4. Transformations

Overview 2
Family of powers and roots 3
Family of powers and roots 4
Using a 'start' 5
Transforming skewness 6
Transforming nonlinearity 7
Transforming nonconstant spread 8
Summary of transformations 9

Overview

■ Linear least squares regression makes strong assumptions about the data:

- Linear relation
- Equal variance
- Normal distribution
- Transforming the data can help satisfy these assumptions. It can also assist in examining the data.

■ Disadvantage of transformations: interpretation becomes more difficult

Family of powers and roots

■ Useful family of transformations: $X \mapsto X^{p}$

- $p=2: X \mapsto X^{2}$
- $p=-1: X \mapsto 1 / X$
- $p=1 / 2: X \mapsto \sqrt{X}$

■ Little more complex, but easier to compare: $X \mapsto X^{(p)}=\frac{X^{p}-1}{p}$.

- Method:
- Use $X^{(p)}$ to find the right value of p.
- Once you've found the right p, it is often easier to use X^{p} instead of $X^{(p)}$.
- Also, it is often easier to use ${ }^{10} \log (X)$ or ${ }^{2} \log (X)$ instead of the natural logarithm.

Family of powers and roots

- Dividing by p is necessary to preserve the direction of X.
- All transformations match in value and slope at $X=1$.

■ We use the convention $X^{(0)}=\log X$ (because $\lim _{p \rightarrow 0} \frac{X^{p}-1}{p}=\log X$).
■ Ascending the ladder ($p>1$) spreads out large values and compresses small values.
■ Descending the ladder $(p<1)$ compresses large values and spreads out small values.

Using a 'start'

■ If there are negative values, the transformation doesn't preserve direction \rightarrow use a positive start.

- If the ratio of the largest to the smallest observation is close to $1(\leq 5)$, then the transformation is nearly linear and therefore ineffective \rightarrow use a negative start.
- We usually select values in the range $-2 \leq p \leq 3$, and simple fractions such as $1 / 2$ and $1 / 3$.
- Always keep interpretability in mind. If $p=.1$ seems best for the data, it is often better to use the log transformation $(p=0)$, because this is easier to interpret.

Transforming skewness

- Problems with skewed distribution
- Data difficult to examine because most observations are in a small part of the range of the data. Outlying values in the direction opposite the skew may be invisible.
- Least squares regression traces the conditional mean of Y given the X 's. The mean is not a good summary of the center of a skewed distribution.
■ Right skew (positive skew) \rightarrow need to compress large values \rightarrow descend the ladder of powers \rightarrow $p<1$.
■ Left skew (negative skew) \rightarrow need to compress small values \rightarrow ascend the ladder of powers $\rightarrow p>1$.

Transforming nonlinearity

- Why do we want things to be linear?
- Linear relationships are simple, and there is nice statistical theory for these models.
- If there are several independent variables, nonparametric regression may be infeasible

■ Simple monotone nonlinearity (direction of curvature does not change) can often be corrected using a transformation in the family of powers and roots

- Example: quadratic function - two possible transformations

■ Mosteller and Tukey's Bulging rule
■ Consider how transformation affects symmetry. If the dependent variable already was symmetric, then try to leave this one untouched. And again, keep in mind interpretability.

Transforming nonconstant spread

■ Differences in spread are often related to differences in level. Often: higher level \rightarrow higher spread
■ When spread is positively related to level, we need to compress large values \rightarrow transformation down the ladder of powers and roots $\rightarrow p<1$.
■ When spread is negatively related to level (rare), we need to spread out large values \rightarrow transformation up the ladder of powers and roots $\rightarrow p>1$.

Summary of transformations

■ Advantage: transformations can help satisfy the assumptions of linearity, constant variance and normality.

- Disadvantage: interpretation is more difficult.

■ The family of powers and roots (X^{p} or $\left(X^{p}-1\right) / p$):

- Ascending the ladder of powers $(p>1)$ spreads out large values and compresses small values.
- Descending the ladder of powers $(p<1)$ does the opposite.

