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Abstract

When testing multiple hypotheses simultaneously, a quantity of interest is the number

m0 of true null hypotheses.

We present a general framework for finding upper probabilistic bounds for m0, that is

estimates bm0 with the property P [ bm0 ≥ m0] ≥ 1−α for any chosen level α. A conservative,

one-sided (1−α) confidence interval for m0 is then given by [0, bm0]. Moreover, bm0 can be

used for novel estimates of type I errors in multiple testing such as the false discovery rate.

Control of the family-wise error rate emerges as a special case in our framework but

suffers from vanishing power for a large number of tested hypotheses. We present a different

estimate such that the ability to detect true non-null hypotheses increases with the number

of tested hypotheses. A detailed algorithm is provided. The method is valid under general

and unknown dependence between the test statistics.

We develop the method primarily for multiple testing of associations between random

variables. The method is illustrated with simulation studies and applications to microarray

data.

1 Introduction

Assume we have m parameters θi ∈ R, i = 1, . . . ,m of interest in a multiple testing situation.
Let Θ0 ⊆ R and denote by H0,i the null hypothesis for the i-th hypothesis,

H0,i : θi ∈ Θ0.

Denote by hi the components of the vector h ∈ {0, 1}m, taking the value 0 if the i-th hypothesis
is a true null hypothesis and the value 1 otherwise. The total number m0 of true null hypotheses
and the number m1 = m−m0 of true non-null hypotheses is then given by

m0 =
m∑

i=1

1[hi=0],

m1 =
m∑

i=1

1[hi=1].

The usual goal in a multiple testing situation is to identify the hypotheses that are the most signif-
icant on an individual basis and adjust for the multiplicity of the testing problem by calculating a
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suitable error rate like the family-wise error rate FWER, see e.g. Westfall and Young (1993) and
Holm (1979), or the false discovery rate FDR as introduced by Benjamini and Hochberg (1995).
Knowledge about m0 can be useful for tighter estimation of these error rates. Storey (2002)
showed e.g. that less conservative estimates of the false discovery rate are possible if an estimate
of m0 is available. Likewise, with an estimate of m0 at hand, more powerful procedures are
possible if the multiplicity adjustment is carried out using the per-comparison or the per-family
error rate, see e.g. Shaffer (1995) and Dudoit et al. (2003) for an overview of the most common
multiple hypotheses testing procedures.
The number m0 of true null hypotheses is a quantity of interest in its own right, however.
In applications like microarray studies, the sample size is typically small while the number of
tested hypotheses is very large. The power of multiple testing procedures is hence often low and
it can happen that not a single hypothesis is significant if the multiplicity of the testing problem
is properly taken care of.
In such a case, there are obviously two possible reasons for such a (non-)result. Either the test is
not powerful enough and hence fails to reveal true non-null hypotheses or, as a second possible
explanation, almost all hypotheses are true null hypotheses.
True non-null hypotheses -if existent- could be identified by a more powerful testing procedure.
Increased power is in general achieved by collecting more data but collecting data is a costly
process and the effort will be in vain if almost all hypotheses are true null.
The point which we are trying to make is that there is “information” in the data about the
number of true non-null hypotheses even if there are no (or just very few) significant test-results.
This information can be exploited with our proposed estimate and we are able to provide an
upper probabilistic bound for the number of true null hypotheses.
The upper bound will clearly depend on the number of observations and better, smaller bounds
will be achieved with more observations. For a small number of observations, the bounds are
nevertheless much better than those implied by common multiple testing procedures like control
of the family-wise error rate.
An upper bound for the number of true null hypotheses is clearly equivalent to a lower bound for
the number of true non-null hypotheses. If this lower bound is substantially above the number
of significant hypotheses, we know that with high probability, a low number of significant results
in the multiple testing procedure is due to lack of power and not due to absence of true non-null
hypotheses. Hence we know that collecting further data will lead to more “discoveries” and might
be worth the effort. In the microarray study in the section on numerical results, we find e.g. a
lower bound of more than 100 for the number of true non-null hypotheses, while not a single
rejection can be made with the family-wise error rate.
Starting with Schweder and Spjøtvoll (1982), estimates have been developed for m0 that are
conservative in the sense that

E[m̂0] ≥ m0. (1.1)

The basic idea behind these estimates is the linearity of the cumulative distribution function for
p-values of true null hypotheses (if only point null hypotheses are considered). The number of
true null hypotheses is estimated in Schweder and Spjøtvoll (1982) by a linear fit of the empirical
distribution of p-values, see as well the recent application to neuroimaging data in Turkheimer
et al. (2001). Another idea in the paper of Schweder and Spjøtvoll (1982) that reappears in Storey
(2002) is to estimate the number of true null hypotheses by the number of p-values greater than
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some threshold λ and divide by 1 − λ. Suggestions for an adaptive choice of λ are proposed in
Storey (2002). Note, however, that this estimate is only suitable for testing point null hypotheses.
Additionally the estimate is not confined by the values of 0 and m respectively. Thresholding
alleviates this problem, but the conservative property (1.1) might be lost.
Another recent idea to estimate m0 has been put forward by Nettleton and Gene Hwang (2003),
following a proposal in Mosig et al. (2001). The properties of the resulting estimate are analyzed
in Nettleton and Gene Hwang (2003). It is clear, however, that the resulting estimate does not
posses a property like (1.1) or (1.2).
We present a general framework for finding estimates of m0 with the property

P [m̂0 ≥ m0] ≥ 1− α. (1.2)

This estimate can be viewed in the probabilistic sense as an upper bound for the number of true
null hypotheses or, equivalently, as a lower bound for the number of true non-null hypotheses.
Several estimates are possible in our general framework, depending on the choice of a so-called
bounding function. A special choice is proposed and the resulting estimate is shown to have
positive power to detect true non-null hypotheses even in the limit of infinitely many tested
hypotheses.
The following section 2 introduces the notation and covers the theory and properties of the
resulting estimate. In section 3 we present numerical studies both with simulated and microarray
data, demonstrating the power of the proposed method and illustrating the properties of a new
estimate of the false discovery rate.

