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perry-package Resampling-Based Prediction Error Estimation for Regression Models

Description

Tools that allow developers to write functions for prediction error estimation with minimal pro-
gramming effort and assist users with model selection in regression problems.

Details

The DESCRIPTION file:

Package: perry
Type: Package
Title: Resampling-Based Prediction Error Estimation for Regression Models
Version: 0.3.1
Date: 2021-11-03
Depends: R (>= 2.14.1), ggplot2 (>= 0.9.2), parallel
Imports: stats, utils
Suggests: perryExamples, robustbase
Description: Tools that allow developers to write functions for prediction error estimation with minimal programming effort and assist users with model selection in regression problems.
License: GPL (>= 2)
LazyLoad: yes
Authors@R: person("Andreas", "Alfons", email = "alfons@ese.eur.nl", role = c("aut", "cre"))
Author: Andreas Alfons [aut, cre]
Maintainer: Andreas Alfons <alfons@ese.eur.nl>
Encoding: UTF-8
RoxygenNote: 7.1.2
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Index of help topics:

accessors Access or set information on resampling-based
prediction error results

aggregate.perry Aggregate resampling-based prediction error
results

bootControl Control object for bootstrap samples
bootSamples Bootstrap samples
cost Prediction loss
cvFolds Cross-validation folds
foldControl Control object for cross-validation folds
perry Resampling-based prediction error for fitted

models
perry-deprecated Deprecated functions in package 'perry'
perry-package Resampling-Based Prediction Error Estimation

for Regression Models
perryFit Resampling-based prediction error for model

evaluation
perryPlot Plot resampling-based prediction error results
perryReshape Reshape resampling-based prediction error

results
perrySelect Model selection via resampling-based prediction

error measures
perrySplits Data splits for resampling-based prediction

error measures
perryTuning Resampling-based prediction error for tuning

parameter selection
randomSplits Random data splits
reperry Recompute resampling-based prediction error

measures
setupPerryPlot Set up a plot of resampling-based prediction

error results
splitControl Control object for random data splits
subset.perry Subsetting resampling-based prediction error

results
summary.perry Summarize resampling-based prediction error

results

Author(s)

Andreas Alfons [aut, cre]

Maintainer: Andreas Alfons <alfons@ese.eur.nl>

accessors Access or set information on resampling-based prediction error results
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Description

Retrieve or set the names of resampling-based prediction error results, retrieve or set the identifiers
of the models, or retrieve the number of prediction error results or included models.

Usage

peNames(x)

peNames(x) <- value

fits(x)

fits(x) <- value

npe(x)

nfits(x)

Arguments

x an object inheriting from class "perry" or "perrySelect" that contains pre-
diction error results.

value a vector of replacement values.

Value

peNames returns the names of the prediction error results. The replacement function thereby returns
them invisibly.

fits returns the identifiers of the models for objects inheriting from class "perrySelect" and NULL
for objects inheriting from class "perry". The replacement function thereby returns those values
invisibly.

npe returns the number of prediction error results.

nfits returns the number of models included in objects inheriting from class "perrySelect" and
NULL for objects inheriting from class "perry".

Author(s)

Andreas Alfons

See Also

perryFit, perrySelect, perryTuning

Examples

library("perryExamples")
data("coleman")
set.seed(1234) # set seed for reproducibility
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## set up folds for cross-validation
folds <- cvFolds(nrow(coleman), K = 5, R = 10)

## compare raw and reweighted LTS estimators for
## 50% and 75% subsets

# 50% subsets
fit50 <- ltsReg(Y ~ ., data = coleman, alpha = 0.5)
cv50 <- perry(fit50, splits = folds, fit = "both",

cost = rtmspe, trim = 0.1)

# 75% subsets
fit75 <- ltsReg(Y ~ ., data = coleman, alpha = 0.75)
cv75 <- perry(fit75, splits = folds, fit = "both",

cost = rtmspe, trim = 0.1)

# combine results into one object
cv <- perrySelect("0.5" = cv50, "0.75" = cv75)
cv

# "perry" object
npe(cv50)
nfits(cv50)
peNames(cv50)
peNames(cv50) <- c("improved", "initial")
fits(cv50)
cv50

# "perrySelect" object
npe(cv)
nfits(cv)
peNames(cv)
peNames(cv) <- c("improved", "initial")
fits(cv)
fits(cv) <- 1:2
cv

aggregate.perry Aggregate resampling-based prediction error results

Description

Compute summary statistics of resampling-based prediction error results.

Usage

## S3 method for class 'perry'
aggregate(x, FUN = mean, select = NULL, ...)
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## S3 method for class 'perrySelect'
aggregate(x, FUN = mean, select = NULL, ...)

## S3 method for class 'perryTuning'
aggregate(x, ...)

Arguments

x an object inheriting from class "perry" or "perrySelect" that contains predic-
tion error results (note that the latter includes objects of class "perryTuning").

FUN a function to compute the summary statistics.

select a character, integer or logical vector indicating the columns of prediction error
results for which to compute the summary statistics.

