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1 Introduction and basic definitions

Notation: Let X ∈ χ be an observable random variable (the data) and χ
the space of all observations. We denote with P := {Pθ : θ ∈ Θ} the model
class of distributions with unknown parameter θ.
We will assume X ∼ P ∈ P

Let A be the action space.

- A = R estimating a parameter γ := g(θ) ∈ R

- A = {0, 1} testing

- A = [0, 1] randomized tests

Definition: A decision is a map d : χ → A. d(x) is the action when x is
observed.

We need to define an evaluation criterion in order to compare two differ-
ent decisions.

Definition: A loss function is a map

L : Θ×A → R+

with L(θ, a) being the loss when the parameter value is θ and one takes ac-
tion a.

Remark: The actual determination of the loss function is often awkward in
practice, in particular because the determination of the consequences of each
action for each value of θ is usually impossible when A or Θ are large sets,
for instance when they have an infinite number of elements.
The complexity of determining the subjctive loss function of the decision-
maker often prompts the statistician to use classical or (canonical) losses,
selected because of their simplicity and mathematical tractability.
It is still better to take a decision in a finite time using an approximate
criterion rather that spending an infinite time to determine the proper loss
function.

Suppose our model class P := {Pθ : θ ∈ Θ} is dominated by ν (σ-finite).
Let X ∼ P ∈ P . Then let pθ = dPθ

dν
denote the densities. We now think of

pθ as the density of X given the value of θ. We write it as

pθ(x) = p(x | θ) x ∈ χ.
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A fundamental basis of Bayesian Decision Theory is that statistical inference
should start with the rigorous determination of three factors:

• the distribution family for the observations, p(x | θ) = pθ(x);

• the prior distribution for the parameter, Π(θ);

• the loss associated with the decisions, L(θ, d).

The prior, the loss and even sometimes the sampling distribution being de-
rived from partly sujective considerations.

Definition: The risk of the decision d is

R(θ, d) := Eθ [L (θ, d(X))] =

∫
χ

L (θ, d(X)) pθ(x)dν(x)

Examples: some classical loss functions and their risks.

a) Estimation of g(θ) ∈ R ; A = R

L(θ, a) := w(θ) |g(θ)− a|r , r ≥ 0

R(θ, d) = w(θ)Eθ [|g(θ)− d(X)|r]

Special case: r = 2; w(θ) = 1∀θ then R(θ, d) = Eθ
[
|g(θ)− d(X)|2

]
is

the Mean square error. L is called quadratic loss.

b) Θ = Θ0 ∪Θ1 , Θ0 ∩Θ1 = ∅
Testing Hypothesis: H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1

A = {0, 1}

L(θ, a) =


1 if θ ∈ Θ0 and a = 1
c(> 0) if θ ∈ Θ1 and a = 0
0 otherwise

d := ϕ

R(θ, ϕ) =

{
Pθ(ϕ(X) = 1) if θ ∈ Θ0

cPθ(ϕ(X) = 0) if θ ∈ Θ1

Remark: The risk R(θ, d) is a function of the parameter θ. Therefore, the
frequentist approach does not induce a total ordering on the set of procedures.

Definition: A decision d′ is called stirictly better than d if

R(θ, d′) ≤ R(θ, d) ∀θ
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and ∃θ such that
R(θ, d′) < R(θ, d).

When there exists a d′ that is strictly better than d, then d is called inad-
missible.

Exemple: X = (X1, . . . , Xn) iid
Eθ [X1] = µ, V arθ(X1) = 1 ∀θ
d(X) = Xn−1 = 1

n−1

∑n−1
i=1 Xi

d′(X) = Xn = 1
n

∑n
i=1Xi

L(θ, a) = |µ− a|2
⇒ R(θ, d) = 1

n−1
, R(θ, d′) = 1

n

d is inadmissible.

2 Bayes Method

Suppose the parameter space Θ is a measure space. We can then equip it
with a probability measure Π. We call Π the a priori distribution.

Definition: The Bayes risk (with respect to the probability measure Π)
is

r(Π, d) :=

∫
Θ

R(θ, d)dΠ(θ).

A decision is called Bayes (with respect to Π) if

r(Π, d) = inf
d′
r(Π, d′).

Remark: If Π has density w := dΠ
dµ

with respect to some dominating measure
µ, we may write

r(Π, d) =

∫
Θ

R(θ, d)w(θ)dµ(θ) =: rw(d).

The Bayes risk may be thought of as taking a weighted average of the risks.
We call w(θ) the prior density.

Moreover

p(x) :=

∫
Θ

p(x | θ)w(θ)dµ(θ).