2 Theory

The methods are presented in the context of testing associations, but generalizations to different
applications are easily possible. Multiple testing of associations arises in microarray data analysis,
where a common goal is to identify genes that are differentially expressed with respect to a
response variable Y like for example tumour type, see e.g. Golub et al. (1999).
Let (Ω,F , P ) be a probability space. The data consist in general of n independent copies

(Xk, Yk)k=1,...,n

of the random variable (X,Y ) : Ω 7→ X × Y, where usually X = Rm and Y = {0, 1} or Y = R.
Each component of X is tested for association with the response variable Y .
Given any test for association between the i-th component of X and Y , let the p-value of this test
be denoted by Pi, i = 1, . . . ,m. As our approach is permutation-based, rank-based tests which
result in discrete p-values are a natural choice but tests with continuous p-values are applicable
as well.
We assume that the case of independence between the i-th component of X and Y is included in
the i-th null hypothesis, and it holds in this case for all values γ in the set of possible p-values
that P [Pi ≤ γ] = γ. We do not restrict ourselves to point null hypothesis of independence but
require that p-values for other true null hypotheses are stochastically equal or greater than in the
case of independence.
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The number of hypotheses with p-values in a given rejection region [0, γ] is denoted by R(γ), the
number of false rejections by V (γ) and the number of correct rejections by S(γ).

R(γ) =
m∑

i=1

1[Pi≤γ], (2.1)

V (γ) =
m∑

i=1

1[hi=0]1[Pi≤γ], (2.2)

S(γ) =
m∑

i=1

1[hi=1]1[Pi≤γ]. (2.3)

The total number R(γ) is the sum of false and correct rejections, R(γ) = S(γ) + V (γ) and we
have R(1) = m, V (1) = m0 and S(1) = m1.

2.1 Confidence Interval

We present an estimate m̂1 of m1, which is a lower probabilistic bound for the number m1 of true
non-null hypotheses at any desired level α,

P [m̂1 ≤ m1] ≥ 1− α.

The estimate is applicable to arbitrary and unknown dependence between test statistics or p-
values. The estimate is furthermore equivalent to an estimate m̂0 = m − m̂1 of the number m0

of true null hypotheses with the property

P [m̂0 ≥ m0] ≥ 1− α.

We first introduce the key concept of a bounding function. Unless stated otherwise let Γ be the
interval [0, 1].

Definition 2.1 (bounding function) A bounding function at level α is a random, F-measurable
function Gα(γ) which is, for every ω ∈ Ω, monotonously increasing with γ such that

P
[
sup
γ∈Γ

{
V (γ)−Gα(γ)

}
> 0

]
< α. (2.4)

Further below, we will show explicitly how a bounding function can be constructed.
The proposed estimate of m1 is given as the maximal difference between the realised number of
rejections R(γ) and a bounding function Gα(γ) at level α.

Definition 2.2 Let Gα(γ) be a bounding function at level α. The estimates m̂1 and m̂0 = m−m̂1

are defined by
m̂1 = sup

γ∈Γ

{
R(γ)−Gα(γ)

}
. (2.5)

As mentioned above, Γ = [0, 1] unless stated explicitly.

Remark 2.1 Note that both R(γ) and Gα(γ) are monotonously increasing with γ. R(γ) is fur-
thermore constant except for a set of at most m points of discontinuity, at which the supremum
in (2.5) is attained. Evaluation of the supremum can hence be restricted to the finite random set
of realized p-values.

4



We show that the estimate of m0 indeed provides an upper probabilistic bound for the number
of true null hypotheses.

Theorem 2.1 (confidence interval) A one-sided (1-α) confidence interval for m0 is given
by [0, m̂0]. A one-sided (1-α) confidence interval for m1 is given by [m1, m̂1]. In particular,

P [m̂0 ≥ m0] ≥ 1− α,

P [m̂1 ≤ m1] ≥ 1− α.

A proof is given in the appendix.
The properties of the estimate are solely determined by a choice of the bounding function. The
power to detect true non-null hypotheses in particular is markedly different for different choices
of the bounding functions.
We are going to discuss in the following a general method to obtain tight bounding functions.

2.2 Sufficient Criterion for a bounding function

It is not possible to verify directly criterion (2.4) of whether a function is a bounding function
or not. Criterion (2.4) requires knowledge of the distribution of V and hence of m0, which is the
very quantity we are trying to estimate. We show in the following that the distribution of V can
in some sense be bounded from above by the computable distribution of another random variable
V 0.
The computation of bounding functions and estimates m̂0 and m̂1 will be discussed in section
2.3.
It is maybe instructive to consider first the case of independent test statistics. Here V (γ) is
distributed Binomial(m0,γ). The number m0 of true null hypotheses is unknown but bounded
from above by m. A stochastically larger random variable is hence for example given by V 0, if
V 0 is distributed Binomial(m,γ).
We find now a bound for the distribution of V for the case of unknown and arbitrary dependence
between the test statistics.
Let Z ∈ Z = (X × Y)n be a sample of size n with ordered observations of Y ,

Z = (Xk, Y(k))k=1,...,n,

where (Y(k))k=1,...,n is the ordered sample of the response variable (Yk)k=1,...,n. Define the action
of a random permutation S on Z as the permutation of all Y -values:

S(Z) = (Xk, YS(k))k=1,...,n

The p-value of the i-th hypothesis under a given sample of size n was denoted by Pi : Ω → [0, 1].
Define the random variable P 0

i : Ω → [0, 1], l = 1, . . . ,m as the p-value of the i-th hypothesis
under a randomly permuted Y -sample,

P 0
i

(
Z

)
= Pi

(
S(Z))

)
.

