distribution implies π(θ ∈ Θ0) = 0, but the Bayes
factor is only defined when π(θ ∈ Θ0) 6= 0.
The solution of this problem requires a modification of the prior:

π(θ) = π0δθ0(θ) + π1ξ(θ)

where π0 = 1 − π1 prior weights, δθ0(θ) Dirac mass and ξ(θ) the spread distri-
bution under HA.
Then we get the following marginal density for X | θ ∼ f(x | θ):

m(x) =
∫

Θ

(π0δθ0(θ) + π1ξ(θ))f(x | θ)dθ = π0f(x | θ0) + π1m1(x)

where m1(x) =
∫
f(x | θ)ξ(θ)dθ is the marginal density under HA.

3.2 Relation between Bayes factor and posterior proba-
bility

Under the above situation holds:

π(Θ0 | x) =
[
1 +

1− π0

π0

1
Bπ01(x)

]−1
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3.3 Improper priors and Pseudo-Bayes factors

Improper priors should not be used at all in tests, since they are incompatible
with most tests of point-null hypothesis. It doesn’t feel right to use improper
priors because they seem to lead to too much arbitrariness (many competing
solutions contradict the Likelihood principle). A solution to overcome the diffi-
culties related to improper priors can be represented by Pseudo-Bayes factors,
which we are going to introduce.

Definition 2. Given the improper prior π, a sample (x1, ..., xn) is a training
sample if π(. | x1, ..., xn) is proper.
It is a minimal training sample if no subsample is a training sample.

The idea is to use minimal training sample x(`) (where ` is its lenght) to
”properize” π into π(. | x(`)) and then use this posterior as if it were a regular
proper prior for the remainder sample x(−`).

Definition 3. Consider the null hypothesis H0 with prior π0 and the alternative
hypothesis HA with π1. Let x(`) be the minimal training sample s. t. π0(. | x(`))
is also proper, then the pseudo-Bayes factor is:

B
(`)
10 =

∫
Θ1
f1(x(−`) | θ1)π1(θ1 | x(`))dθ1∫

Θ0
f0(x(−`) | θ0)π0(θ0 | x(`))dθ0

There are still some difficulties with the pseudo-Bayes factor. Moreover,
there is no obvious choice for x(`), while this choice of the training sample in-
fluences the resulting value of B(`)

10 .
A way to remove this dependence on the training sample is to average the dif-
ferent pseudo-Bayes factors over all the possible training samples x(`).

4 Model Choice

4.1 Introduction

In contrast with the other sections, we are now dealing with models, rather
than with parameters, and the sampling distribution f is unknown rather than
simply depending on an unknown (finite dimensional) parameter.

4.1.1 Choice between models

Model choice seems to elude the Bayesian paradigm in that the sampling distri-
bution f is itself uncertain, making it difficult to condition on the observation
x.
We consider the more restricted setting where several (parametric) models are
in competition,

Mi : x ∼ fi(x | θi), θi ∈ Θi, i ∈ I

the index set I being possibly infinite.
A prior distribution can be constructed for each model Mi, as if it were the only
and true model under consideration.
Remarks:

• In the simpliest case: the choice is between a small number of models that
have been chosen for convenience, historical or more motivated reasons.

• In more complex cases: the number of potential models is large because
the available information is too limited to eliminate most of them. We are
then closer to the nonparametric perspective.
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• In case of regression models: the variety of models stems from the large
number of combinations of covariates (explanatory variables) that could
be included in the model.

• There is often a high degree of arbitrariness involved in the selection of
the models to choose from.

• While no model is true, several models may be appropriate.

• We have also to consider that some models are submodels of others.

From a modeling point of view, the larger model should be preferred, while from
a statistical point of view, this is not so clear, given that more parameters need
to be estimated from the same sample! The model choice criterion must thus
include parts that weight the fit, as well as parts that incorporate the estimation
error.

4.1.2 Model choice: motives and uses

We can identify the choice of a model as:

• a first step in model construction, where few models come to mind and we
want to decide which one fits best the data at hand. There is no reason
to believe that one of these models is correct.

