complex {base} | R Documentation |

Basic functions which support complex arithmetic in **R**, in addition to
the arithmetic operators `+`

, `-`

, `*`

, `/`

, and `^`

.

complex(length.out = 0, real = numeric(), imaginary = numeric(), modulus = 1, argument = 0) as.complex(x, ...) is.complex(x) Re(z) Im(z) Mod(z) Arg(z) Conj(z)

`length.out` |
numeric. Desired length of the output vector, inputs being recycled as needed. |

`real` |
numeric vector. |

`imaginary` |
numeric vector. |

`modulus` |
numeric vector. |

`argument` |
numeric vector. |

`x` |
an object, probably of mode |

`z` |
an object of mode |

`...` |
further arguments passed to or from other methods. |

Complex vectors can be created with `complex`

. The vector can be
specified either by giving its length, its real and imaginary parts, or
modulus and argument. (Giving just the length generates a vector of
complex zeroes.)

`as.complex`

attempts to coerce its argument to be of complex
type: like `as.vector`

it strips attributes including
names. Up to **R** versions 3.2.x, all forms of `NA`

and `NaN`

were coerced to a complex `NA`

, i.e., the `NA_complex_`

constant, for which both the real and imaginary parts are `NA`

.
Since **R** 3.3.0, typically only objects which are `NA`

in parts
are coerced to complex `NA`

, but others with `NaN`

parts,
are *not*. As a consequence, complex arithmetic where only
`NaN`

's (but no `NA`

's) are involved typically will
*not* give complex `NA`

but complex numbers with real or
imaginary parts of `NaN`

.

Note that `is.complex`

and `is.numeric`

are never both
`TRUE`

.

The functions `Re`

, `Im`

, `Mod`

, `Arg`

and
`Conj`

have their usual interpretation as returning the real
part, imaginary part, modulus, argument and complex conjugate for
complex values. The modulus and argument are also called the *polar
coordinates*. If *z = x + i y* with real *x* and *y*, for
*r = Mod(z) = √(x^2 + y^2)*,
and *φ = Arg(z)*, *x = r*cos(φ)* and
*y = r*sin(φ)*. They are all
internal generic primitive functions: methods can be
defined for them
individually or *via* the `Complex`

group generic.

In addition to the arithmetic operators (see Arithmetic)
`+`

, `-`

, `*`

, `/`

, and `^`

, the elementary
trigonometric, logarithmic, exponential, square root and hyperbolic
functions are implemented for complex values.

Matrix multiplications (`%*%`

, `crossprod`

,
`tcrossprod`

) are also defined for complex matrices
(`matrix`

), and so are `solve`

,
`eigen`

or `svd`

.

Internally, complex numbers are stored as a pair of double
precision numbers, either or both of which can be `NaN`

(including `NA`

, see `NA_complex_`

and above) or
plus or minus infinity.

`as.complex`

is primitive and can have S4 methods set.

`Re`

, `Im`

, `Mod`

, `Arg`

and `Conj`

constitute the S4 group generic
`Complex`

and so S4 methods can be
set for them individually or via the group generic.

Operations and functions involving complex `NaN`

mostly
rely on the C library's handling of double complex arithmetic,
which typically returns `complex(re=NaN, im=NaN)`

(but we have
not seen a guarantee for that).
For `+`

and `-`

, **R**'s own handling works strictly
“coordinate wise”.

Operations involving complex `NA`

, i.e., `NA_complex_`

, return
`NA_complex_`

.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)
*The New S Language*.
Wadsworth & Brooks/Cole.

`Arithmetic`

; `polyroot`

finds all *n*
complex roots of a polynomial of degree *n*.

require(graphics) 0i ^ (-3:3) matrix(1i^ (-6:5), nrow = 4) #- all columns are the same 0 ^ 1i # a complex NaN ## create a complex normal vector z <- complex(real = stats::rnorm(100), imaginary = stats::rnorm(100)) ## or also (less efficiently): z2 <- 1:2 + 1i*(8:9) ## The Arg(.) is an angle: zz <- (rep(1:4, len = 9) + 1i*(9:1))/10 zz.shift <- complex(modulus = Mod(zz), argument = Arg(zz) + pi) plot(zz, xlim = c(-1,1), ylim = c(-1,1), col = "red", asp = 1, main = expression(paste("Rotation by "," ", pi == 180^o))) abline(h = 0, v = 0, col = "blue", lty = 3) points(zz.shift, col = "orange") showC <- function(z) noquote(sprintf("(R = %g, I = %g)", Re(z), Im(z))) ## The exact result of this *depends* on the platform, compiler, math-library: (NpNA <- NaN + NA_complex_) ; str(NpNA) # *behaves* as 'cplx NA' .. stopifnot(is.na(NpNA), is.na(NA_complex_), is.na(Re(NA_complex_)), is.na(Im(NA_complex_))) showC(NpNA)# but not always is {shows '(R = NaN, I = NA)' on some platforms} ## and this is not TRUE everywhere: identical(NpNA, NA_complex_) showC(NA_complex_) # always == (R = NA, I = NA)

[Package *base* version 3.3.2 Index]