... for the "perryTuning" method, additional arguments to be passed to the "perrySelect"
method. Otherwise additional arguments to be passed to FUN.

Value

The "perry" method returns a vector or matrix of aggregated prediction error results, depending
on whether FUN returns a single value or a vector.

For the other methods, a data frame containing the aggregated prediction error results for each model
is returned. In the case of the "perryTuning" method, the data frame contains the combinations of
tuning parameters rather than a column describing the models.

Note

Duplicate indices in subset or select are removed such that all models and prediction error results
are unique.

Author(s)

Andreas Alfons

See Also

perryFit, perrySelect, perryTuning, aggregate

Examples

library("perryExamples")
data("coleman")
set.seed(1234) # set seed for reproducibility

## set up folds for cross-validation
folds <- cvFolds(nrow(coleman), K = 5, R = 10)

## compare raw and reweighted LTS estimators for
## 50% and 75% subsets
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# 50% subsets
fit50 <- ltsReg(Y ~ ., data = coleman, alpha = 0.5)
cv50 <- perry(fit50, splits = folds, fit = "both",

cost = rtmspe, trim = 0.1)

# 75% subsets
fit75 <- ltsReg(Y ~ ., data = coleman, alpha = 0.75)
cv75 <- perry(fit75, splits = folds, fit = "both",

cost = rtmspe, trim = 0.1)

# combine results into one object
cv <- perrySelect("0.5" = cv50, "0.75" = cv75)
cv

# summary of the results with the 50% subsets
aggregate(cv50, summary)
# summary of the combined results
aggregate(cv, summary)

bootControl Control object for bootstrap samples

Description

Generate an object that controls how to draw bootstrap samples and which bootstrap estimator of
prediction error to compute.

Usage

bootControl(R = 1, type = c("0.632", "out-of-bag"), grouping = NULL)

Arguments

R an integer giving the number of bootstrap samples.

type a character string specifying a bootstrap estimator. Possible values are "0.632"
(the default), or "out-of-bag".

grouping a factor specifying groups of observations.

Value

An object of class "bootControl" with the following components:

R an integer giving the number of bootstrap samples.

type a character string specifying the type of bootstrap estimator.

grouping if supplied, a factor specifying groups of observations. The groups will then be resam-
pled rather than individual observations such that all observations within a group belong either
to the bootstrap sample or the test data.
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Author(s)

Andreas Alfons

References

Efron, B. (1983) Estimating the error rate of a prediction rule: improvement on cross-validation.
Journal of the American Statistical Association, 78(382), 316–331.

See Also

perrySplits, bootSamples, foldControl, splitControl

Examples

set.seed(1234) # set seed for reproducibility
perrySplits(20, bootControl())
perrySplits(20, bootControl(R = 10))

bootSamples Bootstrap samples

Description

Draw bootstrap samples of observations or groups of observations and specify which bootstrap
estimator of prediction error to compute.

Usage

bootSamples(n, R = 1, type = c("0.632", "out-of-bag"), grouping = NULL)

Arguments

n an integer giving the number of observations for which to draw bootstrap sam-
ples. This is ignored if grouping is supplied in order to respect the group struc-
ture of the data in the bootstrap samples.

R an integer giving the number of bootstrap samples.

type a character string specifying a bootstrap estimator. Possible values are "0.632"
(the default), or "out-of-bag".

grouping a factor specifying groups of observations. If supplied, the groups are resampled
rather than individual observations such that all observations within a group
belong either to the bootstrap sample or the test data.
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Value

An object of class "bootSamples" with the following components:

n an integer giving the number of observations or groups.

R an integer giving the number of bootstrap samples.

subsets an integer matrix in which each column contains the indices of the observations or groups
in the corresponding bootstrap sample.

grouping a list giving the indices of the observations belonging to each group. This is only re-
turned if a grouping factor has been supplied.

Note

This is a simple wrapper function for perrySplits with a control object generated by bootControl.

Author(s)

Andreas Alfons

References

Efron, B. (1983) Estimating the error rate of a prediction rule: improvement on cross-validation.
Journal of the American Statistical Association, 78(382), 316–331.

See Also

perrySplits, bootControl, cvFolds, randomSplits

Examples

set.seed(1234) # set seed for reproducibility
bootSamples(20)
bootSamples(20, R = 10)

cost Prediction loss

Description

Compute the prediction loss of a model.
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Usage

mspe(y, yHat, includeSE = FALSE)

rmspe(y, yHat, includeSE = FALSE)

mape(y, yHat, includeSE = FALSE)

tmspe(y, yHat, trim = 0.25, includeSE = FALSE)

rtmspe(y, yHat, trim = 0.25, includeSE = FALSE)

Arguments

y a numeric vector or matrix giving the observed values.

yHat a numeric vector or matrix of the same dimensions as y giving the fitted values.

includeSE a logical indicating whether standard errors should be computed as well.

trim a numeric value giving the trimming proportion (the default is 0.25).