The idea is now, that P 0
i and Pi have the same distribution if the i-th component of X is

independent of Y .
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Definition 2.3 The random variable V 0(γ) : Ω → {0, 1, . . . ,m} is defined as

V 0(γ) =
m∑

i=1

1[P 0
i ≤γ].

The distribution of V 0 is determined by the unknown dependence between the test statistics.
Under the assumption of independence between Y and X, however, Z is a sufficient statistic. The
distribution of V 0, conditional on Z, is in particular given in this case under all n! permutations
of the observations of the response variable Y . The distribution of V 0 yields thus (in a sense
made precise below) a useful upper bound for the distribution of V .

Proposition 2.1 A random, σ(Z)-measurable, and monotonously increasing function Gα(γ) is
a bounding function according to (2.4) if

P
[
sup
γ∈Γ

{
V 0(γ)−Gα(γ)

}
> 0

∣∣Z = z
]

< α. (2.6)

In a given data set, it hence suffices to construct a bounding function Gα for the realized value
of Z and evaluate the estimate with this bounding function.

2.3 Algorithm

An algorithm for the computation of the estimates m̂0 and m̂1 is given below for the case of
unknown and arbitrary dependence between test statistics.
The estimates of m0 or m1 are given by (2.5),

m̂1 = sup
γ∈Γ

{
R(γ)−Gα(γ)

}
, (2.7)

m̂0 = m− m̂1.

The set Γ was chosen as the interval [0, 1]. For ease of implementation, this set can for numerical
computations be approximated by a substantial number of equally spaced points between 0 and
1. The properties of the estimate do not rely heavily on the precise choice of the set Γ in this
case. If not mentioned otherwise, we will assume in the numerical results that Γ consists of 1000
equally spaced points between 0 and 1. The supremum is hence replaced by a maximum in the
following.
We will discuss in the following the construction of a bounding function. To find a tight bounding
function, we propose to select a parameterized family of functions and search for the “smallest”
function in this family that fulfills condition (2.6).

Definition 2.4 Let G be a function family of real-valued, monotonously increasing functions
gξ : [0, 1] → {0, 1, . . . ,m}, indexed by parameter ξ ∈ [0, 1], with the following properties

(i) gξ(1) = m, ∀ξ

(ii) ξ1 ≤ ξ2 ⇔ gξ1(γ) ≤ gξ2(γ), ∀γ ∈ [0, 1].

Three possible function families will be presented further below.
Let ξmin ∈ [0, 1] be

ξmin = argminξ∈[0,1]

{
ξ : P

[
max
γ∈Γ

{
V 0(γ)− gξ(γ)

}
> 0

]
≤ α

}
.
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According to Proposition 2.1, gξmin is a bounding function at level α and the estimates of m1 and
m0 can be evaluated with this bounding function.
The algorithm follows three steps:

Step 1: Fix a function family G, according to Definition 2.4.

Step 2: Find the value of ξmin as described below.

Step 3: Evaluate m̂1 and m̂0 according to (2.5) with the bounding function gξmin ∈ G.

Suitable function families will be presented in section 2.4.
Regarding Step 2, we will show in the following how for a given ξ ∈ [0, 1] a decision can be made
whether ξmin is greater or smaller than ξ. With this information, the value of ξmin can be found
iteratively.
Let ξ be given. Consider all n! permutations of the observations of the response variable Y (or
a random subset thereof). Calculate the p-values P 0

i , i = 1, . . . ,m of all hypotheses under the
original observed values of (Xk)k=1,...,n with randomly permuted values of (Yk)k=1,...,n. Check,
for every γi ∈ Γ, that

m∑
i=1

1[P 0
i ≤γi] ≤ gξ(γi).

If this condition is fulfilled for every γi ∈ Γ, set c(p) = 0. Otherwise, set c(p) = 1. If, summing
over all permutations, ∑

p

c(p) <
∑

p

α, (2.8)

we have ξmin < ξ. Otherwise ξmin ≥ ξ.
Finally, the evaluation of the estimates according to (2.5) in Step 3 is straightforward.

2.4 Function Families

The properties of the estimate of m1 are determined by the choice of the function family G. We
present three families Ga, Gb and Gc and discuss their relative strengths and weaknesses.
Let the members of function family Ga be defined for any value of 0 ≤ u ≤ m.

ga
ξ (γ) =

{
u γ ≤ 1− ξ

m γ > 1− ξ
(2.9)

As will be seen below, this family leads to estimates of m1 that correspond to control of the
generalized family-wise error rate.
We introduce a second family Gb, whose members are defined for any constant 0 < λ < 1 as

gb
ξ(γ) =

{
ξ γ ≤ λ

m γ > λ
(2.10)

Function family Gb still requires a somewhat arbitrary choice of a parameter λ. No parameter is
needed for family Gc with members

gc
ξ(γ) = Qξ(z, γ), (2.11)

where Qξ(z, γ) is the ξ-quantile of V 0(γ), conditional on Z = z.
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Figure 1: The cumulated amount R(γ) of observed p-values for the colon cancer data (continuous
line) and the bounding functions resulting from function family Ga (left, with u = 0), family Gb

(middle, with λ = 0.05) and family Gc (right). The supremum of the difference between R(γ)
and the bounding function is plotted as a vertical line and the length of the vertical line is the
estimate of m1.

A choice of the function class leads, as discussed, to estimates of m1 and m0. We focus in the
following on the properties of the estimates of m1. The properties of the estimates of m0 follow
immediately. The estimates are denoted by m̂a

1 , m̂b
1, and m̂c

1 respectively.

We write in the following [·]+ as a shorthand notation for max{0, ·}.

