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Abstract

Microarray experiments generate large datasets with expression values for thousands
of genes, but not more than a few dozens of samples. A challenging task with these
data is to reveal groups of genes which act together and whose collective expression
is strongly associated with an outcome variable of interest. To find these groups, we
suggest the use of supervised algorithms: these are procedures which use external
information about the response variable for grouping the genes. We present Pelora,
an algorithm based on penalized logistic regression analysis, that combines gene
selection, gene grouping and sample classification in a supervised, simultaneous way.
With an empirical study on six different microarray datasets, we show that Pelora
identifies gene groups whose expression centroids have very good predictive potential
and yield results that can keep up with state-of-the-art classification methods based
on single genes. Thus, our gene groups can be beneficial in medical diagnostics and
prognostics, but they may also provide more biological insights into gene function
and regulation.

1 Introduction

Large-scale monitoring of gene expression by microarrays is considered to be
one of the most promising techniques to improve medical diagnostics and func-
tional genomics. Given efficient statistical methods for exploiting large gene
expression datasets, accurate classification of tumor subtypes may become re-
ality, allowing for specific treatment that maximizes efficacy and minimizes
toxicity. Moreover, gene expression data are an important resource to recon-
struct gene regulatory sub-networks, or more globally, to enhance understand-
ing how the genome works.
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An important task is to reveal groups of genes which act together, for exam-
ple in pathways, and whose collective expression is optimally predictive for a
certain response variable y. Our goal is to find rules such as: “if the centroid of
gene 534, gene 837 and gene 235 is high, as well as the centroid of gene 2194,
gene 1438, gene 931 and gene 694 is low, this is indicative of cancer subtype
A”. Such gene groups and their centroids can be understood as molecular sig-
natures, which are of potential interest to accurately predict the phenotypes
of new individuals in medical diagnostics, and to gain insights into biolog-
ical and gene regulatory processes. However, finding the groups is difficult:
we are facing computational problems due to the sheer amount of predictor
variables (genes), and statistical difficulties due to the “small sample size n,
large predictor dimension p”-phenomenon.

To tackle the search for groups of co-regulated genes, unsupervised cluster-
ing algorithms are widely applied in microarray analysis: mostly hierarchical
clustering, but also k-means clustering, self-organizing maps and principal
components, among other tools, are used. All these methods cluster genes
according to unsupervised similarity measures computed from the gene ex-
pressions, but without regarding the variation of the y-values. Our approach
differs from these popular clustering techniques, as its primary goal is to re-
veal gene groups that are strongly predictive for the response y, rather than to
find homogeneous clusters made up of co-expressed genes. Hence, we suggest
supervised algorithms that group genes by incorporating information from the
y-values.

Previous work in this field encompasses partial least squares [1], a tool from
chemometrics, constructing weighted linear combinations of genes that have
maximal covariance with the outcome. The drawback is that every fitted com-
ponent involves all (usually thousands of) genes, rather than a few genes in
a group. Moreover, partial least squares for every component yields a linear
combination of gene expressions which completely lacks the biological inter-
pretation of having a group of genes acting similarly in the same pathway.
Another supervised approach that improves these drawbacks is tree harvest-
ing [2], a two-step method: first, it generates numerous candidate groups by
unsupervised hierarchical clustering, and then, all group centroids are consid-
ered as potential predictor variables in a supervised response model. The gene
groups that are most predictive for tissue discrimination are selected, but the
initial partition remains fixed and unsupervised. A more direct approach is to
combine supervised gene selection and gene grouping in one single step. We
proposed such a procedure under the heading “Supervised clustering of genes”
in [3]. Another single-step approach based on Rissanen’s minimum description
length principle was pursued by Jörnsten and Yu [4].

Here, we formulate a generic strategy for supervised grouping approaches:
it combines gene selection and gene grouping in a single step, and is based
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on sequentially improving an empirical objective function that measures the
groups’ strength for explaining the outcome y. We briefly review our first
implementation from [3], which is called Wilma, since its grouping criterion is
based on the Wilcoxon and margin statistics. Then, we present Pelora, a novel
approach to supervised grouping of genes, using an objective function based on
penalized logistic regression analysis. It improves upon Wilma in many ways.
It allows for overlapping groups of genes, as motivated from biology, since
some genes operate in multiple pathways; furthermore, Pelora yields better
interaction between the gene groups, it is more robust, it allows for including
additional clinical covariates to refine the grouping, it can be easily adapted
to continuous response problems and it encompasses a built-in classifier. But
the improvements are not just on the theoretical and methodological side: our
new implementation Pelora also yields very good empirical prediction results,
especially when the discrimination between tissue types is difficult.

2 Some Motivation for Supervised Grouping of Genes

2.1 Gene Expression Data

Our stochastic notion of a microarray experiment is given by a random pair
(x, y), where x ∈ Rp is the gene expression profile, monitoring up to sev-
eral thousands of genes. y ∈ {0, 1} is a dichotomous response, extensions to
polytomous or continuous response are discussed in section 3.4.3. The data
are assumed to be independent and identically distributed realizations of such
random pairs,

(x1, y1), (x2, y2), . . . , (xn, yn),

where the number of experiments n is typically between 10 and 100. The pre-
dictor variables are stored in a (n× p)-matrix (xig), where rows xi correspond
to experiments and are printed in bold face, whereas columns xg correspond
to genes and are printed in normal font. For our supervised grouping method-
ology, the expression profile x can be either from Affymetrix oligonucleotide
chips or two-color cDNA arrays, but we assume it to be thoroughly prepro-
cessed and log-transformed.

2.2 Two-Population Models

Our approach for grouping genes is very different from popular clustering
based on similarity measures such as correlation (between genes or cluster
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centroids). For understanding supervised grouping of genes, it is instructive
to consider first a simple model: we have two populations, encoded by 0 and
1, according to the value of the binary response y = 0 or y = 1, respectively.
For notational simplicity, we order the data samples such that the first n0 =∑n

i=1(1− yi) observations belong to population 0 and the last n1 =
∑n

i=1 yi to
population 1. The model is then

x1, . . . ,xn0 i.i.d. with c.d.f. F (· − µ(0)) in population 0,

xn0+1, . . . ,xn i.i.d. with c.d.f. F (· − µ(1)) in population 1, (1)

where F (·) is a p-dimensional cumulative distribution function with expecta-
tion equal to the zero vector. Thus, the populations differ only in their mean
vectors which is one of the simplest models of this class. Model (1) becomes a
simple two-population group model if

µ(0) = (µ
(0)
G1

, . . . , µ
(0)
G1

, µ
(0)
G2

, . . . , µ
(0)
G2

, . . . , µ
(0)
Gq

, . . . , µ
(0)
Gq

),

µ(1) = (µ
(1)
G1

, . . . , µ
(1)
G1

, µ
(1)
G2

, . . . , µ
(1)
G2

, . . . , µ
(1)
Gq

, . . . , µ
(1)
Gq

), (2)

where we have q groups G1, . . .Gq that form a partition of the gene index
set {1, . . . , p}. Within each gene group G, all genes have the same expectation

µ
(0)
G or µ

(1)
G , respectively; for notational simplicity, we have reordered the genes

such that the first group G1 consists of the first genes 1, 2, . . . , |G1|, and the
last group consists of the last genes p− |Gq|+ 1, . . . , p.
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Fig. 1. Scatterplot of two genes from a group G with µ
(0)
G = −3, µ

(1)
G = 3.

