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Supplementary figure 1

 

Supplementary Figure 1. Comparing IDA, Lasso and Elastic-net on the five DREAM4 

networks1 of size 10 with multifactorial data. For each network, the number of true positives 

are plotted versus the number of false positives, for the top 10 predicted effects from the 

observational data. The target set is the top 10% of the effects as computed from the 

interventional data. 
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Supplementary Table 1. Comparing IDA, Lasso, and Elastic-net (Enet) to random guessing 

on the Hughes et al. data2. The target set is the top m% (m = 5 or 10) of the effects as 

computed from the interventional data. Columns 3-5 show the number of true positives in the 

top q (q = 50, 250, 1,000 or 5,000) estimated effects from the observational data. Column 6 

contains the mean and standard deviation of the number of true positives for random 

guessing. Columns 7-12 contain P values for statistical tests that assess if the rankings 

obtained by the three methods are better than random guessing: columns 7-9 contain P values 

based on the hypergeometric distribution, and columns 10-12 contain P values computed 

with respect to the partial area under the receiver operating characteristic curve (pAUC), 

based on a simulated null distribution for random guessing. Significance of the P values is 

indicated by stars: P < 0.05 (*), P < 0.01 (**), and P < 0.001 (***).  

 

   Nr. of true positives  P values
(hypergeometric) 

P values 
(pAUC, simulated) 

 q  IDA  Lasso  Enet  Random 
(SD) 

IDA  Lasso  Enet  IDA  Lasso  Enet 

Top 
5% 

50  22  5  6  2.50 
(1.54) 

5.55E‐16 
(***) 

1.03E‐01  3.77E‐02 
(*) 

0.00E+00 
(***) 

1.40E‐02 
(*) 

2.50E‐02 
(*) 

 250  112  19  22  12.5
(3.45) 

0.00E+00
(***) 

4.73E‐02
(*) 

7.76E‐03
(**) 

0.00E+00 
(***) 

9.00E‐03 
(**) 

5.00E‐03
(**) 

 1,000  294  67  62  50.0 
(6.89) 

0.00E+00 
(***) 

1.06E‐02 
(*) 

5.10E‐02  0.00E+00 
(***) 

8.00E‐03 
(**) 

1.40E‐02 
(*) 

 5,000  635  333  297  250
(15.4) 

0.00E+00
(***) 

1.46E‐07
(***) 

1.58E‐03
(**) 

0.00E+00 
(***) 

0.00E+00 
(***) 

1.40E‐02
(*) 

Top 
10% 

50  33  10  8  5.00
(2.12) 

0.00E+00
(***) 

2.45E‐02
(*) 

1.22E‐01 0.00E+00 
(***) 

7.00E‐03 
(**) 

2.40E‐02
(*) 

 250  161  41  43  25.0 
(4.74) 

0.00E+00 
(***) 

1.13E‐03 
(**) 

3.17E‐04 
(***) 

0.00E+00 
(***) 

3.00E‐03 
(**) 

9.00E‐03 
(**) 

 1,000  434  142  132  100
(9.48) 

0.00E+00
(***) 

1.59E‐05
(***) 

6.92E‐04
(***) 

0.00E+00 
(***) 

0.00E+00 
(***) 

0.00E+00
(***) 

 5,000  1,044  629  594  500
(21.2) 

0.00E+00
(***) 

2.21E‐09
(***) 

8.18E‐06
(***) 

0.00E+00 
(***) 

0.00E+00 
(***) 

0.00E+00
(***) 
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Supplementary Table 2. Comparing IDA, Lasso and Elastic-net (Enet) to random guessing 

on the five DREAM4 networks1 of size 10, using the multifactorial data as observational 

data. For each network, the target set is the top m% (m = 5 or 10) of the effects as computed 

from the interventional data. Columns 3-5 show the number of true positives in the top 10 

estimated effects from the observational data. The mean ± standard deviation of the number 

of true positives for random guessing is 0.56 ± 0.69 for m = 5 and 1 ± 0.90 for m = 10. 

Columns 6-11 contain P values for tests that assess if the rankings obtained by the three 

methods are better than random guessing: columns 6-8 contain P values based on the 

hypergeometric distribution, and columns 9-11 contain P values computed with respect to the 

partial area under the receiver operating characteristic curve (pAUC), based on a simulated 

null distribution for random guessing. Significance of the P values is indicated by stars: P < 

0.05 (*), P < 0.01 (**), and P < 0.001 (***).  