Definition: The a posteriori density of θ is

w(θ | x) = p(x | θ)w(θ)

p(x)
θ ∈ Θ, x ∈ χ.
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Theorem: Given the data X = x, consider θ as a random variable with
density w(θ | x). Let

l(x, a) := E [L(θ, a) | X = x] :=

∫
Θ

L(θ, a)w(θ | a)dµ(θ)

and d(X) := arg mina l(x, a).
⇒ d is Bayes decision dBayes.

Proof:

rw(d′) =

∫
Θ

R(θ, d′)w(θ)dµ(θ)

=

∫
Θ

[∫
χ

L(θ, d′(x))p(x | θ)dν(x)

]
w(θ)dµ(θ)

Fubini
=

∫
χ

∫
Θ

L(θ, d′(x))w(θ | x)dµ(θ)p(x)dν(x)

=

∫
χ

l(x, d′)p(x)dν(x)

≥
∫
χ

l(x, d)p(x)dν(x)

= rw(d)

�

Notice 1: Form a strictly Bayesian point of view, only the posterior expected
loss l(x, a) is important.
The previous theorem give us a constructive tool for the determination of
the Bayes estimators.
Notice 2: For strictly convex losses, the Bayes estimator is unique.

Remark: Let X ∈ R , E [X] = µ and V ar(X) <∞.
If a ∈ R then

E
[
(X − a)2

]
= V ar(X) + (a− µ)2

since:

E
[
(X − a)2

]
= E

[
(X − µ− (a− µ))2

]
= E

[
(X − µ)2

]
− 2E [(X − µ)(X − a)]︸ ︷︷ ︸

=0

+E
[
(a− µ)2

]
= V ar(X) + (a− µ)2
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⇒ arg minaE [(X − a)2] = E [X]

Example 1: Θ ⊆ R , A = R

L(θ, a) := (θ − a)2

Then:

dBayes(x) = E [θ | X = x] =

∫
Θ

θw(θ | x)dµ(θ)

Example 2: An alternative solution to the quadratic loss in dimesion one
is to use the absolute error loss,

L(θ, a) = |θ − a| Θ = R,A = R

⇒ dBayes(x) = median of w(θ | x)

Example 3: The 0− 1 loss.
Θ = {θ0, θ1} . H0 : θ = θ0 vs H1 : θ = θ1 θ0 6= θ1

A = [0, 1] d := ϕ(X) =probability of rejecting H0

R(θ, ϕ) =

{
Eθ [ϕ(X)] if θ = θ0

1− Eθ [ϕ(X)] if θ = θ1

Let ν >> Pθ0 , Pθ1 and p0 :=
dPθ0
dν
, p1 :=

dPθ1
dν

.
Let c ≥ 0 and q ∈ [0, 1]. Then

ϕNP =


1 if p1 > cp0

c if p1 = cp0

0 if p1 < cp0

is called Neyman-Pearson Test.
With the same assumption as in the Bayes method we have now

w0 = Π(θ = θ0) 0 < w0 < 1

w1 = Π(θ = θ1) = 1− w0

⇒ rw(ϕ) = w0R(θ0, ϕ) + w1R(θ1, ϕ).
Lemma:

ϕBayes =


1 if p1 >

w0

w1
p0

q if p1 = w0

w1
p0

0 if p1 <
w0

w1
p0
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where q ∈ [0, 1] arbitrary.
Proof:

rw(ϕ) = w0Eθ0 [ϕ(X)] + w1 (1− Eθ1 [ϕ(X)])

= w0

∫
ϕp0 + w1

(
1−

∫
ϕp1

)
=

∫
(w0p0(x)− w1p1(x))ϕ(x)dν(x) + w1

This implies

w0p0(x)− w1p1(x) < 0 ⇒ ϕBayes = 1

w0p0(x)− w1p1(x) > 0 ⇒ ϕBayes = 0

w0p0(x)− w1p1(x) = 0 ⇒ ϕBayes = q

with q arbitrary value in [0, 1].

�

Example 4: Θ ⊂ R, A = Θ

L(θ, a) = 1{|θ−a|>c} for c > 0 given constant

⇒ l(x, a) = Π(|θ − a| > c | X = x)

=

∫
|θ−a|>c

w(θ | x)dµ(θ)

dBayes(x) = arg min
a
l(x, a)

= arg max
a

(1− l(x, a))

1− l(x, a)

2c
=

1

2c

∫
|θ−a|≤c

w(θ | x)dµ(θ)

If µ is Lebesgue measure

lim
c↘0

1− l(x, a)

2c
= w(a | x) is called maximum a posteriori estimator.