The magnitude of the difference |µ(0)
G −µ

(1)
G | for a certain gene group G heavily

influences the ability to recover such a structure from data. We simulated genes
from one group of size |G| = 10 according to model (1), with the cumulative
distribution function F (·) chosen as the N10(0, I)-distribution. Figure 1 shows

the scatterplot of two genes from this group G with µ
(0)
G = −3, and µ

(1)
G = 3,
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which exhibits a large difference compared to the noise level and in turn,
implies a large sample correlation of 0.91 between the two genes in figure 1.
Thus, if the difference |µ(0)

G −µ
(1)
G | is large, it is quite likely that such a group of

genes can be detected by clustering methods based on the correlation similarity
measure.

When taking the same setup but with smaller |µ(0)
G − µ

(1)
G | = 2, the empirical

correlation between two genes from group G drops down to 0.53 and there is
no clear separation between the populations, as evident from the left panel
in figure 2. The correlation of 0.53, which is low in the context of microarray
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Fig. 2. Left: scatterplot of two genes from a group G with µ
(0)
G = −1 and µ

(1)
G = 1.

Right: average expression x̃ of a group with size |G| = 10.

gene expression data, is an indication that correlation based clustering will
have difficulties in recovering the group G from data.

However, we can actively make use of the information which samples belong
to population group 0 and 1 by plotting gene group averages

x̃ = x̃G =
1

|G|
∑
g∈G

xg

and check how well the group average x̃ separates the two population groups.
This is demonstrated in the right panel of figure 2 for a true group of size
|G| = 10 and with the “difficult” structure having small differences between

the population group means |µ(0)
G − µ

(1)
G | = 2.

The key observation why the approach illustrated in the right panel of figure 2
works, is that the group average x̃ has smaller variability than single genes. In
particular, x̃i for a true group G is an estimate of both µ

(0)
G and µ

(1)
G , depending

whether the sample index i belongs to yi = 0 or yi = 1, respectively. Moreover,
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if the true group size |G| is sufficiently large, we will obtain a perfect separation
of the populations with x̃, i.e.

max
i,yi=0

x̃i < min
i,yi=1

x̃i or min
i,yi=0

x̃i > max
i,yi=1

x̃i. (3)

Hence, we “only” need to check - and we can do this because we are working
in a supervised context - how well the candidate group average x̃ separates the
two populations as in the right panel of figure 2. In summary, if the true group
size |G| is large relative to the magnitude of the population mean differences

|µ(0)
G − µ

(1)
G |, we will have a good chance to discover G from data. This can be

quantified, since under reasonable conditions on the correlation between the
genes,

√
Var(x̃|y) ∼ Cy/

√
|G| for some constant Cy > 0 as |G| → ∞,

which will be small relative to |µ(0)
G − µ

(1)
G | if |G| is large.

2.3 Beyond the Two-Population Group Model

The two-population group model in (2) seems somewhat unrealistic. First, for
both populations, the genes within group G may have different mean values
instead of being all exactly equal to some µ

(y)
G . More importantly, when going

through the arguments above, we can achieve a separation rule as in (3) if

|µ(0)
G − µ

(1)
G | is large relative to max

(√
Var(x̃|y = 0),

√
Var(x̃|y = 1)

)
,

where µ
(y)
G = 1

|G|
∑

g∈G µ(y)
g (y ∈ {0, 1}). Requiring the maximum of the condi-

tional standard deviations may be a bit too stringent, but certainly sufficient.

Thus, a gene group G pays off, if every gene g ∈ G has: a) a large expected
differential expression |µ(0)

g −µ(1)
g |, as well as the same sign(µ(0)

g −µ(1)
g ), and:

b) the pairwise conditional correlations Cov(xg, xg′|y) are low for all genes
g, g′ ∈ G, yielding small conditional variances V ar(x̃|y).

Clearly, this involves a trade-off between expected differential expression and
variance: if a gene g∗ has the largest expected differential expression, the ab-
solute difference |µ(0)

G − µ
(1)
G | will be smaller (which is worse) for any superset

group G ⊃ g∗, while the conditional variances V ar(x̃|y) will decrease.

In addition, we want to construct multiple gene groups, each of which exhibit-
ing a good trade-off between expected differential expression and conditional
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variance of the group mean as discussed above. The reason is that for a two-
population model, the response y can typically be more accurately predicted
with multiple group averages x̃1, . . . , x̃q, at least as long as these q group rep-
resentatives are not too strongly conditionally dependent given the binary
response y ∈ {0, 1}.

2.4 Structure of Supervised Gene Groups

In summary, our methods for supervised grouping of genes, as described in
sections 3.3 and 3.4, aim to identify multiple class separating groups G1, . . . ,Gq,
such that each group exhibits a good trade-off between expected differential
expression and conditional variance of the group mean, and such that the
q groups together contribute most in predicting the response y. These gene
groups are not necessarily “homogeneous” gene clusters, and they will typically
not reflect “co-expression” in the classical sense that all genes in a group would
be very tightly over- or under-expressed, respectively. However, we do get gene
groups whose representatives x̃1, . . . , x̃q can be interpreted as a gene signature
that is strongly differentially expressed and carries substantial information
about predicting y.

3 Methods

3.1 Probabilistic Model

To account for the fact that not all p genes on the chip, but rather a few func-
tional gene subsets determine nearly all of the outcome variation, we model
the conditional probability by

P [y = 1|x] = f (x̃) with x̃ = (x̃1, x̃2, . . . , x̃q) , (4)

where f(·) is an unknown nonlinear function and x̃j are ’representative’ values
for q � p unknown gene groups G1, . . . ,Gq. Similarly as in section 2, we use
the centroid

x̃j =
1

|Gj|
∑
g∈Gj

αgxg with αg ∈ {−1, 1}

as the representative group value. The unknown discrete parameter αg is used
to allow for over- and underexpressed genes in the same group. These sign-flips
can be regarded as an optional feature in our method and software.
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3.2 Supervised Grouping: A Generic Strategy

The combinatorial complexity for grouping gene expression data is huge. As
a toy example, consider a dataset of 5,000 genes: there are more than 2 · 1030

possibilities for obtaining one single group of 10 genes. Because the partition of
thousands of genes into a few signature components that virtually determine
the probability structure as in (4) is by far more complex than our toy example,
it is impossible to use an exhaustive search to reveal the optimal partition
among all possible solutions. Thus, we suggest a computationally intensive
grouping heuristic that turns out to yield good empirical results.