 
 

 

    Nr. of true positives  P values
(hypergeometric) 

P values 
(pAUC, simulated) 

  Network  IDA  Lasso  Enet  IDA  Lasso  Enet  IDA  Lasso  Enet 

Top  
5% 

1  3  1  3  9.02E‐03
(**) 

4.53E‐01 9.02E‐03
(**) 

1.00E‐03
(**) 

2.21E‐01  2.21E‐01

  2  3  1  1  9.02E‐03 
(**) 

4.53E‐01  4.53E‐01  1.00E‐03 
(**) 

2.14E‐01  1.23E‐01 

  3  4  0  0  3.88E‐04
(***) 

1.00E+00 1.00E+00 4.00E‐03
(**) 

1.00E+00  1.00E+00

  4  1  1  0  4.53E‐01 4.53E‐01 1.00E+00 1.32E‐01 9.80E‐02  1.00E+00

  5  1  1  1  4.53E‐01  4.53E‐01  4.53E‐01  1.87E‐01  3.46E‐01  1.00E+00 

Top 
10% 

1  4  1  3  7.74E‐03
(**) 

6.72E‐01 5.88E‐02 0.00E+00
(***) 

3.69E‐01  3.69E‐01

  2  4  1  1  7.74E‐03 
(**) 

6.72E‐01  6.72E‐01  2.00E‐03 
(**) 

3.85E‐01  2.46E‐01 

  3  5  0  0  5.89E‐04 
(***) 

1.00E+00  1.00E+00  2.70E‐02 
(*) 

1.00E+00  1.00E+00 

  4  1  1  1  6.72E‐01 6.72E‐01 6.72E‐01 2.92E‐01 2.21E‐01  3.51E‐01

  5  2  2  1  2.61E‐01  2.61E‐01  6.72E‐01  2.11E‐01  1.09E‐01  1.00E+00 
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 Supplementary methods 

 

Description and pre-processing of the Hughes et al. data2. We considered the compendium 

of expression profiles of S. cerevisiae provided by Hughes et al.2 (available at 

http://www.rii.com/publications/2000/cell_hughes.html). As interventional data, we used the 

files data_expts1-75.xls, data_expts76-150.xls, data_expts151-225.xls, and data_expts226-

300.xls. When combined, these files contained expression data on 6,325 genes for 300 

chemically treated or mutant yeast strains. We only used the column named 10log(ratio), 

which contained the log ratio of the transcript levels of the mutant strains compared to that of 

wild-type strains. As observational data, we used the file control_expts1-63_geneerr.txt, 

which contained gene expression measurements of 6,330 genes for 63 wild-type yeast 

cultures. Again, we only used the column named 10log(ratio), which contained the log ratio 

of the transcript levels of the wild-type cultures compared to that of other wild-type cultures. 

In both datasets, we removed all genes with missing values. Subsequently, we 

removed genes that were present in only one of the datasets. In the interventional data, we 

removed strains 11, 21, 33, 41, 42, 67, 89, 127, 142, 225, 278-300 because they were not 

single-gene deletion mutants. Moreover, we removed all mutant strains for which the deleted 

gene was no longer present in the observational dataset. The resulting observational dataset 

contained gene expression measurements on 5,361 genes for 63 wild-type cultures. The 

resulting interventional dataset contained gene expression measurements on the same 5,361 

genes for 234 single-gene deletion strains. We standardized both datasets, such that the 

measurements for each gene had mean 0 and standard deviation 1.  

 

Description and pre-processing of the DREAM4 data1. The DREAM4 In Silico Network 

Challenge1 (http://wiki.c2b2.columbia.edu/dream/index.php/The_DREAM_Project) is a 

competition in reverse engineering of gene regulation networks, involving five networks of 

size 10 and five networks of size 100. For each of the simulated networks, several types of 

data were provided. As interventional data we used the files *knockouts.tsv, containing 

steady state levels of known single-gene knockouts for each of the genes in the network. As 

observational data we considered the following two possibilities: (i) the files 

*multifactorial.tsv, containing steady state levels of variations of the networks obtained by 

applying unknown multifactorial perturbations, and (ii) the files *timeseries.tsv, containing 
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time course data of the response and recovery of the networks to unknown external 

perturbations (omitting the time stamps).  