Proposition 2.2 The estimates m̂a
1, m̂b

1 and m̂c
1 are given for Z = z by

m̂a
1 =

[
R(1− ξmin )− u

]
+
, (2.12)

m̂b
1 =

[
R(λ)− ξmin

]
+
, (2.13)

m̂c
1 =

[
sup
γ∈Γ

{
R(γ)−Qξmin (z, γ)

}]
+
. (2.14)

For all estimates, 0 ≤ ξmin ≤ 1. The value of ξmin is bounded from above in the case of estimate
m̂a

1 by min{ξ : P [V (ξ) > u] ≤ α}. For estimate m̂b
1 the value of ξmin is given by Q1−α(z, λ).

Finally, for estimate m̂c
1 the value of ξmin is bounded from below by 1 − α. If Γ is a finite set,

then as well ξmin ≤ 1− α/|Γ|. All three estimates take values between 0 and m,

0 ≤ m̂a
1 , m̂b

1, m̂
c
1 ≤ m. (2.15)

It can be seen that the estimate m̂a
1 is for u = 0 identical to the maximal possible number of

rejections when controlling the family-wise error rate P [V > 0] at level α. For a positive value of
u, the estimate is identical to the number of rejections under control of the generalized family-wise
error rate P [V > u] at level α. The power of the resulting estimate is very poor for many tested
hypotheses as will be seen later.
The second estimate m̂b

1 is determined in contrast by the number of rejections R(λ) at a fixed value
λ less an appropriate quantity. The estimate is powerful for large numbers of tested hypotheses
(as made rigorous below). On the downside, the estimate involves the somewhat arbitrary choice
of the parameter λ.
No parameter has to be chosen in function family (c) and, compared to function family (b), we
gain at least in the asymptotic sense as the best possible choice of λ is made automatically.
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2.5 Asymptotic power

We look at the power of the different estimates to detect true non-null hypotheses in the limit of
large numbers m of tested hypotheses. The power is here defined as the expected proportion of
correctly identified true non-null hypotheses,

E
[m̂1

m1

]
. (2.16)

The power converges to 1 for all three estimates m̂a
1 , m̂b

1, m̂c
1 in the limit n → ∞ of infinitely

many observations. We examine in the following the more interesting limit of a fixed number
of observations and increasingly many hypotheses, m → ∞. In particular, let us for notational
simplicity assume in the following that X is infinite-dimensional. We test the first m components
of X for association with Y and examine the behaviour of the estimates of m1 for m →∞.
In this section, we make the dependence of all functions on the value of m explicit by including
it as a first argument, e.g. writing R(m, γ) for the number of rejections among the first m

hypotheses.
We make two assumptions on the test statistics. First,

(A1) There exists a function F (γ) with F (γ) ≥ γ, right continuous at γ = 0, such that pointwise
in γ,

R(m, γ)
m

a.s.−→ F (γ) for m →∞.

The function F (γ) is equivalent to the cumulative distribution function of all p-values in the
limit of infinitely many tested hypotheses. Assumption (A1) is similar (though less strict) to an
assumption made in Storey et al. (2004). It is argued there that the assumption is fulfilled in
most cases of practical interest.
For our result about the asymptotic power, the dependence between the test statistics has to be
constrained. Consider the random variable V 0(m, γ) as a function of the number m of included
hypotheses,

V 0(m, γ) =
m∑

i=1

1[P 0
l ≤γ].

The value of V 0(m, γ), conditional on Z, is equal to the number of hypotheses with a p-value
below γ under a random permutation of the Y -values.
Note that the extreme case for the growth rate of this variance is quadratic in m,

Var
( m∑

i=1

1[P 0
l ≤γ]

∣∣Z)
= O(m2) for m →∞.

For example, this maximal growth rate is attained in the case where all test statistics have
identical values. We exclude such extreme cases and require that

(A2) For any γ ∈ Γ and Z = z ∈ Z,

Var
( m∑

i=1

1[P 0
l ≤γ]

∣∣Z)
= o(m2) for m →∞.
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Note that (A2) does not have to hold uniformly for all Z ∈ Z.
As the computation of the proposed estimates of m1 is permutation-based, it is natural to use a
rank-based test (e.g. Wilcoxon test) for the necessary testing of association.
We examine the asymptotic power of the estimates m̂a

1 , m̂b
1, and m̂c

1 for rank-based tests. This
implies that Γ in Definition 2.2 is a finite subset of [0, 1], namely the set of possible p-values,
which is fixed for fixed sample size n, although the number of tests m is allowed to increase.
Stronger assumptions would be necessary to treat the case of tests with continuous p-values.

Theorem 2.2 Assume that Γ in Definition 2.2 is a fixed, finite subset of [0, 1]. The estimates
m̂a

1, m̂b
1, and m̂c

1, divided by m, converge a.s. under Assumptions (A1) and (A2) to

m̂a
1/m

a.s.−→ 0,

m̂b
1/m

a.s.−→ F (λ)− λ,

m̂c
1/m

a.s.−→ max
γ∈Γ

{
F (γ)− γ

}
.

The power vanishes hence for control of the family-wise error rate, estimate m̂a
1 . Positive asymp-

totic power is achieved with estimates m̂b
1 and m̂c

1 as long as F (γ) > γ, which requires by
assumption (A1) that the proportion m1/m of true non-null hypotheses is not vanishing for
m →∞.
Family m̂c

1 is seen to result asymptotically in the best power. For an optimal choice of the
constant λ, the asymptotic power of both m̂b

1 and m̂c
1 is equivalent. It is not clear, however, how

this optimal constant for estimate m̂b
1 can be found in a given problem without introducing bias.

Hence we usually prefer estimate m̂c
1.

2.6 Estimation of Error Rates

Besides the mentioned advantage of knowledge about m0 in a decision-making context, an esti-
mate of m0 is useful to give tighter estimates of error rates in multiple testing procedures. There
is by now a multitude of error rates for multiple hypothesis testing, see Shaffer (1995) or Dudoit
et al. (2003) for an overview. The most important ones are (omitting the family-wise error rate
FWER),

Per-comparison error rate PCER. The per-comparison error rate is defined as E[V ]/m, the
expected number of Type I errors divided by the total number of hypotheses.