Our approach is based on a strategy which proceeds in a “cautious” forward
way. We start from scratch and rely on growing the groups incrementally by
adding one gene after the other. Regularly recurring cleaning steps help us
to remove spurious genes that were incorrectly added to the groups at earlier
stages. We repeat growth and pruning of a single group until it stabilizes and
cannot be improved any further. Once a group is found to be terminated, a new
group is started and the composition of the former groups is left unchanged,
while they can still have an effect on the construction of the new group. All
these grouping operations are based on an empirical objective function S,
which measures the strength of the gene groups for explaining the response y.
Its choice is discussed in sections 3.3 and 3.4.

3.3 Wilma - a First Implementation

Our first supervised algorithm for gene grouping is called Wilma and fol-
lows the generic strategy described above. It was published under the heading
“Supervised clustering of genes” [3]. The name Wilma is an acronym for the
Wilcoxon and margin criteria which are used for the objective function S. The
procedure yields convincing empirical results in terms of the predictive poten-
tial, the stability and the relevance of its groups. However, it suffers from a
few limitations. First, the groups need to be disjoint, and hence Wilma cannot
capture genes that operate in multiple pathways. Next, each group is (up to
the disjointness to the former groups) built independently of all the others. So,
it may happen that each group tries to optimally predict the response y on its
own, instead of finding an ensemble of interacting groups. Then, the group-
ing criterion S is non-penalized, which might lead to overfitting. Moreover, it
is non-robust and may result in very hard supervision. Wilma has been suc-
cessful in “easy” classification problems, but some milder form of supervision
(less influence of the response) leads to better empirical results in difficult,
inhomogeneous classification problems with substantial Bayes risk.
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3.4 Pelora

We present now a new supervised grouping algorithm called Pelora. It still
follows the generic strategy described in section 3.2, but addresses all the
limitations of Wilma. It mainly differs in the supervised grouping criterion S.
We employ the `2-penalized negative log-likelihood function

S =−
n∑

i=1

(yi · log pθ(x̃i) + (1− yi) · log(1− pθ(x̃i))) + n
λ

2
θT Pθ, (5)

based on estimated conditional class probabilities pθ(x̃) = Pθ[y = 1|x̃] from
penalized logistic regression analysis, hence the name Pelora. Note that θ is
the parameter vector, λ is a tuning parameter that controls the penalization
and P is a penalty matrix, for further details we refer to section 3.4.1. The
binomial log-likelihood is an attractive choice as a grouping criterion, since
it is the ’natural’ goodness-of-fit measure for dichotomous problems. Another
advantage is that with multiple groups, it allows to judge the discriminatory
power of the (q + 1)-dimensional predictor x̃ = (1, x̃1, . . . , x̃q), whereas the
Wilcoxon and margin criteria in Wilma only work with one-dimensional input.
By computing the grouping criterion directly from multiple groups instead
of single groups only, we obtain better interacting gene groups that explain
the response y as an ensemble. Technical issues concerning penalized logistic
regression and full details about the grouping procedure are given in the next
two sections.

3.4.1 Penalized Logistic Regression Analysis

Penalized logistic regression analysis [5] has been used as a stand-alone for
classification of microarray gene expression data with single genes. Eilers et
al. [6] as well as Zhu and Hastie [7] focus on computational issues that arise
from the “small n, large p” dimensionality phenomenon and report improved
results compared to non-penalized logistic regression. Since we use the penal-
ized version as an estimator in conjunction with our q < n groups, we avoid
such difficulties and can apply computationally simple methodology. The clas-
sical logistic model is then defined as

log

(
pθ(x̃i)

1− pθ(x̃i)

)
=

q∑
j=0

θjx̃ij = x̃iθ, for observations i = 1, . . . , n,

with parameter vector θT = (θ0, θ1, . . . , θq) and xi0 = 1. The idea of penal-
ized logistic regression is to estimate θ by a `2-penalized maximum likelihood
principle. We minimize
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S(θ) =−
n∑

i=1

(yi · log pθ(x̃i) + (1− yi) · log(1− pθ(x̃i))) + n
λ

2
θT Pθ (6)

for fixed x̃i with respect to θ. Note that (5) and (6) are identical, but the goal in
(6) is to estimate the parameter vector θ by minimizing S for fixed predictors,
whereas for supervised grouping, we try to find the (possibly overlapping)
partition whose centroid-predictors optimize S in (5) with optimal parameter
θ from (6). P is the penalty matrix, defined as

P =



0 0 . . . 0 0

0 V ar(x̃1) . . . 0 0
...

...
. . .

...
...

0 0 . . . V ar(x̃(q−1)) 0

0 0 . . . 0 V ar(x̃q)


(7)

a matrix which has the predictors’ variance in the diagonal and zeros else-
where. The reason to use this non-unit penalty matrix is that, in contrast to
common practice in penalized regression, we do not standardize the predic-
tors, i.e. the group representatives x̃j, to unit variance. By using P as defined
above, we obtain the same solution as when using the standard unit matrix
as a penalty in conjunction with standardized predictors. The proof is given
in Appendix A. To get to the solution of the minimization problem in (6), we
take derivatives with respect to θ,

∂S

∂θ
= X̃T (y − πθ)− nλPθ

!
= 0 ∈ Rq+1,

where X̃ = (1, x̃i1, . . . , x̃iq)i=1,...,n is the design matrix containing the group
centroids and πθ = (pθ(x̃1), . . . , pθ(x̃n))T is the conditional probability vector
for all n observations. This yields (q +1) non-linear equations, whose solution
needs to be approximated. We do this iteratively by Newton-Raphson stepping
and obtain the new estimate θnew from

θnew = θ −
(

∂2S

∂θ∂θT

)−1

· ∂S

∂θ

For an explicit computation of the step length, we use the second derivative

∂2S

∂θ∂θT
= −

(
X̃T WθX̃

)
− nλP ∈ R(q+1)×(q+1),
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where the matrix Wθ is a diagonal weight matrix, defined as

Wθ = diag ((pθ(x̃i)(1− pθ(x̃i)))i=1,...,n) .

Then, we plug in and with

θnew =
(
X̃T WθX̃ + nλP

)−1
·
(
X̃T (y − πθ) + (X̃T WθX̃)θ

)
,

we obtain an iterative procedure for estimation of the parameter vector θ. The
initial values for θ are chosen as

θ
(0)
0 = log

(
ȳ

1− ȳ

)
and θ

(0)
j = 0 for all j = 1, . . . , q,

where ȳ = 1
n

∑
yi. This means that pθ(0)(x̃i) = ȳ, that is, the initial probabili-

ties reflect the class proportions in the training data. If these are not represen-
tative and a priori probabilities are known, the initial parameter values should
be chosen appropriately. The Newton-Raphson algorithm in general converges
rapidly and not more than 5-10 iterations are necessary until the solution sta-
bilizes. For our grouping algorithm, we do not iterate until convergence, but
restrict to two full rounds, meaning that

θ(0) ; θ(1) ; θ(2) = θ

is our final estimate in the penalized logistic regression model. The reason is
to save computing time: every iteration requires solving a linear equation sys-
tem, which is by far the most time consuming operation in our supervised al-
gorithm; note that we will run such 2-step Newton-Raphson very many times.
The first iteration yields the least squares ridge-type linear regression solu-
tion. This is already a consistent estimator, if λ is chosen appropriately. The
second Newton-Raphson iteration typically yields asymptotic efficiency, see
[8]. Thus, this guarantees from a theoretical viewpoint, that our procedure is
precise enough. From an empirical viewpoint, we observed that the probabil-
ity “pattern” over the n observations did not change much after 2 iterations.
Thus, the grouping did hardly ever change at all if more than 2 iterations were
done.