Details

mspe and rmspe compute the mean squared prediction error and the root mean squared prediction
error, respectively. In addition, mape returns the mean absolute prediction error, which is somewhat
more robust.

Robust prediction loss based on trimming is implemented in tmspe and rtmspe. To be more precise,
tmspe computes the trimmed mean squared prediction error and rtmspe computes the root trimmed
mean squared prediction error. A proportion of the largest squared differences of the observed and
fitted values are thereby trimmed.

Standard errors can be requested via the includeSE argument. Note that standard errors for tmspe
are based on a winsorized standard deviation. Furthermore, standard errors for rmspe and rtmspe
are computed from the respective standard errors of mspe and tmspe via the delta method.

Value

If standard errors are not requested, a numeric value giving the prediction loss is returned.

Otherwise a list is returned, with the first component containing the prediction loss and the second
component the corresponding standard error.

Author(s)

Andreas Alfons

References

Tukey, J.W. and McLaughlin, D.H. (1963) Less vulnerable confidence and significance procedures
for location based on a single sample: Trimming/winsorization. Sankhya: The Indian Journal of
Statistics, Series A, 25(3), 331–352

Oehlert, G.W. (1992) A note on the delta method. The American Statistician, 46(1), 27–29.
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See Also

perryFit, perryTuning

Examples

# fit an MM-regression model
library("robustbase")
data("coleman")
fit <- lmrob(Y~., data=coleman)

# compute the prediction loss from the fitted values
# (hence the prediction loss is underestimated in this simple
# example since all observations are used to fit the model)
mspe(coleman$Y, predict(fit))
rmspe(coleman$Y, predict(fit))
mape(coleman$Y, predict(fit))
tmspe(coleman$Y, predict(fit), trim = 0.1)
rtmspe(coleman$Y, predict(fit), trim = 0.1)

# include standard error
mspe(coleman$Y, predict(fit), includeSE = TRUE)
rmspe(coleman$Y, predict(fit), includeSE = TRUE)
mape(coleman$Y, predict(fit), includeSE = TRUE)
tmspe(coleman$Y, predict(fit), trim = 0.1, includeSE = TRUE)
rtmspe(coleman$Y, predict(fit), trim = 0.1, includeSE = TRUE)

cvFolds Cross-validation folds

Description

Split observations or groups of observations into K folds to be used for (repeated) K-fold cross-
validation. K should thereby be chosen such that all folds are of approximately equal size.

Usage

cvFolds(
n,
K = 5,
R = 1,
type = c("random", "consecutive", "interleaved"),
grouping = NULL

)
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Arguments

n an integer giving the number of observations to be split into folds. This is ig-
nored if grouping is supplied in order to split groups of observations into folds.

K an integer giving the number of folds into which the observations should be split
(the default is five). Setting K equal to the number of observations or groups
yields leave-one-out cross-validation.

R an integer giving the number of replications for repeated K-fold cross-validation.
This is ignored for for leave-one-out cross-validation and other non-random
splits of the data.

type a character string specifying the type of folds to be generated. Possible values
are "random" (the default), "consecutive" or "interleaved".

grouping a factor specifying groups of observations. If supplied, the data are split accord-
ing to the groups rather than individual observations such that all observations
within a group belong to the same fold.

Value

An object of class "cvFolds" with the following components:

n an integer giving the number of observations or groups.
K an integer giving the number of folds.
R an integer giving the number of replications.
subsets an integer matrix in which each column contains a permutation of the indices of the

observations or groups.
which an integer vector giving the fold for each permuted observation or group.
grouping a list giving the indices of the observations belonging to each group. This is only re-

turned if a grouping factor has been supplied.

Note

This is a simple wrapper function for perrySplits with a control object generated by foldControl.

Author(s)

Andreas Alfons

See Also

perrySplits, foldControl, randomSplits, bootSamples

Examples

set.seed(1234) # set seed for reproducibility
cvFolds(20, K = 5, type = "random")
cvFolds(20, K = 5, type = "consecutive")
cvFolds(20, K = 5, type = "interleaved")
cvFolds(20, K = 5, R = 10)
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foldControl Control object for cross-validation folds

Description

Generate an object that controls how to split n observations or groups of observations into K folds
to be used for (repeated) K-fold cross-validation. K should thereby be chosen such that all folds
are of approximately equal size.

Usage

foldControl(
K = 5,
R = 1,
type = c("random", "consecutive", "interleaved"),
grouping = NULL

)

Arguments

K an integer giving the number of folds into which the observations should be split
(the default is five).

R an integer giving the number of replications for repeated K-fold cross-validation.

type a character string specifying the type of folds to be generated. Possible values
are "random" (the default), "consecutive" or "interleaved".

grouping a factor specifying groups of observations.

Value

An object of class "foldControl" with the following components:

K an integer giving the number of folds. A value of K equal to the number of observations or groups
yields eave-one-out cross-validation.