Per-family error rate (PFER). The per-family error rate is defined simply as the expected
number of Type I errors, E[V ].

False discovery rate (FDR). The false discovery rate is defined as E[Q], where Q is the proportion
of falsely rejected hypotheses

Q =

{
V/R R > 0

0 R = 0
.

Storey (2002) was the first to make use of an estimate of m0 to give a less conservative estimate
of the false discovery rate FDR. In section 3 we will show, however, that the proposed estimate of
m0 in Storey (2002) has a very large variance for dependent test statistics and that our proposed
estimate avoids this problem.
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The proposed estimates of m0 can as well be used to give less conservative estimates of the per-
comparison and per-family error rates. The value of the per-comparison and per-family error rate
are given for a fixed rejection region [0, γ] by

PCER =
m0

m
γ,

PFER = m0γ.

The value of m0 is unknown but bounded by m. The value of the error rates can thus be bounded
from above by PCER ≤ γ and PFER ≤ mγ. These bounds are rather conservative if there are a
lot of true non-null hypotheses. We can use our estimate m̂c

0 of m0, to produce less conservative
estimates. It is sufficient to restrict ourselves to the case of PCER, as the case of PFER follows
by multiplying with m. The proposed estimate of PCER is

P̂CER =
m̂c

0

m
γ.

This estimate is always smaller than the conservative upper bound, P̂CER ≤ γ. We are still on
the safe side, however, as the estimate is, by Theorem 2.1, larger than the true value of PCER
with arbitrarily high probability 1−α,

P [P̂CER ≥ PCER] ≥ 1−α.

Likewise for the per-family error rate PFER. The proposed estimates can hence be useful for
estimating the mentioned error rates in a less conservative fashion than with the trivial bound
m0 ≤ m.
In Storey (2002), an estimate F̂DR

λ
= m̂λ

0γ/R of the false discovery rate of a rejection region
[0, γ] is proposed, where the estimate m̂λ

0 is given by

m̂λ
0 =

m−R(λ)
1− λ

, (2.17)

having the property E[m̂λ
0 ] ≥ m0 and E[F̂DR

λ
] ≥ FDR. Note that this conservative property is

only valid under assumption of a point null hypotheses, e.g. H0 : θi = 0 for all i = 1, . . . ,m and
is hence limited in its applicability. Furthermore, the variance of this estimate of m0 is becoming
very large for dependent test statistics as will be seen in the numerical examples in section 3.
The true false discovery rate is then very frequently underestimated.
Our estimate m̂c

0 converges to m as α tends to zero. It can then be shown that for α sufficiently
small, E[m̂c

0] ≥ m0 and, as for the estimate in Storey (2002), E[F̂DR
c
] ≥ FDR for the new

estimate
F̂DR

c
= m̂c

0γ/R.

This estimate is always less conservative than the Hochberg-type estimate mγ/R while the risk of
underestimating the true false discovery rate is only marginally higher. This is an improvement
over the estimate in Storey (2002).

3 Numerical Results

We will demonstrate the power of the proposed estimates with simulated and microarray data.
The estimates m̂a

1 , m̂b
1 and m̂c

1 are calculated as described above. Knowledge about the depen-
dence between the test statistics is not used for the construction of the estimates of m1 and m0.
We use the algorithm of section 2.3.
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Figure 2: The ratio m̂1/m1 as a function of m, the number of tested hypotheses. Shown are m̂a
1

(left, with u = 0), m̂b
1 (middle, with λ = 0.1) and m̂c

1 (right) for a sample size of 10 in the upper
row and 20 in the lower row. The estimate m̂a

1 corresponds to control of the FWER and it can
be seen that the power is rather poor and vanishes for large m. The proposed estimates m̂b

1 and
m̂c

1 show increasing power to detect true non-null hypotheses for many tested hypotheses.

3.1 Simulation Study

We test m components of a random variable X for a association with a binary response variable
Y for varying values of m. The response variable has a Bernoulli distribution with p = 0.5. The
random variable X is normally distributed,

X ∼ N (µ,Σ)

with a covariance matrix of the form

Σij =

{
1 i = j

ρ2 i 6= j
. (3.1)

and a mean vector µ with components µi = 1[Y =1]1[hi=1], where hi = 1[i>0.9m] determines whether
the hypothesis i is a true null hypotheses (if hi = 0) or not (if hi = 1).
For each hypothesis i = 1, . . . ,m it is tested with the Wilcoxon test if the mean of the distribution
of Xi is independent of Y .

For n = 10, n = 20 and ρ = 0 we show in Figure 2 the empirical distribution of m̂1/m1 (at level
α = 0.05) for 50 simulations as a function of the number m of tested hypotheses. The power of a

12
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Figure 3: We show for m = 1000 and m1 = 100 (dotted line) true non-null hypotheses the
distribution of three estimates of m1 for increasing degrees of dependence ρ between the test
statistics. On the left and middle panel we show m̂λ

1 = m− m̂λ
0 , where m̂λ

0 is the estimate of m0

in Storey (2002), once with the common choice of λ = 0.5 (left) and once with the bootstrapped
value of λ (middle). On the right, the proposed estimate m̂c

1 is shown. Note the different scale of
this plot.