3.4.2 The Pelora Algorithm

First, we give the details about 2 initial steps for our supervised grouping
procedure. Start with the entire (n× p) gene expression matrix (xig).

11



1. Standardize the expression values xig = (x1g, . . . , xng) of every gene g
to zero mean and unit variance:

xig ←
xig − ave(xg)

sdev(xg)
, for i = 1, . . . , n.

With this standardization, we follow a widely adopted practice in gene
clustering and in penalty-based methods. It can, however, be regarded
as an optional step in our algorithm and software. Note that the rescal-
ing to unit variance, but not the mean centering, affects the outcome
of Pelora.

2. The algorithm can be started from scratch or with initial groups
G1, . . . ,G(q−1) that reflect previous knowledge, for example about bio-
chemical pathways. Compute the centroids of the initial groups,

x̃j =
1

|Gj|
∑
g∈Gj

αgxg for j = 1, . . . , (q − 1) and αg ∈ {−1, 1},

where |Gj| is the number of genes in group Gj. The optional parameter
αg allows one to have genes with different polarity, that is, one with
low expression for class 0 and the other one with low expression for
class 1, in the same group. It prevents their expressions from canceling
out in the group centroid. In the next step, we detail how to identify
the starting gene for a new group.

3.a) IF no groups are given, we start from scratch with predictor x̃ = (1).
The goal is to find the starting gene of group Gq with q = 1.

3.b) IF an initial structure of (q− 1) groups is given or already found, and
the current predictor is x̃ = (1, x̃1, . . . , x̃(q−1)), the goal is to find the
starting gene for group Gq.

3.c) Fit penalized logistic regression with predictor x̃+g = (x̃, 1 · xg) for
every gene g with αg = 1 to obtain an estimated parameter vector θ+g

and conditional class probabilities pθ+g(x̃+g). Use them to compute the
penalized negative log-likelihood S+g as in (5). Determine the winning
gene g∗ = arg ming S+g and set the initial centroid of the qth group to
x̃q = xg∗ .

For the remainder of the algorithm, we assume without loss of generality that
q groups with centroids x̃1, . . . , x̃q are given. Group Gq is non-terminated and
we try to add another gene. Assume that the current value of the objective
function is Sold.

4. FOR each gene g = 1, . . . , p repeat: Leave groups G1, . . . ,G(q−1) un-
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changed, build temporary candidate groups G+g
q and G−g

q by augment-
ing Gq with gene g and polarity parameter αg ∈ {−1, +1}. The group
centroid is updated as

x̃+g
q =

|Gq| · x̃q + 1 · xg

|Gq|+ 1
and x̃−g

q =
|Gq| · x̃q + (−1) · xg

|Gq|+ 1
.

Fit penalized logistic regression with predictors x̃+g = (1, x̃1, . . . , x̃
+g
q )

and x̃−g = (1, x̃1, . . . , x̃
−g
q ) to obtain the parameter vectors θ+g and

θ−g, as well as conditional probabilities pθ+g(x̃+g) and pθ−g(x̃−g). Com-
pute the penalized negative log-likelihoods S+g, S−g as in (5). Let
Sg = min(S+g, S−g).

5. Identify the winning gene g∗ = arg ming Sg. Compare it to Sold, the
criterion value before gene g∗ was added.

6.a) IF not improved, i.e. Sg∗ > Sold: Do not accept the gene, terminate
the group, continue with groups G1, . . . ,Gq and their centroids. If q <
qfinal, increment q and return to step 3 to start a new group.

6.b) IF improved, i.e. Sg∗ < Sold: Accept the gene, determine the its po-
larity parameter αg∗ and update group, group centroid and criterion
value to

αg∗ ← sign(S−g∗ − S+g∗), Gq ← Gq ∪ {g∗},

x̃q ← |Gq |·x̃q+αg∗ ·xg∗

|Gq |+1
, Sold ← Sg∗ .

7. FOR each gene g = 1, . . . , p̃ in group Gq repeat: Leave groups
G1, . . . ,G(q−1) unchanged and build the temporary candidate group
Gg

q by excluding gene g from group Gq. Update the group centroid,

x̃g
q =

1

|Gq| − 1

∑
g′∈Gq\{g}

αg′xg′ .

Fit penalized logistic regression with predictor x̃g = (1, x̃1, . . . , x̃
g
q) to

obtain the parameter vector θg and conditional probabilities pθg(x̃g).
Compute the penalized negative log-likelihood Sg as in (5).

8. Identify the gene g∗ = arg ming Sg, whose exclusion minimizes the
grouping criterion and compare it to Sold.

9.a) IF not improved, i.e. Sg∗ > Sold: Do not delete the gene, continue with
groups G1, . . . ,Gq (note that Gq was augmented in step 6) and their
centroids. Try to add another gene by restarting at step 4.
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9.b) IF improved, i.e. Sg∗ < Sold: Exclude gene g∗ and update group, group
centroid and criterion value by

Gq ← Gq \ {g∗}, x̃q ← x̃g∗

q , Sold ← Sg∗ .

Now try to add another gene by restarting at step 4.

In summary, our supervised algorithm is a one-step procedure for variable
selection, variable grouping and formation of new features by averaging the
gene expression within a group, including potential sign-flipping. Variable se-
lection and grouping are done with a stepwise forward search, where we try
all genes and augment the group by the gene which optimizes the criterion
S from (5). After each forward search, we continue with a backward pruning
step to root out genes that have been added wrongly to the group at earlier
forward stages. Again, we try all genes and decide on removal by optimizing
the criterion S. Our grouping procedure is supervised, since all decisions are
based on optimizing the criterion S that measures the ability of the groups
for explaining the response variable y.

The number of groups qfinal can be set according to previous knowledge, it
can be chosen data-adaptively by cross validation, or it can be estimated by
techniques such as proposed in [9,10]. The computing time for finding q = 10
groups in the AML/ALL leukemia dataset with n = 72 observations and
p = 3, 571 genes on a Linux PC with an Intel Pentium IV 1.6 GHz processor is
about 560 seconds. Software for our supervised grouping algorithms is available
under GNU public license as an R-package called supclust from our webpage
http://stat.ethz.ch/∼dettling/supervised.html. In the next sections,
we discuss how Pelora can be extended to non-dichotomous response, to a
forward selection procedure based on single genes, and how additional clinical
covariates can be embedded into the grouping.

3.4.3 How to Deal with Multiclass Problems

Polytomous response problems will be handled by reformulating them as mul-
tiple binary problems. This approach has been successful for a wide variety of
machine learning methods on many datasets. With microarray data, according
to our experience from [11], it often improves substantially upon simultaneous
multiclass versions, especially when variable selection is involved. The reason
is that it is hard to come up with single genes that accurately discriminate
polytomous response.