Conclusion:
dBayes(x) ≈ dMAP(x) := arg max

a
w(a | x)

Note: w(a | x) = p(x | a)w(a)
p(x)

⇒ arg maxaw(a | x) = arg maxθ [p(x | θ)w(θ)]
MAP = MLE if w(θ) are constant!
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3 Two optimalities: minimaxity and admis-

sibility

After having seen the concept of admissibility, to look at ’how good’ or ’how
bad’ are our decisions, we want to introduce the concept of minimaxity:
Definition: Let d be a decision; d is called minimax if the minimax risk

R := inf
δ∈D∗

sup
θ
R(θ, δ)

is equal to supθ R(θ, d).
In other words minimax means: the best decision in the worst possible case.
Remark: D∗ is the set of randomized estimators.
Example: The first oil-drilling platforms were designed according to a min-
imax principle: they were so constructed to resist to the worst gale together
with the worst storm ever observed, and this at the minimal temperature
ever measured.
Naturally the platform is quite sure, but very expensive to build. Nowadays
companies tend to use other strategies to reduce costs.
Up to now we have seen only methods to compare decisions, now we want to
improve decisions.
Definition: let S be a Statistic, we say S is Sufficient if: Pθ[x | S] does not
depend on θ
Thm: Rao-Blackwell

• Let A ⊆ Rp convex

• a 7→ L(θ, a) a convex function ∀θ

• S be sufficient

• and d : χ→ A be a decision

• suppose d′(s) := E [d(X) |S = s ] (assumed to exist)

then:
R(θ, d′) ≤ R(θ, d)∀θ ∈ Θ (1)

Proof: we have to use the Jensen inequality: for a convex g E [g(X)] ≥
g(E [X]) and the iterated expectation lemma.

R(θ, d) = E [L (θ, d(X))]

= E [E [L (θ, d(X)) |S = s ]]

≥ E [L (θ, d′(S))]
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Remarks:

I As loss function we often use L(θ, a) := |θ − a|2 which is convex, and
[0; 1] or R (a convex set) as action space. So it is not so difficult to
satisfy the conditions of the theorem.

II The new decision is better than the oldest one, and only depend on s.

III R
Def
= supΠ r(Π)

Def
= supΠ infδ∈D r(Π, δ) ≤ R = infδ∈D∗ supθ R(θ, δ)

We can now look at some relations between Bayes, minimax and admis-
sible:

Proposition 1: If δ0 is Bayes (wrt Π0 a priori distribution of Θ) and if
R(θ, δ0) ≤ r(Π0)∀θ ∈ supp(Π0), then δ0 is minimax.

Proposition 2: If ∃(Πn)n∈N sequence of proper prior distribution s.t.:

R(θ, δ0) ≤ lim
n→∞

r(Πn) <∞ ∀θ

then δ0 is minimax.
Proposition 3: If there exists a unique minimax estimator δ0, then it is
admissible.
Proof: let δ be another decision; because of minimaxity

sup
θ
R(θ, δ) > sup

θ
R(θ, δ0)

⇒ ∃θ : R(θ, δ) > R(θ, δ0)

⇒ δ0 is admissible

�

Note that uniqueness is essential.
Example: Θ = {0; 1}
R(θ, δ1) := 1
R(θ, δ2) := θ
supθ R(θ, δ1) = supθ R(θ, δ2)
even if δi are minimax, δ2 is strictly better than δ1 (also δ1 is inadmissible).

Proposition 4: If δ0 is an admissible decision and R(θ, δ0) = R(δ0), then δ0

is the unique minimax decision.
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Proof:

∀θ0 ∈ Θ : sup
θ
R(θ, δ0)

(∗)
= R(θ0, δ0)

δ0 adm.⇒ ∀δ̃∃θ̃ : R(θ̃, δ̃) > R( ˜θ, δ)

⇒ sup
θ
R(θ, δ̃) ≥ R(θ̃, δ̃) > R( ˜θ, δ)

(∗)
= sup

θ
R(θ, δ0)

also δ0 is minimax! Uniqueness follows dierctly from ′ >′ δ.

�

Proposition 5: Let Π be the a priori strictly positive distribution on Θ,
R(θ, δ) continuous in θ ∀δ and rΠ(δ) <∞. Then Bayes implies admissible.
Proof: Assume δΠ Bayes but inadmissible, then there exist a strictly better
decision δ1.