FWER-controlling method (which corresponds to m̂a
1 with u = 0 in our case) vanishes for large

m as expected from Theorem 2.2. In fact, for n = 10 the estimate vanishes identically for all
values of m. The proposed estimates m̂b

1 and m̂c
1 show qualitatively a different behaviour. First,

their power is already quite large for n = 10. Second, the power actually increases for increasing
m, converging to a positive value for very large values of m, as expected from Theorem 2.2.
In the next simulation we examine the effect of increasing dependence between the test statistics.
In particular, we compare our estimate m̂c

0 to the estimate m̂λ
0 of m0, as proposed in Schweder

and Spjøtvoll (1982) and Storey (2002), equation (2.17).
We set for better comparison m̂λ

1 = m− m̂λ
0 . The parameter λ has to be chosen heuristically. A

bootstrap method for an optimal choice of λ was proposed in Storey (2002).
The distribution of m̂λ

1 (with the most common choice of λ = 0.5) and m̂λ
1 (with the value of λ

chosen by the bootstrap method) is shown in Figure 3 for m = 1000 hypotheses and m1 = 100
true non-null hypotheses.
It can be seen that the estimate m̂λ

1 is not suitable for strong dependence between the test
statistics for either choice of λ. In fact, m̂λ

1 is quite often negative or magnitudes larger than the
true m1 = 100 even for a moderate dependence like ρ = 0.1. Thresholding the estimate m̂λ

1 at 0
(or m̂λ

0 at m) resolves this problem, but the conservative property E[m̂λ
1 ≤ m1 will in general be

lost.
No thresholding is necessary for the proposed estimates m̂a

1 , m̂b
1 and m̂c

1 as their range is limited
naturally by [0,m]. Although the estimate m̂c

1 (or equivalently m̂c
0) is slightly negatively affected

by increasing dependence ρ between the test statistics, the mean squared error is much better
than for the estimate proposed in Storey (2002).
We did not show the corresponding results for the estimate m̂a

1 (the number of rejection while
controlling the family-wise error rate) as the estimate vanishes identically for our setting. The
results for the estimate m̂b

1 are similar to the results for estimate m̂c
1 with the disadvantage that

a value of λ has to be chosen rather arbitrarily.
Finally, we compare the three estimates mγ/R (Benjamini-Hochberg type), m̂λ

0γ/R (as proposed
in Storey (2002) with λ = 0.5), and the new estimate m̂c

0γ/R in terms of probability of under-
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estimating the true false discovery rate and in terms of mean squared error. It is clear that the
risk of underestimating the true false discovery rate is smallest for the most conservative esti-
mate, setting m̂0 = m, but only marginally higher for the less conservative estimate m̂c

0γ/R. In
contrast, the estimate m̂λ

0γ/R has a substantial risk of underestimating the true false discovery
rate.

The probability P [F̂DR < FDR] of underestimating the true false discovery rate.

m0 = 900 700 500

F̂DR ρ = 0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6bmc
0γ/R .12 .12 .08 .10 .00 .04 .06 .03 .00 .02 .00 .00

mγ/R .01 .10 .08 .10 .00 .01 .02 .02 .00 .00 .00 .00bmλ
0γ/R .34 .30 .31 .30 .25 .36 .39 .36 .53 .58 .25 .36

Regarding the mean squared error, the estimate of Storey (2002) is best for independent test
statistics. For reasonably strong dependent test statistics, however, the proposed estimate m̂c

0γ/R

does not only have lower risk of underestimating the true false discovery rate but also a lower
mean squared error.

The mean squared error E[(F̂DR − FDR)2], multiplied by 103.

m0 = 900 700 500

F̂DR ρ = 0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6bmc
0γ/R 2.4 66 121 169 .83 10 21 42 .68 3.2 6.2 24

(.56) (2.3) (2.8) (3.2) (.05) (.65) (1.2) (1.8) (.03) (.3) (.46) (1.2)

mγ/R 3.1 71 134 173 3.3 10 24 57 3.5 5.5 9.0 26

(.023) (.18) (.23) (.024) (.006) (.05) (.095) (.15) (.003) (.028) (.052) (.12)bmλ
0γ/R .08 113 187 221 .06 10 26 55 .013 1.8 5.4 22

(.026) (.27) (.34) (.37) (.006) (.09) (.15) (.21) (.003) (.04) (.069) (.14)

Our limited simulation experience suggests that Storey’s estimate m̂λ
0γ/R is preferable for in-

dependent test statistics, whereas the proposed estimate m̂c
0γ/R is best for reasonably strong

dependence between the test statistics.

3.2 Microarray data

With microarray studies it is possible to monitor the expression values of several thousand genes
simultaneously. A common aim with microarray studies is to find differentially expressed genes,
e.g. genes whose expression values shows a systematic variation among different groups. Given
a response variable Y like tumour type or clinical outcome, it can be tested for each gene if the
expression values X are associated with Y . We look specifically at three microarray studies. The
response variable is binary in each case and predicts the clinical outcome of breast cancer, van’t
Veer et al. (2002), distinguishes between different subtypes of leukemia, Golub et al. (1999), or
indicates absence and presence of colon cancer, Alon et al. (1999).
We compare the estimates m̂a

1 (with u = 0), m̂b
1 (with λ = 0.05 and λ = 0.1) and m̂c

1. The
estimate m̂a

1 is equivalent to the number of rejections when controlling the FWER at level 0.05
and 0.01. For the estimates m̂b

1 and m̂c
1, we use the approach as laid out in section 2.3. Instead

of m̂a
1 , however, we use the more powerful step-down method of Westfall and Young (1993) to

control the family-wise error rate, which is slightly less conservative than the permutation-based
approach under the complete null hypothesis. Additionally the number of rejections for control
of FWER, using the Bonferroni correction, is shown.