Various approaches for reducing a K-class problem with y ∈ {0, . . . , K−1} to
binary problems exist, see [12] for a thorough discussion. We observed good
empirical prediction results already with the most simple solution, the one-
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against-all approach. It works by defining

y(k) =

 1, if y = k,

0, else

for k = 0, . . . , K − 1, and running the supervised grouping algorithm K
times on the dichotomous-response datasets (x1, y

(k)
1 ), . . . , (xn, y

(k)
n ) as ex-

plained above. For each binary problem, this finally yields q group centroids
x̃

(k)
1 , . . . , x̃(k)

q that can be used as features for polytomous classification. Instead
of considering each class against all the other classes, more complex or prob-
lem dependent strategies that utilize deeper knowledge about the biological
relation between the response classes could be even more accurate for reducing
multi-category to multiple binary problems.

3.4.4 How to Incorporate Clinical Covariates

Cancer prognosis is traditionally done on the basis of clinical covariates such
as gender, patient age, tumor size, metastasis, cytogenetic aberrations and
many more. Some of these are easy to record and it is thus a waste of useful
information if modern cancer prognosis just relies on microarray data without
regarding the clinical status of a patient. We present here an approach for
cancer prognosis that combines microarray gene expression data with clinical
covariates. We also address the question of statistical inference in section 4.4.
Instead of the random pair (x, y), we now have a random triple (x,u, y),
where u ∈ Rm are the m clinical covariates. These can either be continuous,
polytomous or binary, even a mixture of all three types is allowed. We assume
to have complete clinical data for all n patients.

For model selection, we apply our algorithm Pelora, still based on optimizing
the log-likelihood from (5) with penalized logistic regression. The idea is to
identify a combination of gene groups and clinical variables that is optimally
predictive for the response y. In particular, the predictor x̃ can now both
contain group centroids x̃j and clinical covariates uk. To allow this, we just
need to formulate step 3.c) from our grouping procedure a bit more precisely:

3.c) Fit penalized logistic regression with the augmented predictor x̃+g =
(x̃, 1 · xg) for every gene g and with x̃+k = (x̃, 1 · uk) for every clinical
covariate k to obtain estimated parameter vectors θ+g and θ+k, as well
as conditional class probabilities pθ+g(x̃+g), pθ+k(x̃+k). Compute . . .
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3.c) . . . the penalized negative log-likelihoods S+g, S+k as in (5). Deter-
mine the winning gene g∗ = arg ming S+g and the best covariate
k∗ = arg mink S+k. If min(S+g∗ , S+k∗) = S+g∗ , start a new group, set
x̃q = xg∗ and continue with step 4. Else, if min(S+g∗ , S+k∗) = S+k∗ ,
pick up covariate k∗ into the predictor, set x̃q = uk∗ and restart at
step 3 to identify the next predictor variable.

Thus, if a clinical covariate optimizes the grouping criterion S in step 3, it is
directly incorporated into the model without any grouping or averaging, and
we proceed by incrementing the current number q of predictors and restart
at step 3 to find the next starting gene or the next clinical covariate. On the
other hand, if a gene leads to the lowest value of S in step 3, we set the initial
group centroid equal to this gene and continue with step 4 to build a group.

3.4.5 Forward Search Without Averaging

As pointed out by a referee, the Pelora algorithm can also be run as a forward
variable selection tool based on penalized logistic regression. Each predictor
variable x̃j consists of one single gene and neither any grouping nor any aver-
aging takes place. Thus, the gene that optimizes the grouping criterion S in
step 3 of our algorithm is incorporated into the model and the algorithm pro-
ceeds by incrementing the current number of predictor variables q and restarts
at step 3 to find the next gene. When performing such a forward selection,
steps 4-9 of the algorithm are obsolete. This forward selection approach will
be called Forsela.

3.4.6 Pelora in Comparison to Forsela

From a modeling point of view, both Pelora and Forsela perform gene selection
and fit a penalized linear logistic model with the selected genes. In Pelora,
an additional constraint comes in, this is, that the regression parameters are
the same for all genes within the same group. Thus, Pelora’s constraint can
be viewed as a further regularization, besides the `2-penalty in the objective
function S. In view of the ridge-type `2-penalty, Forsela penalizes every gene
(standardized to variance one) by the same amount while the matrix P for
Pelora, appearing in (5), implies a variable ridge penalty for the gene groups,
which is inversely proportional to the group size 1/|G|. Intuitively, this is the
right notion since large groups have low-variance centroids, as motivated in
section 2.3.

It is important to point out that Pelora does a more drastic dimensionality
reduction, by reducing to the group centroids, than Forsela which reduces to
the selected single genes. Moreover, the group centroids in Pelora have lower
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variance than single genes which often results in lower variablity in out-of-
sample predictions. The usefulness of such low-variance features, also known
as meta- or super-genes, has been recognized by others, see for example [13].
Thus, Pelora can be viewed as a supervised method to construct good class-
discriminatory meta-genes.

3.4.7 Extension to Continuous Response Problems

If the interest is in finding gene groups whose collective expression is informa-
tive for continuous responses such as tumor size or drug response, Pelora can
be easily adapted. The grouping algorithm is still supervised and follows the
description from section 3.4.2, but it differs in the objective function S and
does no longer rely on penalized logistic regression as a learner. Instead, we
may use the `2-penalized residual sum of squares

S =
n∑

i=1

(yi −mθ(x̃i))
2 +

n

2
λθT Pθ, (8)

based on mθ(x̃i) from (9), where θ is the parameter vector, λ is the tuning
parameter and P is the non-unit penalty matrix from equation (7). The (q+1)-
dimensional predictor is x̃ = (1, x̃1, . . . , x̃q). For continuous response y, the
residual sum of squares is the ’natural’ loss criterion and we rely on the classical
linear model

mθ(x̃i) =
q∑

j=0

θjx̃ij = x̃iθ, for observations i = 1, . . . , n. (9)

The notion behind ridge regression [14] is to estimate the parameter vector θ
by minimizing S from (8) with respect to θ. Setting derivatives to zero leads
to (q + 1) linear equations, which can be solved as

θ̂ = (X̃T X̃ +
n

2
λP )−1 · X̃T y,

representing an explicit solution for minimizing S in 8. Thus, the Newton-
Raphson approximation is not necessary, and we directly obtain the exact
solution. Software for treating continuous response problems is also contained
in our R-package supclust.
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4 Numerical Results

We evaluated our supervised grouping algorithms on several different datasets,
all describing the gene expression of cancer patients. In particular, we ana-
lyzed:

• The leukemia dataset of Golub et al. [15]:
This dataset contains gene expression levels of n = 72 patients either suf-
fering from acute lymphoblastic leukemia (ALL, 47 cases) or acute myeloid
leukemia (AML, 25 cases) and was obtained from Affymetrix oligonucleotide
microarrays. Available at http://www.genome.wi.mit.edu/MPR are a train-
ing set of 38 observations and a test set of 34 samples. Following the pro-
tocol in [16], we preprocess the data by thresholding, filtering, a base 10
log-transformation and standardization, so that the data finally comprise
the expression values of p =3,571 genes.
• The estrogen and nodal datasets of West et al. [17]:

