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1 Introduction and basic definitions

In this seminar class, we consider the properties of the posterior that hold
in the limit as the sample size becomes large.

We now collect some important definitions and facts.

Definition 1.1 (consistent). A sequence of estimators (Tn)n∈N is called con-
sistent for g(θ) if for all θ

Tn → g(θ) in Pθ-probability,

that is
∀ε > 0 and ∀θ ∈ Θ : lim

n→∞
Pθ(‖Tn − g(θ)‖ > ε) = 0.

Theorem 1.2 (Cramér Rao Lower Bound). Suppose that Θ ⊂ R is an open
interval, A := {x : pθ(x) > 0} does not depend on θ (so Pθ(Ac) = 0), ψθ(x) :=
d
dθ log(pθ(x)) exists in L2(Pθ), i.e.

lim
∆→0

∫ ∣∣∣∣pθ+∆(x)− pθ(x)
pθ(x)∆

− ψθ(x)
∣∣∣∣2 Pθ(dx) = 0,

and suppose that T is an unbiased estimator of g(θ). Then
Eθ[ψθ(x)] =

∫
ψθ(x)Pθ(dx) = 0 ∀θ, g′(θ) = d

dθg(θ) exists, and

Varθ[T ] ≥ [g′(θ)]2

I(θ)

where I(θ) is the Fisher-Information:

I(θ) = Eθ[ψ2
θ(x)] ∀θ.

Definition 1.3 (asymptotically efficient). Assume regularity: if
√
n(Tn − θ)→d N (0, 1/I(θ)) ∀θ,

then: Tn is called asymptotically efficient.
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2 Normal approximation to the posterior distri-
bution

Definition 2.1 (posterior mode or maximum a posteriori estimator). The pos-
terior mode or maximum a posteriori estimator is defined by

θ̂ = arg max
θ

p(x|θ)π(θ),

where π(.) is the prior density.

The results in this section are given under some regularity conditions (no-
tably that the likelihood is a continuous function of θ and that θ0, the true
parameter value, is not on the boundary of the parameter space).

If the posterior distribution p(θ|y) is unimodal and roughly symmetric, it
is often convenient to approximate it by a normal distribution centered at the
mode. A Taylor series expansion of log p(θ|y) centered at the posterior mode, θ̂
gives

log p(θ|y) = log p(θ̂|y) +
1
2

(θ − θ̂)T
[
d2

dθ2
log p(θ|y)

]
θ=bθ (θ − θ̂) + . . . (1)

where the linear term in the expansion is zero because the log-posterior density
has zero derivative at its mode, the remainder terms of higher order fade in
importance relative to the quadratic term when θ is close to θ̂ and n is large.

This yields the approximation

p(θ|y) ≈ N (θ̂, [J(θ̂)]−1), (2)

where

J(θ) = − d2

dθ2
log p(θ|y).

It can be shown that the posterior mode is consistent for θ0, so that as n→∞,
the mass of the posterior distribution p(θ|y) becomes concentrated in smaller
and smaller neighborhoods of θ0 and the distance |θ̂ − θ0| approaches zero.

Furthermore, we can rewrite the coefficient of the quadratic term in (1) as[
d2

dθ2
log p(θ|y)

]
θ=bθ =

[
d2

dθ2
log π(θ)

]
θ=bθ +

n∑
i=1

[
d2

dθ2
log p(yi|θ)

]
θ=bθ .

Considered as a function of θ, this coefficient is a constant plus the sum of n
terms, each of whose expected value under the true sampling distribution of yi,
p(y|θ0), is approximately −I(θ0), as long as θ̂ is close to θ0 (we are assuming now
that f(y) = p(y|θ0) for some θ0). Therefore, for large n, the curvature of the
log posterior density can be approximated by the Fisher information, evaluated
at either θ̂ or θ0 (where of course only the former is available in practice).
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Example 2.2 (normal distribution with unknown mean and variance). We il-
lustrate the approximate normal distribution with a simple theoretical example.
Let y1, . . . , yn be iid observations from a N (µ, σ2) distribution, and, for sim-
plicity, we assume a uniform prior density for (µ, log σ). We set up a normal
approximation to the posterior distribution of (µ, log σ), which has the virtue of
restricting σ to positive values. To construct the approximation, we need the
second derivatives of the log posterior density,

log p(µ, log σ|y) = constant− n log σ − 1
2σ2

[
(n− 1)s2 + n(y − µ)2

]
.