R an integer giving the number of replications. This will be ignored for for leave-one-out cross-
validation and other non-random splits of the data.

type a character string specifying the type of folds.

grouping if supplied, a factor specifying groups of observations. The data will then be split ac-
cording to the groups rather than individual observations such that all observations within a
group belong to the same fold.

Author(s)

Andreas Alfons

See Also

perrySplits, cvFolds, splitControl, bootControl
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Examples

set.seed(1234) # set seed for reproducibility
perrySplits(20, foldControl(K = 5))
perrySplits(20, foldControl(K = 5, R = 10))

perry Resampling-based prediction error for fitted models

Description

Generic function to estimate the prediction error of a fitted model via (repeated) K-fold cross-
validation, (repeated) random splitting (also known as random subsampling or Monte Carlo cross-
validation), or the bootstrap.

Usage

perry(object, ...)

Arguments

object the fitted model for which to estimate the prediction error.

... additional arguments to be passed down to methods.

Details

The idea is that developers write easy-to-use methods for end users to leverage the prediction error
estimation framework for their models. A typical perry method consists of the following two parts:
first the data are extracted from the model, then function perryFit is called to perform prediction
error estimation. The programming effort of implementing prediction error estimation for a certain
model is thus greatly reduced.

Examples for methods are available in package perryExamples (see perry-methods).

Author(s)

Andreas Alfons

See Also

perryFit, perry-methods
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perry-deprecated Deprecated functions in package perry

Description

These functions are provided for compatibility with older versions only, and may be defunct as soon
as the next release.

Usage

## S3 method for class 'perry'
fortify(
model,
data,
select = NULL,
reps = model$splits$R > 1,
seFactor = NA,
...

)

## S3 method for class 'perrySelect'
fortify(
model,
data,
subset = NULL,
select = NULL,
reps = model$splits$R > 1,
seFactor = model$seFactor,
...

)

## S3 method for class 'perryTuning'
fortify(model, data, ...)

## Default S3 method:
perryPlot(
object,
method = c("box", "density", "dot", "line"),
mapping,
facets = attr(object, "facets"),
...

)

Arguments

model an object inheriting from class "perry" or "perrySelect" that contains pre-
diction error results.
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data currently ignored.

select a character, integer or logical vector indicating the columns of prediction error
results to be converted.

reps a logical indicating whether to convert the results from all replications (TRUE) or
the aggregated results (FALSE). The former is suitable for box plots or smooth
density plots, while the latter is suitable for dot plots or line plots (see perryPlot).

seFactor a numeric value giving the multiplication factor of the standard error for dis-
playing error bars in dot plots or line plots. Error bars in those plots can be
suppressed by setting this to NA.

... for the "perryTuning" method of fortify, additional arguments to be passed
down to its "perrySelect" method. For the other methods of fortify, addi-
tional arguments are currently ignored. For the default method of perryPlot,
additional arguments to be passed down to geom_boxplot, geom_density, geom_pointrange
or geom_line.

subset a character, integer or logical vector indicating the subset of models to be con-
verted.

object an object inheriting from class "perry" or "perrySelect" that contains pre-
diction error results, or a data frame containing all necessary information for
plotting (as generated by the corresponding fortify method).

method a character string specifying the type of plot. Possible values are "box" to create
a box plot, "density" to create a smooth density plot, "dot" to create a dot plot,
or "line" to plot the (average) results for each model as a connected line (for
objects inheriting from class "perrySelect"). Note that the first two plots are
only meaningful in case of repeated resampling. The default is to use "box"
in case of repeated resampling and "dot" otherwise. In any case, partial string
matching allows supply abbreviations of the accepted values.

mapping an aesthetic mapping to override the default behavior (see aes or aes_string).

facets a faceting formula to override the default behavior. If supplied, facet_wrap or
facet_grid is called depending on whether the formula is one-sided or two-
sided.

Details

The fortify methods extract all necessary information for plotting from resampling-based predic-
tion error results and store it in a data frame.

The default method of perryPlot creates the corresponding plot from the data frame returned by
fortify.

Value

The fortify methods return a data frame containing the columns listed below, as well as additional
information stored in the attribute "facets" (default faceting formula for the plots).

Fit a vector or factor containing the identifiers of the models.

Name a factor containing the names of the predictor error results (not returned in case of only one
column of prediction error results with the default name).
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PE the estimated prediction errors.

Lower the lower end points of the error bars (only returned if reps is FALSE).

Upper the upper end points of the error bars (only returned if reps is FALSE).

Note

Duplicate indices in subset or select are removed such that all models and prediction error results
are unique.

Author(s)

Andreas Alfons

perryFit Resampling-based prediction error for model evaluation

Description

Estimate the prediction error of a model via (repeated) K-fold cross-validation, (repeated) random
splitting (also known as random subsampling or Monte Carlo cross-validation), or the bootstrap. It
is thereby possible to supply an object returned by a model fitting function, a model fitting function
itself, or an unevaluated function call to a model fitting function.

Usage

perryFit(object, ...)