These datasets monitor p =7,129 genes in 49 breast tumor samples and
were obtained by applying the Affymetrix technology. They are available at
http://mgm.duke.edu/genome/dna micro/work/. After thresholding to a
floor of 100 and a ceiling of 16,000 expression units, we applied a base 10
log-transformation and standardized each experiment to zero mean and unit
variance. Two response variables are available: one describing the status of
the estrogen receptor and the other coding for the lymph node involvement.
The two datasets are referred to as estrogen and nodal.
• The colon cancer dataset of Alon et al. [18]:

This dataset was obtained from the Affymetrix technology and shows ex-
pression levels of 40 tumor and 22 normal colon tissues for a selection of
2,000 genes with highest minimal intensity across the samples. It is avail-
able at http://microarray.princeton.edu/oncology/. We process these
data further by a base 10 log-transformation and standardization of each
experiment to zero mean and unit variance across genes.
• The prostate cancer dataset of Singh et al. [19]:

Available at http://www-genome.wi.mit.edu/MPR/prostate, these data
comprise the expression of 52 prostate tumor and 50 non-tumor prostate
samples, obtained from the Affymetrix technology. We use normalized and
thresholded data as described in [19], leaving us with the base 10 log-
transformed expression of p =6,033 genes, for each experiment standardized
to zero mean and unit variance across genes.
• The lymphoma dataset of Alizadeh et al. [20]:

This dataset contains cDNA microarray gene expression levels of the K = 3
most prevalent adult lymphoid malignancies. The sample size is n = 62, the
data are available at http://llmpp.nih.gov/lymphoma/data/figure1. The
expression of 4,026 accurately measured genes, either preferentially expressed
in lymphoid cells or with known immunological or oncological importance
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is documented. We imputed missing values and standardized the data as
described in [16].

4.1 Typical Output

Generally, the output of Pelora looks very promising. In two-class datasets,
each group centroid x̃j, for j = 1, . . . , qfinal, perfectly discriminates the two
response classes. As an example, the 2-dimensional projection in figure 3 im-
pressively shows how well the group centroids separate between the three
different tissue types of the lymphoma dataset. The plot suggests that our
group centroids are very suitable to predict the tissue types. Indeed, they al-
low error-free classification of training data and as shown in section 4.2, they
also yield good results on independent test data.
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The typical group size with Pelora is between 10-20 genes, table 1 reports
average and standard deviation of the number of grouped genes for the first
q = 10 groups in each dataset, obtained from Pelora with λ = 1/32. Note
that the choice of the parameters q and λ is discussed in section 4.2 on page
21. The group size slightly diminishes with stronger penalization (increasing
λ), but the differences are not very big. Note that with Wilma, our supervised
algorithm from [3], the groups were smaller and contained on average only
between 5-7 genes. This may be caused by the fact that Wilma is running
under stronger supervision and has a grouping criterion which is less smooth
than the one of Pelora.

It is beyond the scope of our paper to judge the functional relevance and the
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Group size Colon Leuke Estro Nodal Prost Lymph

mean 14.0 12.1 15.4 14.8 17.9 15.8

standard dev. 5.3 3.2 4.2 4.3 9.0 3.5
Table 1
Group size: average and standard deviation of q = 10 groups from Pelora with
λ = 1/32, for colon, leukemia, estrogen, nodal, prostate and lymphoma data.

biological meaning of Pelora’s output. Instead, we collect empirical evidence
that the group centroids are very informative for sample classification and
perform at least as good as established methods based on single genes.

4.2 Predictive Potential

By our supervised grouping algorithm Pelora, sample classification is straight-
forward, as it comprises a built-in classifier. In general, a classifier is a function
that assigns a class label, based on observed features x. Here, these features
will be the group centroids x̃1, . . . , x̃q and class label prediction is done with
Pelora’s conditional probabilities pθ(x̃) via

ŷ(x̃) =

 0, if pθ(x̃) ≤ 1/2

1, if pθ(x̃) > 1/2.

In multiclass problems, when using the one-against-all approach from sec-
tion 3.4.3, the built-in classifier works by a maximum-likelihood principle.
We obtain conditional class probabilities pθ(x̃

(k)) for every binary problem
k = 0, . . . , K − 1 and assign the class label

ŷ
(
x̃(0), . . . , x̃(K−1)

)
= arg max

k
pθ

(
x̃(k)

)
.

Instead of working with the built-in classifier, we could also use the group
centroids x̃1, . . . , x̃q as input for alternative methods like the nearest-neighbor
rule [16], (possibly restricted) linear or quadratic discriminant analysis [16]
or support vector machines [21], and many more. However, extensive exper-
imentation (data not shown) yielded no improvement with these alternative
methods compared to the built-in classifier.

In practice, the supervised groups and the built-in classifier are fitted on a
learning set of tissues whose class labels are known. Subsequently, they can be
used to predict the class labels of new tissues with unknown outcome. Since
all the methodology for the grouping and the built-in classifier have been de-
scribed earlier, we focus now on the only issue that remains, the choice of
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q = 2 q = 4 q = 6 q = 8 q = 10

λ = 1 23.54% 16.62% 14.15% 13.54% 12.77%

λ = 1/2 16.31% 13.69% 12.62% 11.08% 10.62%

λ = 1/4 13.85% 10.77% 9.54% 8.77% 8.00%

λ = 1/8 9.08% 8.31% 7.23% 7.54% 7.23%

λ = 1/16 7.08% 7.54% 7.54% 7.54% 6.77%

λ = 1/32 8.77% 6.92% 6.77% 6.31% 5.69%

λ = 0 9.54% 10.00% 10.00% 10.00% 10.00%
Table 2
Misclassification rates for Pelora’s built-in classifier with different parameter values
λ and qfinal, based on 50 random splits of the leukemia training dataset into learning
sets of 25 observations and validation sets of 13 tissues.

Pelora’s two free parameters: the number of groups qfinal and the penalty
parameter λ. For a fair evaluation of the predictive potential, tuning param-
eters should not be chosen such that the prediction results on the test data
are optimized. This often leads to a considerable selection bias and does not
reflect the practical situation where we have to predict the class labels of new
patients’ samples with unknown outcome.

As an example, we show here how to tune qfinal and λ in a honest man-
ner on the leukemia training dataset comprising 38 observations. The idea is
to mimic out-of-sample classification by randomly splitting the training data
into a learning set of 25 observations and a validation set of 13 observations.
We fit Pelora on the learning set using all combinations of parameter values
qfinal ∈ {1, 2, . . . , 10} and λ ∈ {1, 1

2
, 1

4
, 1

8
, 1

16
, 1

32
, 0}, and then estimate the pre-

diction accuracy by computing the fraction of misclassified individuals on the
validation set. We repeat the splitting 50 times and average the misclassifi-
cation rates, see table 2 and figure 4. The optimal parameter values, leading
to the lowest error-rates on the leukemia training data, are qfinal = 10 and
λ = 1

32
. We now use Pelora’s groups and the built-in classifier with these

parameters to predict the original leukemia test dataset comprising 34 obser-
vations. We observe that only 1 sample is wrongly classified, a result which
meets the state-of-the-art reported in the literature. Note that penalized logis-
tic regression without any variable selection as in [6] yielded 3 false predictions,
whereas the the combination of penalized logistic regression and recursive fea-
ture elimination proposed in [7] also achieved our result of 1 misallocation.