The first derivatives are

d

dµ
log p(µ, log σ|y) =

n(y − µ)
σ2

and

d

d(log σ)
log p(µ, log σ|y) = −n+

(n− 1)s2 + n(y − µ)2

σ2
,

from which the posterior mode is readily obtained as

(µ̂, log σ̂) =
(
y,

1
2

log
(
n− 1
n

s2

))
.

The second derivatives of the log posterior density are

d2

dµ2
log p(µ, log σ|y) = − n

σ2
,

d2

dµd(log σ)
log p(µ, log σ|y) = −2n

y − µ
σ2

and

d2

d(log σ)2
log p(µ, log σ|y) = − 2

σ2
((n− 1)s2 + n(y − µ)2).

The matrix of second derivatives at the mode is then
(
−n/σ̂2 0

0 −2n

)
. From

(2), the posterior distribution can be approximated as

p(µ, log σ|y) ≈ N
((

µ
log σ

) ∣∣∣∣( y
log σ̂

)
,

(
σ̂2/n 0

0 1/(2n)

))
.

3 Asymptotic efficiency of Bayes estimators

Example 3.1. Consider X binomial distributed Bin(n, p). Then the Bayes
estimator, with respect to a quadratic loss, of p corresponding to the beta prior
Beta(a, b) is Tn(X) = (a+X)/(a+ b+ n).
Thus
√
n(Tn(X)− p) =

√
n

(
n

a+ b+ n
·
(
X

n
− p
)

+
1

a+ b+ n
· (a− p(a+ b))

)
.

This implies:
√
n(Tn(X)− p) has the same limit distribution as

√
n(X/n− p),

namely, the normal distribution N (0, p(1− p)).
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Remarks 3.2. The Bayes estimator is asymptotically efficient. N (0, p(1− p))
is independent of the parameters of the prior distribution.
This raises the question whether the same limit distribution is obtained when
more general prior distributions are used and what happens in more general
situations.

4 The principal result

Let X1, . . . , Xn be iid with density f(xi|θ) (with respect to µ), where θ is
real valued and the parameter space Θ is an open interval. The true value of θ
will be denoted by θ0. Moreover, we write P = Pθ0 .

The suitable conditions for our principal result (Theorem 4.3) are exactly
the following (B1)-(B5) assumptions.

(B1) The log likelihood function l(θ) = l(θ|x) =
∑n
i=1 log f(xi|θ)

satisfies the assumptions of [2, Theorem 2.6].

To motivate the next assumption, note that under the assumptions of [2,
Theorem 2.6], if θ = θ̃n is any sequence for which θ̃n

P→ θ0 then

l(θ) = l(θ0) + (θ − θ0)l′(θ0)− 1
2

(θ − θ0)2[nI(θ0) +Rn(θ)] (3)

where
1
n
Rn(θ)→P 0 as n→∞.

We require here the following stronger assumption.

(B2) Given any ε > 0, there exists δ > 0 such that in the expansion
(3), the probability under θ0 of the event

sup
{∣∣∣∣ 1nRn(θ)

∣∣∣∣ : |θ − θ0| ≤ δ
}
≥ ε

tends to zero as n→∞.

In the present case it is not enough to impose conditions on l(θ) in the neigh-
borhood of θ0, as is typically the case in asymptotic results. Since the Bayes
estimators involve integration over the whole range of θ values, it is also neces-
sary to control the behavior of l(θ) at a distance from θ0.

(B3) For any δ > 0, there exists ε > 0 such that the probability
under θ0 of the event

sup
{

1
n

[l(θ)− l(θ0)] : |θ − θ0| ≥ δ
}
≤ −ε

tends to 1 as n→∞.
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(B4) The prior density π of θ is continuous and positive for all θ ∈ Θ.

(B5) The expectation of θ under π exists, that is,∫
|θ|π(θ)dθ <∞.

To establish the asymptotic efficiency of Bayes estimators under these assump-
tions, we shall first prove that for large values of n, the posterior distribution of
θ given the X’s is approximately normal with

mean = θ0 +
1

nI(θ0)
l′(θ0) and variance =

1
nI(θ0)

.