14



colon leukemia breast

m = 2000 m = 3571 m = 5893

α = 0.05 bma
1 , Bonferroni 55 266 2bma
1 , Step-down 64 281 3bmb
1, λ = 0.1 363 1049 392bmb
1, λ = 0.05 367 1043 370bmc
1 286 957 355

α = 0.01 bma
1 , Bonferroni 32 191 0bma
1 , Step-down 36 202 0bmb
1, λ = 0.1 256 866 97bmb
1, λ = 0.05 266 908 136bmc
1 245 811 126

With the estimates m̂b
1 or m̂c

1 consistently more true non-null hypotheses are detected than with
control of the family-wise error rate, which is equivalent to the estimate m̂a

1 .
Note that the gain of using the proposed estimates compared to control of the FWER depends on
the number of tested hypotheses. Indeed, the least dramatic gain (which is still roughly a factor
four) is for the colon cancer and leukemia data with the lowest number of tested hypotheses. The
gain is most pronounced for the breast-cancer data, where not a single rejection can be made
when controlling FWER at level α = 0.01 while the estimate m̂c

1 at the same level indicates that
there are more than 100 true null hypotheses.
From a pragmatic point of view, estimation of m1 is probably most useful if the number of
rejections for control of FWER is zero or close to zero. In the case of the leukemia data, more
than 200 differentially expressed genes are found with control of FWER, already more than most
biologists probably want to deal with. For the breast cancer data on the other hand only very few
rejections can be made under control of FWER, while we get evidence for a substantial amount
of true non-null hypotheses when using our proposed estimates.

4 Conclusion

We presented a general framework to obtain lower probabilistic bounds for the number m1 of
true non-null hypotheses or, equivalently, upper probabilistic bounds for the number of true null
hypotheses.
The number m0 of true null hypotheses is bounded with very high probability from above -for
arbitrary and unknown dependence between the test statistics- by the proposed estimate of m0.
The properties of a particular estimate of m0 depend on the choice of the so-called bounding
function. For a special choice of this function, control of the family-wise error rate is recovered.
The power of FWER vanishes, however, in the limit of many tested hypotheses.
We are able to make a different choice of the bounding function such that the power to detect
true non-null hypotheses remains positive even for infinitely many tested hypotheses. In fact, the
power of the proposed estimate is increasing with the number of tested hypotheses.
We showed with theoretical considerations and numerical examples that the proposed estimate
of m0 is, even under strong dependence between the test statistics, very powerful for delivering
a tight probabilistic upper bound for the number of true null hypotheses in a multiple testing
situation.
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Finally, our method can be used for novel estimates of error rates. In particular, we demonstrate
its use for obtaining good estimates of the false discovery rate.
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5 Proofs

Proof of Theorem 2.1. It suffices to show that

P [m̂1 > m1] < α, (5.1)

where m̂1 = supγ∈Γ

{
R(γ)−Gα(γ)

}
. The number of rejections can be split into

R(γ) = S(γ) + V (γ).

Note that supγ∈Γ{S(γ)} = S(1) = m1. Thus

P [m̂1 > m1] = P [sup
γ∈Γ

{
R(γ)−Gα(γ)

}
> m1]

= P [sup
γ∈Γ

{
V (γ) + S(γ)−Gα(γ)

}
> m1]

≤ P [sup
γ∈Γ

{
V (γ)−Gα(γ)

}
+ S(1) > m1]

≤ P [sup
γ∈Γ

{
V (γ)−Gα(γ)

}
> 0].

The function Gα(γ) is a bounding function at level α. The quantity

P [sup
γ∈Γ

{
V (γ)−Gα(γ)

}
> 0]

is thus strictly smaller than α by definition and the claim follows.

Proof of Proposition 2.1. The random variable V (γ) is given by

V (γ) =
m∑

i=1

1[hi=0]1[Pi≤γ].

If the i-th component of X and Y are independent, then P [Pi ≤ γ] = γ for every γ in the set
of possible p-values. P-values under other true null hypotheses are stochastically greater than in
the case of independence.
As P 0

i and Pi follow the same distribution in the case of independence between the i-th components
of X and Y , it follows that the distribution of V (γ) is bounded from above by the distribution of

V 0(γ) =
m∑

i=1

1[P 0
i ≤γ].

Similarly it follows that the distribution of V (γ), conditional on Z = z, is bounded from above
by the distribution of V 0(γ), conditional on Z = z. Thus, for any given Z = z,

P
[
sup
γ∈Γ

{
V (γ)−Gα(γ)

}
> 0

∣∣Z = z
]

≤ P
[
sup
γ∈Γ

{
V 0(γ)−Gα(γ)

}
> 0

∣∣Z = z
]

< α.

It follows

P
[
sup
γ∈Γ

{
V (γ)−Gα(γ)

}
> 0

]
< α,
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and the function Gα(γ) is hence a bounding function at level α.

Proof of Proposition 2.2. We prove the claims separately for each function family.
(Family Ga) The functions ga

ξ of family Ga are constant except for one point of discontinuity at
γ = 1− ξmin ∈ Γ. As R(γ) is monotonously increasing in γ, the maximum in

m̂1 = sup
γ∈Γ

{
R(γ)− gξmin (γ)

}
. (5.2)

is attained either at γ = 1 − ξmin or at γ = 1. In the latter case, the difference R(1) − gξmin (1)
is zero. In the former case, for γ = 1 − ξmin , the difference is given by R(γ) − ga

ξmin
(γ). Using

ga
ξmin

(γ) = u for γ = 1− ξmin , the estimate m̂a
1 is of the form

m̂a
1 = max

{
0, R(1− ξmin )− u

}
.

As 0 ≤ u, R(γ) and R(γ) ≤ m, it follows that 0 ≤ m̂a
1 ≤ 1 as claimed.

(Family Gb) The functions gb
ξ of family Gb are again constant except for one point of discontinuity,

which is now at γ = λ. At this value of γ, gb
ξ(γ) = ξmin and ξmin is hence determined as the

minimal value of ξ such that,

P
[
V 0(λ)− ξmin > 0

∣∣Z = z
]
≤ α.

Hence ξmin is given by the (1−α)-quantile Q1−α(z, λ) of V 0(λ). The estimate m̂b
1 is thus of the

form

m̂b
1 = max

{
0, R(λ)−Q1−α(z, λ)

}
,

The estimate m̂b
1 is bounded as 0 ≤ m̂b

1 ≤ m, as again 0 ≤ R(λ), Q1−α(z, λ) and R(λ) ≤ m.
(Family Gc) The form

m̂c
1 = sup

γ∈Γ

{
R(γ)−Qξmin (z, γ)

}
for the estimate m̂c

1 follows directly from Definition 2.2. Note that it holds for any γ ∈ Γ by
definition of Qξ(z, γ) as the ξ-quantile of V 0(γ), conditional on Z = z,

P
[
V 0(γ)−Qξ(z, γ) > 0

∣∣Z = z
]

< 1− ξ.