## Default S3 method:
perryFit(
object,
data = NULL,
x = NULL,
y,
splits = foldControl(),
predictFun = predict,
predictArgs = list(),
cost = rmspe,
costArgs = list(),
names = NULL,
envir = parent.frame(),
ncores = 1,
cl = NULL,
seed = NULL,
...

)

## S3 method for class '`function`'
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perryFit(
object,
formula,
data = NULL,
x = NULL,
y,
args = list(),
splits = foldControl(),
predictFun = predict,
predictArgs = list(),
cost = rmspe,
costArgs = list(),
names = NULL,
envir = parent.frame(),
ncores = 1,
cl = NULL,
seed = NULL,
...

)

## S3 method for class 'call'
perryFit(
object,
data = NULL,
x = NULL,
y,
splits = foldControl(),
predictFun = predict,
predictArgs = list(),
cost = rmspe,
costArgs = list(),
names = NULL,
envir = parent.frame(),
ncores = 1,
cl = NULL,
seed = NULL,
...

)

Arguments

object the fitted model for which to estimate the prediction error, a function for fitting
a model, or an unevaluated function call for fitting a model (see call for the
latter). In the case of a fitted model, the object is required to contain a component
call that stores the function call used to fit the model, which is typically the case
for objects returned by model fitting functions.

... additional arguments to be passed down.

data a data frame containing the variables required for fitting the models. This is



perryFit 19

typically used if the model in the function call is described by a formula.

x a numeric matrix containing the predictor variables. This is typically used if the
function call for fitting the models requires the predictor matrix and the response
to be supplied as separate arguments.

y a numeric vector or matrix containing the response.

splits an object of class "cvFolds" (as returned by cvFolds) or a control object
of class "foldControl" (see foldControl) defining the folds of the data for
(repeated) K-fold cross-validation, an object of class "randomSplits" (as re-
turned by randomSplits) or a control object of class "splitControl" (see
splitControl) defining random data splits, or an object of class "bootSamples"
(as returned by bootSamples) or a control object of class "bootControl" (see
bootControl) defining bootstrap samples.

predictFun a function to compute predictions for the test data. It should expect the fitted
model to be passed as the first argument and the test data as the second argument,
and must return either a vector or a matrix containing the predicted values. The
default is to use the predict method of the fitted model.

predictArgs a list of additional arguments to be passed to predictFun.

cost a cost function measuring prediction loss. It should expect the observed values
of the response to be passed as the first argument and the predicted values as the
second argument, and must return either a non-negative scalar value, or a list
with the first component containing the prediction error and the second compo-
nent containing the standard error. The default is to use the root mean squared
prediction error (see cost).

costArgs a list of additional arguments to be passed to the prediction loss function cost.

names an optional character vector giving names for the arguments containing the data
to be used in the function call (see “Details”).

envir the environment in which to evaluate the function call for fitting the models
(see eval).

ncores a positive integer giving the number of processor cores to be used for parallel
computing (the default is 1 for no parallelization). If this is set to NA, all available
processor cores are used.

cl a parallel cluster for parallel computing as generated by makeCluster. If sup-
plied, this is preferred over ncores.

seed optional initial seed for the random number generator (see .Random.seed).
Note that also in case of parallel computing, resampling is performed on the
manager process rather than the worker processes. On the parallel worker pro-
cesses, random number streams are used and the seed is set via clusterSetRNGStream
for reproducibility in case the model fitting function involves randomness.

formula a formula describing the model.

args a list of additional arguments to be passed to the model fitting function.

Details

(Repeated) K-fold cross-validation is performed in the following way. The data are first split into
K previously obtained blocks of approximately equal size (given by folds). Each of the K data
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blocks is left out once to fit the model, and predictions are computed for the observations in the
left-out block with predictFun. Thus a prediction is obtained for each observation. The response
and the obtained predictions for all observations are then passed to the prediction loss function cost
to estimate the prediction error. For repeated K-fold cross-validation (as indicated by splits), this
process is replicated and the estimated prediction errors from all replications are returned.

(Repeated) random splitting is performed similarly. In each replication, the data are split into a
training set and a test set at random. Then the training data are used to fit the model, and predic-
tions are computed for the test data. Hence only the response values from the test data and the
corresponding predictions are passed to the prediction loss function cost.

For the bootstrap estimator, each bootstrap sample is used as training data to fit the model. The
out-of-bag estimator uses the observations that do not enter the bootstrap sample as test data and
computes the prediction loss function cost for those out-of-bag observations. The 0.632 estimator
is computed as a linear combination of the out-of-bag estimator and the prediction loss of the fitted
values of the model computed from the full sample.

In any case, if the response is a vector but predictFun returns a matrix, the prediction error is
computed for each column. A typical use case for this behavior would be if predictFun returns
predictions from an initial model fit and stepwise improvements thereof.