• a last step of model checking. A model or a family of models has been
selected for various theoretical and practical reasons, and we want to know
whether the data agrees with this type of model.

• a call for model improvement. The goal is to introduce possible refinements
of a given model to improve the fit or to create an embedding of the existing
model in a class of models to check whether the current model is good
enough.

• the reverse need of model pruning, where the current model is too compli-
cated to be of practical use and where simpler submodels are examined to
see whether they fit the data well enough. We want to reduce the whole
range of covariates to a few important covariates.

• a model comparison, when a few models are proposed because they fitted
correctly other samples and we wonder which of these models best fits the
current sample.

• a purpose of hypothesis testing, where several models are built from the-
oretical considerations and then tested through specially designed experi-
ments.

• a requirement of prediction efficiency, as in finance. Here we are only
interested in the prediction preformances of different models.

4.2 Standard framework

4.2.1 Prior modeling for model choice

We can write the parameter space associated with the set of models as

Θ =
⋃
i∈I

({i} ×Θi),

the model indicator µ ∈ I being part of the parameters.
So, if we can assign probabilities pi to the models Mi (i ∈ I) and then define
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priors πi(θi) on the parameter subspaces Θi, we get, by Bayes formula, the
posterior model probability given the data:

p(Mi | x) = P (µ = i | x) =
p(x |Mi)pi∑
j p(x |Mj)pj

=
pi

∫
Θi
fi(x | θi)πi(θi)dθi∑

j pj
∫

Θj
fj(x | θj)πj(θj)dθj

,

where p(x |Mi) =
∫

Θi
fi(x | θi)πi(θi)dθi.

A common solution, based on this prior modeling, for model selection is simply
to determine the model with the largest p(Mi | x).
Difficulties:

• the solution based on the representation of the collection of models re-
quires the construction of a prior distribution (πi,pi) for each i ∈ I, which
is delicate when I is infinite. Moreover, these priors πi must all be proper
because there is no unique scaling for improper priors.

• if some models are embedded into others, that is, if Mi0 ⊂ Mi1, there
should be some coherence in the choice of πi0 given πi1 and maybe also in
the choice of pi0 given pi1.
For instance, if M1 = M2 ∪M3, one could argue that p(M1) = p(M2) +
p(M3) or at least p(M1) ≥ p(M2) + p(M3). Similarly, if two models Mi0

and Mi1 are not embedded in one another, there is the possibility of a
third model Mi2 embedding both Mi0 and Mi1.

Another type of difficulty is associated with the computation of predictives,
marginals and other quantities related to the model choice procedures.
An important point is that parameters common to several models must be
treated as separate entities.

4.2.2 Bayes factors

Once the modeling representation is accepted we get a generic testing problem.
The solution proposed is to call for Bayes factors:

B12 =
P (M1 | x)
P (M2 | x)

/P (M1)
P (M2)

=

∫
Θ1
f1(x | θ1)π1(θ1)dθ1∫

Θ2
f2(x | θ2)π2(θ2)dθ2

for the comparison of modelsM1 andM2, where p(Mi | x) =
pi

∫
Θi
fi(x|θi)πi(θi)dθi∑

j pj

∫
Θj

fj(x|θj)πj(θj)dθj

and pi = P (Mi).
Bayes factors are independent of the priors to the models pi and measure the
relative strength of evidence on the data of model M1 over model M2.
Note that the comparison of models based on Bayes factors can proceed one
pair (Mi,Mj) at a time.
Unfortunately, while Bayes factors are rather intuitive, as a practical matter,
they are often quite difficult to calculate. The main problem is given by the
evaluation of the integral

∫
Θi
fi(x | θi)πi(θi)dθi.