⇒ ∀θR(θ, δ1) ≤ R(θ, δΠ)

and ∃θ̃ : R(θ̃, δ1) < R(θ̃, δΠ) (2)

because of continuity of the risk function we can find an open set σ in which
(2) holds. So we have:

rΠ(δ1) =

∫
Θ

R(θ, δ1)w(θ)dθ

=

∫
Θ\σ

R(θ, δ1)w(θ)dθ︸ ︷︷ ︸
≤

R
Θ\σ R(θ,δΠ)w(θ)dθ

+

∫
σ

R(θ, δ1)w(θ)dθ︸ ︷︷ ︸
<

R
σ R(θ,δΠ)w(θ)dθ

<

∫
Θ

R(θ, δΠ)w(θ)dθ

= rΠ(δΠ)

This result is in contradiction with the fact that δΠ is Bayes.

�

Proposition 6: If the Bayes estimator associated with a prior Π is unique,
it is admissible.

Proposition 7: A Bayes estimator δΠ (with Π prior), convex loss function
and finite Bayes risk is admissible.
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4 Alternatives

Up to now we have only analysed cases, where loss and distributions were
given. But the reality is not always so.
Often we don’t have a completly determined loss function; then we have some
possibilities to solve this problem, like:

• choosing arbitrary the subjective best unknown parameter

• using a random variable (F−distributed) where we have unknown pa-
rameters. So the Bayes risk is:

∫
Θ

∫
Ω
L(θ, δ, ω)dF (ω)dπ(θ | x)

• we can reduce the number of possible loss functions by taking only few
of them in account, and then looking for estimators performing well for
all these losses

5 Appendix

A numerical exemple to show the utility of the Bayes method.
Definition: Z > 0 has a Gamma-(k, λ) distribution if it has density

fZ(z) =
zk−1e−λzλk

Γ(k)

Γ(k) =

∫ ∞
0

zk−1e−zdz

Remark: E [Z] = k
λ

Definition: Z ∈ {0, 1, . . .} has a Negative Binomial-(k, p) distribution if

P (Z = z) =
Γ(z + k)

Γ(k)z!
pk(1− p)z z = 0, 1, . . .

Remarks:

• k=1: geometric distribution with parameter p.

• E [Z] = k(1−p)
p

V ar(Z) = k(1−p)
p2 .

Exemple: Suppose p(x | θ) = e−θ θ
x

x!
x ∈ {0, 1, . . .} (Poisson(θ)-distribution)

and that Θ ∼ Gamma(k, λ).
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Result 0: p(x) := Negative Binomial(k, p) where p = λ
1+λ

.
Proof:

p(x) =

∫
Θ

p(x | θ)w(θ)dµ(θ)

=

∫ ∞
0

e−θ
θx

x!

θk−1e−λθλk

Γ(k)
dθ

=
λk

Γ(k)x!

∫ ∞
0

e−θ(λ+1)θx+k−1dθ

We compute the last integral by partial integration∫ ∞
0

e−θ(λ+1)

↑
θx+k−1

↓ dθ =
e−θ(λ+1)

−(λ+ 1)
θx+k−1︸ ︷︷ ︸

=0

+

∫ ∞
0

e−θ(λ+1)

λ+ 1
(x+ k − 1)θx+k−2dθ

=
x+ k − 1

λ+ 1

∫ ∞
0

e−θ(λ+1)θx+k−2dθ

= . . . =
(x+ k − 1) · (x+ k − 2) · . . . 3 · 2

(λ+ 1)x+k−1

∫ ∞
0

e−θ(λ+1)dθ

=
Γ(x+ k)

(λ+ 1)x+k

Finally we can write that

p(x) =
Γ(x+ k)

Γ(k)x!

(
λ

(1 + λ)

)k (
1

1 + λ

)x
�

Result 1: w(θ | x) is Gamma(x+ k, 1 + λ).
Proof:

w(θ | x) = p(x | θ)w(θ)

p(x)

= e−θ
θx

x!
θk−1e−λθ

λk

Γ(k)

1

p(x)

Result 0
= e−θ

θx

x!
θk−1e−λθ

λk

Γ(k)

1

Γ(x+k)
Γ(k)x!

(
λ

(1+λ)

)k (
1

1+λ

)x
=

θx+k−1e−(λ+1)θ(λ+ 1)x+k

Γ(x+ k)

12



�

Remarks:

• θ̂1 := E [θ | X] = x+k
1+λ

is the Bayes estimator in the case of quadratic
loss.

• MLE: θ̂2 := x.

• MAP: arg maxθ e
−θ(λ+1)θx+k−1

= θ̂3 = x+k−1
1+λ

.
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