The networks and data were simulated by version 2.0 of GeneNetWeaver 

(http://sourceforge.net/projects/gnw/), using methods of Marbach et al.2. We provide a brief 

summary for completeness. All simulated data corresponded to mRNA concentration levels. 

The network topologies consisted of sub-networks from transcriptional regulatory networks 

of E. coli and S. cerevisiae. The dynamics of the networks were simulated using a kinetic 

model of gene regulation, incorporating independent and synergistic gene regulation, 

transcription, and translation. Internal noise was simulated via stochastic differential 

equations, and measurement noise was added based on a model of noise observed in 

microarrays.  

We standardized all datasets, such that the measurements for each gene had mean 0 

and standard deviation 1.  

 

Definition of the target set of causal effects. We denote the matrix containing the 

interventional data by A. Each row in A corresponds to a single-gene deletion strain and each 

column corresponds to a gene. Thus, for the Hughes et al. data2 the dimension of the matrix is 

234 x 5,361, and for the DREAM4 networks1 the dimensions are 10 x 10 or 100 x 100. We 

denote the entries of A by ai,j, and we let c(i) denote the column index of the gene that was 

deleted in the strain of row i. Then the size of the causal effect of gene i on gene j, i ≠ j, can 

be quantified by |ai,j – mean(a-i,j)| / |ai,c(i) – mean(a-i,c(i))|, where mean(a-i,j) denotes the mean 

of the jth column when the ith entry is omitted. Note that we divided by |ai,c(i) – mean(a-i,c(i))| 

to measure the effect in terms of unit changes in the expression profile of gene i. For each 

network, we defined the top m% of these effects as the target set of causal effects. 

 

Applying IDA to the observational data to estimate bounds on total causal effects. When 

data are generated from a given directed acyclic graph (DAG), the total causal effect of a unit 

increase in one variable on another variable can be computed via established methods, such 

as Pearl’s “do-calculus” (or “intervention-calculus”)3. In our applications, however, the data 

generating DAG was unknown. It is well-known that it is generally impossible to estimate a 

DAG from observational data, even with an infinite amount of data4. Under some 

assumptions, however, it is possible to estimate bounds on total causal effects, using the two-

step approach proposed by Maathuis et al.5. First, one estimates the equivalence class of 
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DAGs that are consistent with the data, using for example greedy equivalence search4 or the 

PC-algorithm6. Next, one applies Pearl’s do-calculus to each of the k DAGs in the 

equivalence class, yielding a set of k possible causal effects for each (ordered) pair of 

variables (e.g., genes). The minimum absolute value of such a set estimates a lower bound on 

the size of the true total causal effect. In large problems, it is computationally infeasible to 

evaluate all DAGs in the estimated equivalence class, and Maathuis et al.5 proposed a 

localized algorithm for such situations. This localized approach also has advantages from an 

estimation point of view, since it only requires a local neighborhood of the graph to be 

estimated correctly, rather than the entire graph. We refer to the method of Maathuis et al.5 as 

IDA, which is short for “Intervention-calculus when the DAG is Absent”.  

We applied IDA as follows. First, we estimated the equivalence class of DAGs that 

were consistent with the observational data, using the PC-algorithm6
 as implemented in the 

R-package pcalg (http://cran.r-project.org/web/packages/pcalg/index.html) with tuning 

parameter αPC = 0.01. We then applied the localized algorithm as implemented in the function 

ida in the R-package pcalg. For each pair of genes, we summarized the resulting set of 

estimated possible total causal effects by its minimum absolute value, and we ranked the 

effects according to this summary measure.  

The main assumptions underlying IDA are that the joint distribution of the 

observational variables is (i) multivariate Gaussian and (ii) faithful to the true (unknown) 

causal DAG. The main reason for imposing Gaussianity is that it implies linearity and allows 

conditional independence tests via partial correlations. For both the Hughes et al. data2 and 

the DREAM4 data1, we verified that the marginal distributions of the variables were indeed 

approximately Gaussian. We did not confirm multivariate Gaussianity, since that is almost 

impossible to check. The faithfulness assumption is satisfied (with probability one) if the data 

are generated by an underlying DAG without hidden confounders. This is a strong 

requirement, since DAGs do not allow for feedback loops which are often present in 

biological systems, and many systems are only partially observed. In particular, feedback 

loops and hidden variables were used to simulate the DREAM4 data1. The Hughes et al. data2 

contained gene expression profiles of about 85% of the S. cerevisiae genome. Hence, we 

expect that these data captured most, but not all, of the important variables.  