On the one hand, by definition of Qξ(γ),

P
[
V 0(γ)−Q1−α(z, γ) > 0

∣∣Z = z
]
≥ α,

and therefore
P

[
sup
γ∈Γ

{
V 0(γ)−Q1−α(z, γ)

}
> 0

∣∣Z = z
]
≥ α.

It follows that ξmin ≥ 1 − α. If Γ is a finite set, it follows on the other hand by Bonferronis
inequality that

P
[
sup
γ∈Γ

{
V 0(γ)−Q1−α/|Γ|(z, γ)

}
> 0

∣∣Z = z
]

< α,

where |Γ| is the cardinality of the set Γ. Hence ξmin ≤ 1− α/|Γ|.
Both R(γ) and Qξmin (z, γ) are positive and smaller than m for all γ ∈ [0, 1]. Hence, m̂c

1 ≤ m.
Furthermore, R(1) = Qξmin (z, 1) = m and the estimate m̂c

1 is hence always positive.
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Lemma 5.1 For a rank-based test, let Qβ(m, z, γ) be the β-quantile of V 0(m, γ), conditional on
Z = z. It holds for any z ∈ Z and γ ∈ [0, 1] under Assumption (A2) that

∣∣Qβ(m, z, γ)
m

− γ| = o(1) for m →∞.

Proof of Lemma 5.1. It was shown before, in the proof of Proposition 2.1, that P [P 0
i ≤ γ] = γ

for every γ in the set of possible p-values. As a rank-based test is used, we can extend the
argument to conclude that P [P 0

i ≤ γ|Z] = γ for any given Z ∈ Z. Thus, for a given Z = z,

E
[
V 0(m, γ)

∣∣Z = z
]

= E
[ m∑

i=1

1[P 0
i ≤γ]

∣∣Z = z
]

= mγ.

By Chebychev’s inequality it follows for any c,

P
[∣∣V 0(m, γ)−mγ

∣∣ >

√
Var

(
V 0(m, γ)

)
c

∣∣Z = z
]
≤ c.

Choosing c(β) = min{1− β, β}, it follows

∣∣Q1−β(m, z, γ)−mγ| ≤

√
Var

(
V 0(m, γ)

∣∣Z)
c(β)

.

Dividing by m, the claim follows by Assumption (A2).

Proof of Theorem 2.2. We prove the claims separately for each function family.
(Family Ga) For function family Ga, the estimate is given by

m̂a
1 =

[
R(m, 1− ξmin )− u

]
+
.

Hence, by Assumption (A1),

m̂a
1

m
=

[R(m, 1− ξmin )− u]+
m

≤ R(m, 1− ξmin )
m

a.s.−→ F (1− ξmin ) for m →∞.

Note that F (0) = 0 and F (γ) is right-continuous at γ = 0. For a proof of the claim, it is hence
sufficient to show that ξmin → 1 for m →∞.

The value of ξmin is according to (2.6) the minimal value such that for a given Z = z,

P
[
V 0(m, 1− ξmin ) > u

]
≤ α.

Hence ξmin is the minimal value of ξ ∈ [0, 1] such that Q1−α(m, z, 1− ξ) = u. Note that, for any
Z = z, Q1−α(m, z, 1− ξ) is monotonously increasing for decreasing ξ from Q1−α(m, z, 1− ξ) = 0
for ξ = 1 to Q1−α(m, z, 1 − ξ) = m for ξ = 0. Furthermore, it follows by Lemma 5.1 that the
value of Q1−α(m, z, 1− ξ) is diverging for m →∞ for any value of Z and 0 ≤ ξ < 1. Combining
the last two observations, it follows that ξmin → 1 for m → ∞, proving the claim for function
family Ga.
(Family Gb) For function family Gb, the estimate is given by

m̂b
1 =

[
R(m,λ)−Q1−α(m, z, λ)

]
+
,
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where Q1−α(m, z, γ) is the 1−α quantile of the distribution of V 0(m, γ), conditional on Z = z.
By Lemma 5.1,

Q1−α(m, z, λ)
m

= λ + o(1) for m →∞.

By Assumption (A1) furthermore
R(m,λ)

m

a.s.−→ F (λ).

Under Assumption (A1), F (λ) ≥ λ. Hence, using the last two equations,

m̂b
1

m

a.s.−→ F (λ)− λ for m →∞,

proving the claim for function family (b).
(Family Gc) For function family Gc,

m̂c
1 = max

γ∈Γ

{
R(m, γ)−Qξmin (m, z, γ)

}
,

where Qξmin (m, z, γ) is again the ξmin quantile of the distribution of V 0(m, γ), conditional on
Z = z. Let |Γ| be again the cardinality of the finite set of possible p-values. It was shown in
Proposition 2.2 that 1 − α ≤ ξmin ≤ 1 − α/|Γ|. Thus, by Assumption (A2) and Lemma 5.1, for
any γ ∈ Γ,

Qξmin (m, z, γ)
m

= γ + o(1) for m →∞.

By Assumption (A1), R(m, γ)/m
a.s.−→ F (γ). Hence, for every γ ∈ Γ,

R(m, γ)
m

− Qξmin (m, z, γ)
m

a.s.−→ F (γ)− γ for m →∞.

As Γ is a finite set,

m̂c
1

m
= max

γ∈Γ

{R(m, γ)
m

− Qξmin (m, z, γ)
m

}
a.s.−→ max

γ∈Γ

{
F (γ)− γ

}
for m →∞,

proving the claim for function family Gc.
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