Figure 4 contains a graphical overview of the results we obtained for differ-
ent parameter values. We observe that the predictive potential is poor with
very few groups, then improves with increasing number of groups and stabi-
lizes when more than 6 groups are used. Of course, a much larger number of
groups would exhibit overfitting and result in poor prediction. Moreover, the
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sifier with different parameter values λ and qfinal, based on 50 random splits of the
leukemia training dataset into learning sets of 25 observations and validation sets of
13 tissues. In the right panel, the size of the squares corresponds to the magnitude
of the misclassification error.

correct amount of penalization drastically improves the classification. With-
out penalization (λ = 0), the error-rates are almost twice as high as with
moderate λ ∈ [ 1

32
, 1

8
]. Too strong penalization with λ ≥ 1

4
again degrades the

classification. In general, the choice of the parameters is not too difficult, as
the misclassification rates do not fluctuate wildly and are close to optimal over
a larger range of qfinal and λ.

Tables and figures for all the other datasets cannot be displayed here due to
space constraints. However, the full information is available from our web-
page http://stat.ethz.ch/∼dettling/supervised.html. The results for
the other datasets are qualitatively equivalent, and the conclusions drawn
from table 2 and figure 4 also hold there. After extensive experimentation, we
determine the parameters qfinal = 10 and λ = 1

32
as default values, with which

we will run Pelora on datasets where no independent test sets are available.

4.3 Comparison to Other Methods

In this section, we compare the predictive potential of Pelora’s built-in clas-
sifier with our former supervised grouping algorithm Wilma [3], the forward
selection approach Forsela as presented in section 3.4.5, and three classifiers
that are working with single genes as input. Since, except for the leukemia
dataset, no genuine test sets are available, we base this comparison on repeated
random splits into learning sets comprising two thirds, and validation sets con-
taining one third of the training data. We do not run out-of-sample tuning to
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optimize the prediction results, but instead rely on fixed default parameters.
For Pelora, we use the built-in classifier with default values qfinal = 10 and
λ = 1

32
. Our supervised grouping algorithm Wilma from [3], which does not

comprise an internal classifier, is used with q = 10 group centroids as input for
the 1-nearest-neighbor rule. Extensive experimentation (data not shown) with
Forsela showed that λ = 1

32
and q = 30 predictor variables (single genes) are

reasonable default parameters for this technique. Finally, we compare the pre-
dictive potential of the group centroids with benchmark classification methods
based on single genes.

For the benchmark methods, we select the 200 individually most predictive
genes by the Wilcoxon statistic on the learning data (for each random split
into training and validation data). In multiclass problems, this gene prese-
lection consists of selecting the 200 most predictive genes for every binary
discrimination. Note that this number has been recognized as a reasonable
value in the broad evaluation of Dudoit et al. [16], and that Pelora is working
with a similar number of genes, as it relies on 10 groups containing on av-
erage around 20 genes. The classifiers that are used with these 200 genes as
input are the default 1-nearest-neighbor rule and diagonal linear discriminant
analysis, which were the best classifiers in Dudoit et al.’s comparison study on
microarray data [16]. As the state-of-the-art in modern classification, we also
employ a support vector machine (from the R-package e1071) with radial ba-
sis kernel. We here rely on its default settings, although this flexible classifier
may yield better results after sophisticated fine tuning.

Colon Leuke Estro Nodal Prost Lymph

Pelora 15.71% 5.69% 11.50% 27.88% 8.94% 0.76%

Wilma 16.48% 2.62% 8.75% 35.88% 8.06% 0.57%

Forsela 13.81% 4.15% 11.88% 35.25% 8.24% 0.48%

NNR 200 15.90% 2.46% 15.38% 43.25% 12.82% 0.67%

DLD 200 13.33% 2.62% 9.50% 36.12% 15.82% 0.67%

SVM 200 17.62% 0.92% 11.12% 36.88% 8.35% 0.48%
Table 3
Misclassification rates for our supervised grouping algorithms Pelora and Wilma, the
forward selection approach Forsela based on penalized logistic regression, as well as
for the 1-nearest-neighbor rule (NNR), diagonal linear discriminant analysis (DLD)
and support vector machines (SVM) with the 200 individually most predictive genes
for 6 different datasets. All error-rates are means from 50 random splits into learning
set (2

3 of data) and validation set (1
3 of data).

According to table 3 and figure 5, the predictive potential of supervised groups’
centroids is convincing. We observe that our former implementation Wilma has
an edge over Pelora in the four “easier” datasets leukemia, estrogen, prostate

23



and lymphoma, but performs worse on the colon and nodal data. The im-
provement with our new method is thus not just on the methodological side,
but also with regard to the prediction results in classification problems with
substantial Bayes risk. This is most likely due to more robustness in Pelora,
that is, weaker influence of the response y in gene grouping.
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Fig. 5. Box and whisker plots, showing the variation of the misclassification rates
over 50 random splits into learning set (2

3 of data) and validation set (1
3 of data)

for 6 different classifiers: Pelora and Wilma with q = 10 groups, Forsela with
q = 30 single genes, as well as the 1-nearest-neighbor rule (NNR), diagonal linear
discriminant analysis (DLD) and a support vector machine (SVM), based on 200
single genes.

The forward selection approach Forsela, based on penalized logistic regression
without any averaging, compares surprisingly favorably against Pelora and
all the other methods. It yields low error-rates throughout, except for the
leukemia and nodal data. The observation that Pelora is better than Forsela
on the difficult nodal data set is probably due to the fact that the group
centroids in Pelora are low-variance predictors yielding smaller variability in
out-of-sample predictions; see also section 3.4.6.

The benchmark methods, diagonal linear discriminant analysis, the 1-nearest-
neighbor-rule and support vector machines, perform similarly as Pelora, but
slightly worse than Wilma and Forsela. This means that we have collected
quite a bit of empirical evidence that our supervised grouping approaches
yield gene groups which are valuable for sample classification. But both Wilma
and Pelora should not only be seen as pure prediction tools. They partition
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thousands of genes into a few small groups that contain very useful information
for explaining the outcome y. This is certainly an interesting dimensionality
reduction and the gene groups may yield a clue on how the genome works
with respect to certain diseases, and they can be used as a starting point to
reveal functional gene groups or regulatory gene sub-networks.

4.4 Significance of Group Centroids and Clinical Variables

For obtaining a prediction model that combines microarray data and clini-
cal covariates, we described in section 3.4.4 how Pelora incorporates clinical
variables into the grouping process. Here, we analyze how much prediction in-
formation is contained in the group centroids and the covariates. For illustra-
tion, we rely on the breast cancer dataset of van’t Veer et al. [22]. Its training
dataset contains expression values of 5,408 genes from red/green cDNA mi-
croarrays for 78 patients: 34 who developed metastases within 5 years, and 44
who remained disease-free during this period. Furthermore, information about
6 covariates is provided, which in clinical practice is used to decide upon ther-
apy. In particular, these variables are the tumor grade ∈ {1, 2, 3}, the estrogen
receptor status ∈ [0, 100], the progesteron receptor status ∈ [0, 100], the tumor
size in millimeters, the patient age and angioinvasion ∈ {0, 1}.