If formula or data are supplied, all variables required for fitting the models are added as one argu-
ment to the function call, which is the typical behavior of model fitting functions with a formula
interface. In this case, the accepted values for names depend on the method. For the function
method, a character vector of length two should supplied, with the first element specifying the argu-
ment name for the formula and the second element specifying the argument name for the data (the
default is to use c("formula", "data")). Note that names for both arguments should be supplied
even if only one is actually used. For the other methods, which do not have a formula argument, a
character string specifying the argument name for the data should be supplied (the default is to use
"data").

If x is supplied, on the other hand, the predictor matrix and the response are added as separate
arguments to the function call. In this case, names should be a character vector of length two, with
the first element specifying the argument name for the predictor matrix and the second element
specifying the argument name for the response (the default is to use c("x", "y")). It should be
noted that the formula or data arguments take precedence over x.

Value

An object of class "perry" with the following components:

pe a numeric vector containing the respective estimated prediction errors. In case of more than one
replication, those are average values over all replications.

se a numeric vector containing the respective estimated standard errors of the prediction loss.

reps a numeric matrix in which each column contains the respective estimated prediction errors
from all replications. This is only returned in case of more than one replication.

splits an object giving the data splits used to estimate the prediction error.

y the response.

yHat a list containing the predicted values from all replications.

call the matched function call.
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Author(s)

Andreas Alfons

See Also

perrySelect, perryTuning, cvFolds, randomSplits, bootSamples, cost

Examples

library("perryExamples")
data("coleman")
set.seed(1234) # set seed for reproducibility

## via model fit
# fit an MM regression model
fit <- lmrob(Y ~ ., data=coleman)
# perform cross-validation
perryFit(fit, data = coleman, y = coleman$Y,

splits = foldControl(K = 5, R = 10),
cost = rtmspe, costArgs = list(trim = 0.1),
seed = 1234)

## via model fitting function
# perform cross-validation
# note that the response is extracted from 'data' in
# this example and does not have to be supplied
perryFit(lmrob, formula = Y ~ ., data = coleman,

splits = foldControl(K = 5, R = 10),
cost = rtmspe, costArgs = list(trim = 0.1),
seed = 1234)

## via function call
# set up function call
call <- call("lmrob", formula = Y ~ .)
# perform cross-validation
perryFit(call, data = coleman, y = coleman$Y,

splits = foldControl(K = 5, R = 10),
cost = rtmspe, costArgs = list(trim = 0.1),
seed = 1234)

perryPlot Plot resampling-based prediction error results

Description

Plot results of resampling-based prediction error measures.
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Usage

perryPlot(object, ...)

## S3 method for class 'perry'
perryPlot(
object,
which = c("box", "density", "dot"),
select = NULL,
seFactor = NA,
...

)

## S3 method for class 'perrySelect'
perryPlot(
object,
which = c("box", "density", "dot", "line"),
subset = NULL,
select = NULL,
seFactor = object$seFactor,
...

)

## S3 method for class 'setupPerryPlot'
perryPlot(object, mapping = object$mapping, facets = object$facets, ...)

## S3 method for class 'perry'
autoplot(object, ...)

## S3 method for class 'perrySelect'
autoplot(object, ...)

## S3 method for class 'perry'
plot(x, ...)

## S3 method for class 'perrySelect'
plot(x, ...)

Arguments

object, x an object inheriting from class "perry" or "perrySelect" that contains pre-
diction error results, or an object of class "setupPerryPlot" containing all
necessary information for plotting (as generated by setupPerryPlot).

... additional arguments to be passed down, eventually to geom_boxplot, geom_density,
geom_pointrange, or geom_line.

which a character string specifying the type of plot. Possible values are "box" to create
a box plot, "density" to create a smooth density plot, "dot" to create a dot plot,
or "line" to plot the (average) results for each model as a connected line (for
objects inheriting from class "perrySelect"). Note that the first two plots are
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only meaningful in case of repeated resampling. The default is to use "box" in
case of repeated resampling and "dot" otherwise.

select a character, integer or logical vector indicating the columns of prediction error
results to be plotted.

seFactor a numeric value giving the multiplication factor of the standard error for dis-
playing error bars in dot plots or line plots. Error bars in those plots can be
suppressed by setting this to NA.

subset a character, integer or logical vector indicating the subset of models for which
to plot the prediction error results.

mapping an aesthetic mapping to override the default behavior (see aes or aes_string).

facets a faceting formula to override the default behavior. If supplied, facet_wrap or
facet_grid is called depending on whether the formula is one-sided or two-
sided.

Details

For objects with multiple columns of prediction error results, conditional plots are produced.

Value

An object of class "ggplot" (see ggplot).

Note

Duplicate indices in subset or select are removed such that all models and prediction error results
are unique.