Improper priors cannot be used (they create additional difficulties because then
the integral doesn’t exist) and vague priors, that is, proper priors with a large
variance, do not solve the difficulty.
The solution to this fundamental difficulty with improper priors is to use ap-
proximative Bayesian solutions, calling for minimal training samples. Intrinsic
and fractional Bayes factors can be proposed as evaluation of the models under
improper priors.
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The Jeffrey’s scale of evidence for Bayes factor is then so defined:
Bayes factor Interpretation

B12 <
1
10 strong evidence for M2

1
10 < B12 <

1
3 moderate evidence for M2

1
3 < B12 < 1 weak evidence for M2

1 < B12 < 3 weak evidence for M1

3 < B12 < 10 moderate evidence for M1

B12 > 10 strong evidence for M1

4.2.3 Schwarz’s criterion

There are many methods for chooosing between competing models. We have
discussed the Bayesian approach.
The two most common alternatives to the Bayes factor are Schwarz’s criterion
(also called BIC) and Akaike’s Information Criterion (AIC). We will concentrate
our attention on the first one.
We consider asymptotic approximations to Bayes factors.
Applying the Laplace expansion, which is an approximation, to the Bayes factor
we get:

log(B12) ' log(λn) +
p2 − p1

2
log(n) +K(θ̂1,n, θ̂2,n),

where p1 and p2 are the dimensions of Θ1 and Θ2, λn is the standard likelihood
ratio for the comparison of M1 with M2,

λn =
L1,n(θ̂1,n)

L2,n(θ̂2,n)
,

L1,n and L2,n are the likelihood functions based on n observations, and θ̂1,n, θ̂2,n

are the maxima of L1 and L2, respectively. K(θ̂1,n, θ̂2,n) denotes the remainder
term.
This approximation leads to Schwarz’s criterion, also called BIC (Bayes Infor-
mation Criterion):

S = − log(λn)− p2 − p1

2
log(n)

when M1 ⊂M2, if the remainder term K(θ̂1,n, θ̂2,n) is negligible compared with
both other terms.
For regular models, when M1 ⊂ M2, the likelihood ratio is approximately dis-
tributed as a χ2

p2−p1
distribution, −2 log(λn) ≈ χ2

p2−p1
, if M1 is the true model.

Since P (M2 chosen | M1) = P (λn < c | M1) ' P (χ2
p2−p1

> −2 log(c)) > 0, it
follows that a criterion based only on the likelihood ratio does not converge to
a sure answer under M1.
This is why penalization factors have been added to the (log) likelihood ratio,
starting with Akaike’s Information criterion:

−2 log λn − α(p2 − p1)

and then also Bayes Information Criterion.
Remarks:

• The ”best” model is the one with maximum BIC.

• With BIC we take into account both the statistical goodness of fit and
the number of parameters that have to be estimated to achieve this par-
ticular degree of fit, by imposing a penality for increasing the number of
parameters.
Hence upper BIC implies either fewer parameters, better fit, or both.

Schwarz’s criterion provides an approximation to the Bayes factor, but this
criterion is not relevant in a Bayesian setting, since
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• the dependence on the prior assumption disappears

• the approximation only works for regular models.

Moreover it requires the derivation of the maximum likelihood estimates for all
models!!

Comparing AIC and BIC we see that:

• BIC penalizes models with more parameters even more severely than AIC.

• BIC is consistent if the data are generated by one model with fixed di-
mension, whereas AIC tends to overestimate the dimension.

• AIC tends to do better than BIC for prediction.

4.2.4 Bayesian deviance

Deviance Information Criterion (DIC) is a Bayesian alternative, based on the
deviance, to both AIC and BIC.
This criterion is more satisfactory because it takes into account the prior in-
formation and gives a natural penalization factor to the log-likelihood. It also
allows for improper priors.
Like BIC and AIC it’s an asymptotic approximation as the sample size becomes
large.

DIC = E[D(θ) | x] + pD = E[D(θ) | x] + {E[D(θ) | x]−D(E[θ | x])},

where for a model f(x | θ) associated with a prior distribution π(θ), the Deviance
is D(θ) = −2 log(f(x | θ)).
E[D(θ) | x] can be interpreted as a measure of fit (how well the model fits the
data). The larger this is the worse the fit.
pD is a measure of complexity, also called the effective number of parameters.
Models with smaller DIC should be preferred to models with larger DIC.
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