When using Pelora with default λ = 1
32

on the combined breast cancer expres-
sion and clinical data, we observe that none of the clinical variables entered
the model, even if the number of predictors was raised to qfinal = 30. This is in
line with the findings in van’t Veer et al. [22] and can be interpreted that the
clinical covariates, compared to the expression profile, do not contain much
useful information for class prediction.

Note that in other datasets, where more strongly predictive clinical variables
are available, we may observe a mixture of group centroids and covariates
already among the first 10 predictors identified by Pelora. To simulate this
situation and to exemplify how one can determine which predictors contribute
significantly to sample classification, we artificially reduced the breast cancer
dataset to 1141 arbitrarily chosen genes. Then, among the first 10 predictors
Pelora selected, are the intercept, six gene groups and 3 clinical variables. In
order of selection, the latter are tumor grade, patient age and angioinvasion.

To answer the question whether some of these clinical covariates, and which
of the group centroids, contribute significantly to sample classification, we
do bootstrap-based statistical inference on an independent breast cancer test
dataset, which contains the expression values and clinical data of 19 additional
patients: 7 who remained metastasis-free for 5 years and 12 who experienced
disease progression. By using only the model-structure from the training data,
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predictor 0 1 2 3 4

variable intercept clinical group clinical group

p-value 0.012 0.000 0.000 0.000 0.136

predictor 5 6 7 8 9

variable group group group clinical group

p-value 0.084 0.008 0.146 0.024 0.022
Table 4
Bootstrap p-values for the coefficients of Pelora’s prediction model on the breast
cancer data with 1141 arbitrarily chosen genes. Variables 2, 4, 5-7 and 9 are group
centroids, variable 1 is the tumor grade, variable 3 is the patient age and variable 8
is angioinvasion.

we fitted penalized logistic regression as in section 3.4.1 on the test dataset
and obtained the parameter vector θ̂test = (θ̂test

0 , . . . , θ̂test
q ). To get an impres-

sion about the distribution and variability of these coefficients, we generate
1,000 non-parametric bootstrap samples from the test data by drawing with
replacement: every run b ∈ {1, . . . , 1000} yields an estimated parameter vec-

tor θ̂(b) = (θ̂
(b)
0 , . . . , θ̂(b)

q ). For quantifying the significance of each predictor
variable, we computed the (1− α)-bootstrap confidence intervals

[2 · θ̂test
j − qj,(1−α

2
); 2 · θ̂test

j − qj, α
2
],

where qj,α is the α-quantile of the bootstrap distribution. Inverting these in-
tervals leads to the p-values reported in table 4. For the reduced breast cancer
dataset with 1141 genes, all fitted predictor variables except for 3 group cen-
troids turned out to be significant at the 5%-level.

5 Conclusions

We have presented methodology for finding predictive molecular gene signa-
tures from microarray data by using supervised grouping techniques. This is
potentially beneficial in medical diagnostics and prognostics, as the identified
signature groups are made up of interacting genes whose expression centroids
have high explanatory power for the response variable. These groups of genes
and their centroids can in turn be used to accurately predict the outcome of
new samples. But supervised grouping should not be seen as a pure predic-
tion tool: it partitions thousands of genes into a few small gene groups which
amounts to a drastic dimensionality reduction. Moreover, groups of genes may
yield more important biological insights than single genes, for example as valu-
able first information about gene function and regulation.
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From a more technical viewpoint, our novel supervised grouping algorithm
Pelora combines supervised gene selection, gene grouping and optional sample
classification in a single-step approach. Its goal is to find groups of genes whose
centroids render the discrimination of the outcome y as simple as possible. We
solve this by building the groups incrementally in a combination of forward
steps and regularly recurring cleaning steps. All grouping operations are based
on an empirical objective function that includes information from the y-values
and is based on conditional class probabilities computed from penalized logistic
regression analysis. By using these probability estimates, Pelora also comprises
a built-in classifier that exploits the gene group centroids.

Pelora improves many of the limitations of Wilma, our first implementation
of supervised grouping. It also allows to capture genes operating in multiple
pathways, as it does not require disjointness of its groups. By using a grouping
criterion that is based on multiple groups, we can expect to find a team of
interacting groups instead of a cohort of individual players as with Wilma.
Moreover, we have proposed extensions of Pelora to polytomous and continu-
ous response problems, to a forward selection technique for genes without any
averaging, as well as a combination with additional clinical covariates. But
Pelora does not only convince by its neat features or its coherent algorithm
which is based on sound statistical methodology within the likelihood frame-
work: with an extensive empirical study on a variety of microarray gene expres-
sion datasets, we provide empirical evidence that Pelora’s predictive potential
can keep up with established classifiers and state-of-the-art machine learning
methods, and has a great potential to improve them on difficult datasets with
high misclassification risk. Although Pelora was specifically developed for the
analysis of microarray data, it may be useful for other data that are subject
to the “large p, small n” problem and where a few underlying groups of ex-
planatory variables are expected to determine most of the outcome variation.

A Proof: Penalized Logistic Regression with Non-Unit Penalty

Here, we prove that penalized logistic regression with non-standardized pre-
dictor x̃ = (1, x̃1, . . . , x̃q) and the non-unit penalty matrix P from (7) yields
equivalent parameter estimates and the same fitted values as when working
with the unit penalty matrix Q = diag(0, 1q×q) and standardized predictor

ũ = ( 1
s0

, x̃1

s1
, . . . , x̃q

sq
), where s0 = 1 per definition and sj, for j = 1, . . . , q, is the

(empirical) standard deviation of x̃j. The classical logistic model can then be
formulated equivalently as

log

(
pθ(x̃i)

1− pθ(x̃i)

)
=

q∑
j=0

θjx̃ij =
q∑

j=0

γjũij = log

(
pγ(ũi)

1− pγ(ũi)

)
, (A.1)
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with parameters θ = (θ0, . . . , θq)
T and γ = (γ0, . . . , γq)

T , where γj = θjsj for
j = 0, . . . , q. From (A.1) it follows that pθ(x̃i) = pγ(ũi). Estimates of the
parameters are then obtained by penalized maximum likelihood via

θ̂ = arg min
θ
−

n∑
i=1

(yi · log pθ(x̃i) + (1− yi) · log(1− pθ(x̃i))) + n
λ

2
θT Pθ

γ̂ = arg min
γ
−

n∑
i=1

(yi · log pγ(ũi) + (1− yi) · log(1− pγ(ũi))) + n
λ

2
γT Qγ.

Now, by using pθ(x̃i) = pγ(ũi) and the equality θT Pθ = γT Qγ, we obtain

γ̂j = θ̂jsj, from which the claim follows.
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