Author(s)

Andreas Alfons

See Also

setupPerryPlot,

perryFit, perrySelect, perryTuning,

ggplot, autoplot, plot

Examples

library("perryExamples")
data("coleman")
set.seed(1234) # set seed for reproducibility

## set up folds for cross-validation
folds <- cvFolds(nrow(coleman), K = 5, R = 10)

## compare LS, MM and LTS regression
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# perform cross-validation for an LS regression model
fitLm <- lm(Y ~ ., data = coleman)
cvLm <- perry(fitLm, splits = folds,

cost = rtmspe, trim = 0.1)

# perform cross-validation for an MM regression model
fitLmrob <- lmrob(Y ~ ., data = coleman, maxit.scale = 500)
cvLmrob <- perry(fitLmrob, splits = folds,

cost = rtmspe, trim = 0.1)

# perform cross-validation for an LTS regression model
fitLts <- ltsReg(Y ~ ., data = coleman)
cvLts <- perry(fitLts, splits = folds,

cost = rtmspe, trim = 0.1)

# combine results into one object
cv <- perrySelect(LS = cvLm, MM = cvLmrob, LTS = cvLts,

.selectBest = "min")
cv

# plot results for the MM regression model
plot(cvLmrob, which = "box")
plot(cvLmrob, which = "density")
plot(cvLmrob, which = "dot", seFactor = 2)

# plot combined results
plot(cv, which = "box")
plot(cv, which = "density")
plot(cv, which = "dot", seFactor = 2)

perryReshape Reshape resampling-based prediction error results

Description

Reshape resampling-based prediction error results into an object of class "perrySelect" with only
one column of results.

Usage

perryReshape(
x,
selectBest = c("min", "hastie"),
seFactor = 1,
tuning = list(),
...

)
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Arguments

x an object inheriting from class "perry" or "perrySelect" that contains pre-
diction error results.

selectBest a character string specifying a criterion for selecting the best model. Possible
values are "min" (the default) or "hastie". The former selects the model with
the smallest prediction error. The latter is useful for nested models or for models
with a tuning parameter controlling the complexity of the model (e.g., penalized
regression). It selects the most parsimonious model whose prediction error is
no larger than seFactor standard errors above the prediction error of the best
overall model. Note that the models are thereby assumed to be ordered from the
most parsimonious one to the most complex one. In particular a one-standard-
error rule is frequently applied.

seFactor a numeric value giving a multiplication factor of the standard error for the selec-
tion of the best model. This is ignored if selectBest is "min".

tuning a list of tuning parameter values that correspond to the different prediction error
results. The names of the list components should thereby correspond to the
argument names of the tuning parameters. For each tuning parameter, a vector
of values can be supplied. A data frame containing all possible combinations of
tuning parameter values is then added to the reshaped prediction error results.

... additional arguments to be passed down.

Value

An object of class "perrySelect" (subclass "perryTuning" if a list of tuning parameters is sup-
plied) with the following components:

pe a data frame containing the estimated prediction errors for the models. In case of more than one
resampling replication, those are average values over all replications.

se a data frame containing the estimated standard errors of the prediction loss for the models.

reps a data frame containing the estimated prediction errors for the models from all replications.
This is only returned in case of more than one resampling replication.

splits an object giving the data splits used to estimate the prediction error.

y the response.

yHat a list containing the predicted values for the models. Each list component is again a list
containing the corresponding predicted values from all replications.

best an integer giving the index of the model with the best prediction performance.

selectBest a character string specifying the criterion used for selecting the best model.

seFactor a numeric value giving the multiplication factor of the standard error used for the selec-
tion of the best model.

tuning a data frame containing the grid of tuning parameter values that correspond to the different
prediction error results (only subclass "perryTuning").

Author(s)

Andreas Alfons
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References

Hastie, T., Tibshirani, R. and Friedman, J. (2009) The Elements of Statistical Learning: Data Min-
ing, Inference, and Prediction. Springer, 2nd edition.

See Also

perryFit, perrySelect, perryTuning

Examples

library("perryExamples")
data("coleman")

# perform cross-validation for an LTS regression model
fit <- ltsReg(Y ~ ., data = coleman)
folds <- foldControl(K = 5, R = 10)
cv <- perry(fit, splits = folds, fit = "both",

cost = rtmspe, trim = 0.1, seed = 1234)

# compare original and reshaped object
cv
perryReshape(cv)

perrySelect Model selection via resampling-based prediction error measures

Description

Combine resampling-based prediction error results for various models into one object and select the
model with the best prediction performance.

Usage

perrySelect(
...,
.list = list(...),
.reshape = FALSE,
.selectBest = c("min", "hastie"),
.seFactor = 1

)

Arguments

... objects inheriting from class "perry" or "perrySelect" that contain prediction
error results.

.list a list of objects inheriting from class "perry" or "perrySelect". If supplied,
this is preferred over objects supplied via the . . . argument.
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.reshape a logical indicating whether objects with more than one column of prediction
error results should be reshaped to have only one column (see “Details”).

.selectBest a character string specifying a criterion for selecting the best model. Possible
values are "min" (the default) or "hastie". The former selects the model with
the smallest prediction error. The latter is useful for nested models or for models
with a tuning parameter controlling the complexity of the model (e.g., penalized
regression). It selects the most parsimonious model whose prediction error is
no larger than .seFactor standard errors above the prediction error of the best
overall model. Note that the models are thereby assumed to be ordered from the
most parsimonious one to the most complex one. In particular a one-standard-
error rule is frequently applied.