Theorem 4.1. If π∗(t|x) is the posterior density of
√
n(θ − Tn) where

Tn = θ0 +
1

nI(θ0)
l′(θ0),

(i) then if (B1)-(B4) hold,∫ ∣∣∣π∗(t|x)−
√
I(θ0)φ[t

√
I(θ0)]

∣∣∣ dt→P 0. (4)

(ii) If, in addition, (B5) holds, then∫
(1 + |t|)

∣∣∣π∗(t|x)−
√
I(θ0)φ[t

√
I(θ0)]

∣∣∣ dt→P 0. (5)

Proof. (i) By the definition of Tn,

π∗(t|x) =
π
(
Tn + t√

n

)
exp

[
l
(
Tn + t√

n

)]
∫
π
(
Tn + u√

n

)
exp

[
l
(
Tn + u√

n

)]
du

(6)

= eω(t)π

(
Tn +

t√
n

)
/Cn

where

ω(t) = l

(
Tn +

t√
n

)
− l(θ0)− 1

2nI(θ0)
[l′(θ0)]2 (7)

and

Cn =
∫
eω(u)π

(
Tn +

u√
n

)
du.

Using assumptions (B1)-(B4), and the following characterization of ω(t),

Lemma 4.2. The quantity ω(t), defined by (7), is equal to

ω(t) = −I(θ0)
t2

2
− 1

2n
Rn

(
Tn +

t√
n

)[
t+

1
I(θ0)

√
n
l′(θ0)

]2

where Rn is the function defined in (3),
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one can show that

J1 =
∫ ∣∣∣∣eω(t)π

(
Tn +

t√
n

)
− e−t

2I(θ0)/2π(θ0)
∣∣∣∣ dt→P 0, (8)

and therefore that

Cn →P

∫
e−t

2I(θ0)/2π(θ0)dt = π(θ0)
√

2π/I(θ0). (9)

The left side of (4) is equal to J/Cn, where

J =
∫ ∣∣∣∣eω(t)π

(
Tn +

t√
n

)
− Cn

√
I(θ0)φ[t

√
I(θ0)]

∣∣∣∣ dt
and, by (9), it is enough to show that J →P 0.

Now, J ≤ J1 + J2 where J1 is given by (8) and

J2 =
∫ ∣∣∣∣Cn√I(θ0)φ

[
t
√
I(θ0)

]
− exp

[
− t

2

2
I(θ0)

]
π(θ0)

∣∣∣∣ dt
=

∣∣∣∣∣Cn
√
I(θ0)√
2π

− π(θ0)

∣∣∣∣∣
∫

exp
[
− t

2

2
I(θ0)

]
dt.

By (8) and (9), J1 and J2 tend to zero in probability, and this completes
the proof of part (i).

(ii) The left side of (5) is equal to

1
Cn

J ′ ≤ 1
Cn

(J ′1 + J ′2)

where J ′, J ′1, and J ′2 are obtained from J , J1, and J2, respectively, by
inserting the factor (1+ |t|) under the integral signs. It is therefore enough
to prove that J ′1 and J ′2 both tend to zero in probability. The proof for J ′2
is the same as that for J2; the proof for J ′1 follows from (8) and assumption
(B5).

On the basis of Theorem 4.1, we are now able to prove the principal result
of this section.

Theorem 4.3. If (B1)-(B5) hold, and if θ̃n is the Bayes estimator when the
prior density is π and the loss is squared error, then

√
n(θ̃n − θ0)→d N (0, 1/I(θ0)) ,

so that θ̃n is consistent for θ0 and asymptotically efficient.
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Proof. We have
√
n(θ̃n − θ0) =

√
n(θ̃n − Tn) +

√
n(Tn − θ0).

By the CLT, the second term has the limit distribution N (0, 1/I(θ0)), so that
it only remains to show that

√
n(θ̃n − Tn)→P 0.

Note that Equation (6) says that π∗(t|x) = 1√
n
π(Tn + t√

n
|x), and, hence, by a

change of variable, we have

θ̃n =
∫
θπ(θ|x)dθ

=
∫ (

t√
n

+ Tn

)
π∗(t|x)dt

=
1√
n

∫
tπ∗(t|x)dt+ Tn

and hence
√
n(θ̃n − Tn) =

∫
tπ∗(t|x)dt.

Now, since
∫
t
√
I(θ0)φ[t

√
I(θ0)]dt = 0,

√
n|θ̃n − Tn| =

∣∣∣∣∫ tπ∗(t|x)dt−
∫
t
√
I(θ0)φ

[
t
√
I(θ0)

]
dt

∣∣∣∣
≤

∫
|t|
∣∣∣π∗(t|x)−

√
I(θ0)φ

[
t
√
I(θ0)

]∣∣∣ dt.
which tends to zero in probability by Theorem 4.1.

Observation 4.4. Assumptions (B1)-(B5) are satisfied in exponential families.
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