In general, great care should be exercised in the interpretation of results from IDA 

when the underlying assumptions are violated (in particular the assumption of no hidden 

confounding variables). In such cases, IDA is best viewed as a new method of determining 

variable importance, based on causal rather than associational concepts, but not directly 
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representing causal effects. Nevertheless, we demonstrated in this paper that our approach 

based on causal concepts performed better than association type techniques, even in scenarios 

where some of the underlying assumptions are likely to be violated.  

 

Applying Lasso to the observational data. Lasso7 is a ℓ1-regularized high-dimensional 

regression technique. As such, it infers associations rather than causal effects. It is commonly 

used to determine variable importance (e.g., references 8-11). We applied Lasso to the 

observational data in the following way. For all genes i, we performed the ℓ1-regularized 

regression of gene i on the remaining genes, using the R-package lars (http://cran.r-

project.org/web/packages/lars/index.html), where we chose the regularization parameter in a 

prediction optimal way via 10-fold cross validation. The coefficients βj,i, j ≠ i, in the ith 

regression model can be interpreted as the expected “association effect” on gene i of a unit 

increase in the expression profile of gene j, when controlling for all the other genes. For all 

regression models, we stored the coefficients for all j that corresponded to genes that were 

deleted in the interventional data. We used the absolute values of these coefficients to rank 

the effects.  

 

Applying Elastic-net to the observational data. Elastic-net12 is a high-dimensional 

regression technique with both ℓ1- and ℓ2-regularization. As for Lasso, it infers associations 

rather than causal effects. We applied Elastic-net to the observational data in a similar fashion 

as we did for Lasso. Thus, for all genes i, we performed the regularized regression of gene i 

on the remaining genes, using the R-package elasticnet (http://cran.r-

project.org/web/packages/elasticnet/index.html). We chose the regularization parameters in a 

prediction optimal way via 10-fold cross validation, using the default values of λ2 suggested 

by Zou and Hastie12: 0, 0.01, 0.1, 1, 10, 100. The coefficients βj,i, j ≠ i, in the ith regression 

model can be interpreted as for Lasso, and we used the absolute values of these coefficients 

to rank the effects.  

 

Evaluation of the predictions. Recall that we refer to the top m% of the effects as computed 

from the interventional data as the target set. Considering the top q predicted effects based on 

the observational data, using the three prediction methods (IDA, Lasso, and Elastic-net), we 
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computed the number of false positives (top q predicted effects that were not in the target set) 

and the number of true positives (top q predicted effects that were in the target set).  

We used two different tests to determine if the top q estimated effects of a prediction 

method contained more effects in the target set than can be expected by random guessing (q = 

50, 250, 1,000 and 5,000 for the Hughes et al. data2, q = 10 for the DREAM4 networks1 of 

size 10, and q = 25 for the DREAM4 networks1 of size 100). First, we computed one-sided P 

values based on the hypergeometric distribution. Second, we compared the partial area under 

the receiver operating characteristic curve (pAUC) (computed up to the false positive rate 

determined by the top q effects from IDA) to a null-distribution obtained by constructing 

1,000 random orderings and their corresponding pAUCs. For each prediction method, the P 

value was computed as the fraction of random orderings with pAUCs that were at least as 

large as the one obtained by the given method (Supplementary Table 1 and 2). For the 

DREAM4 data1, we only showed the results for the multifactorial data on the networks of 

size 10, since the difference between the methods was largest in this setting. Considering all 

four possible combinations of observational data (multifactorial or time series) and the size of 

the networks (10 or 100), IDA was always at least as good as Lasso and Elastic-net when 

counting the number of networks in which the pAUC of each method was significantly better 

than random guessing at significance level α = 0.01 for both m = 5 and m = 10. 

We note that our evaluation method focuses on the top estimated effects, and that IDA 

might lose predictive power for estimated effects further down in the ranking. This does not 

pose a problem for the main application that we envision for IDA, namely to use it as a tool 

for the design of experiments, since the top estimated effects are most relevant for this 

purpose.  
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