.seFactor a numeric value giving a multiplication factor of the standard error for the selec-
tion of the best model. This is ignored if .selectBest is "min".

Details

Keep in mind that objects inheriting from class "perry" or "perrySelect" may contain multiple
columns of prediction error results. This is the case if the response is univariate but the function to
compute predictions (usually the predict method of the fitted model) returns a matrix.

The .reshape argument determines how to handle such objects. If .reshape is FALSE, all objects
are required to have the same number of columns and the best model for each column is selected.
A typical use case for this behavior would be if the investigated models contain prediction error
results for a raw and a reweighted fit. It might then be of interest to researchers to compare the best
model for the raw estimators with the best model for the reweighted estimators.

If .reshape is TRUE, objects with more than one column of results are first transformed with
perryReshape to have only one column. Then the best overall model is selected.

It should also be noted that the argument names of .list, .reshape, .selectBest and .seFacor
start with a dot to avoid conflicts with the argument names used for the objects containing prediction
error results.

Value

An object of class "perrySelect" with the following components:

pe a data frame containing the estimated prediction errors for the models. In case of more than one
resampling replication, those are average values over all replications.

se a data frame containing the estimated standard errors of the prediction loss for the models.
reps a data frame containing the estimated prediction errors for the models from all replications.

This is only returned in case of more than one resampling replication.
splits an object giving the data splits used to estimate the prediction error of the models.
y the response.
yHat a list containing the predicted values for the models. Each list component is again a list

containing the corresponding predicted values from all replications.
best an integer vector giving the indices of the models with the best prediction performance.
selectBest a character string specifying the criterion used for selecting the best model.
seFactor a numeric value giving the multiplication factor of the standard error used for the selec-

tion of the best model.
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Note

To ensure comparability, the prediction errors for all models are required to be computed from the
same data splits.

Author(s)

Andreas Alfons

References

Hastie, T., Tibshirani, R. and Friedman, J. (2009) The Elements of Statistical Learning: Data Min-
ing, Inference, and Prediction. Springer, 2nd edition.

See Also

perryFit, perryTuning

Examples

library("perryExamples")
data("coleman")
set.seed(1234) # set seed for reproducibility

## set up folds for cross-validation
folds <- cvFolds(nrow(coleman), K = 5, R = 10)

## compare LS, MM and LTS regression

# perform cross-validation for an LS regression model
fitLm <- lm(Y ~ ., data = coleman)
cvLm <- perry(fitLm, splits = folds,

cost = rtmspe, trim = 0.1)

# perform cross-validation for an MM regression model
fitLmrob <- lmrob(Y ~ ., data = coleman)
cvLmrob <- perry(fitLmrob, splits = folds,

cost = rtmspe, trim = 0.1)

# perform cross-validation for an LTS regression model
fitLts <- ltsReg(Y ~ ., data = coleman)
cvLts <- perry(fitLts, splits = folds,

cost = rtmspe, trim = 0.1)

# compare cross-validation results
perrySelect(LS = cvLm, MM = cvLmrob, LTS = cvLts)
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perrySplits Data splits for resampling-based prediction error measures

Description

Split observations or groups of observations into segments to be used for (repeated) K-fold cross-
validation, (repeated) random splitting (also known as random subsampling or Monte Carlo cross-
validation), or the bootstrap.

Usage

perrySplits(n, control)

Arguments

n an integer giving the number of observations to be split.

control a control object of class "foldControl" (as generated by foldControl), "splitControl"
(as generated by splitControl) or "bootControl" (as generated by bootControl).

Value

For the foldControl method, an object of class "cvFolds" giving folds for (repeated) K-fold
cross-validation (see cvFolds).

For the splitControl method, an object of class "randomSplits" giving random data splits (see
randomSplits).

For the bootControl method, an object of class "bootSamples" giving bootstrap samples (see
bootSamples).

Note

Users may prefer the wrapper functions cvFolds, randomSplits and bootSamples.

Author(s)

Andreas Alfons

See Also

foldControl, splitControl, bootControl, cvFolds, randomSplits, bootSamples

Examples

set.seed(1234) # set seed for reproducibility

## data folds for K-fold cross-validation
perrySplits(20, foldControl(K = 5))
perrySplits(20, foldControl(K = 5, R = 10))
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## random data splits
perrySplits(20, splitControl(m = 5))
perrySplits(20, splitControl(m = 5, R = 10))

## bootstrap samples
perrySplits(20, bootControl())
perrySplits(20, bootControl(R = 10))

perryTuning Resampling-based prediction error for tuning parameter selection

Description

Select tuning parameters of a model by estimating the respective prediction errors via (repeated)
K-fold cross-validation, (repeated) random splitting (also known as random subsampling or Monte
Carlo cross-validation), or the bootstrap. It is thereby possible to supply a model fitting function or
an unevaluated function call to a model fitting function.

Usage

perryTuning(object, ...)

## S3 method for class '`function`'
perryTuning(
object,
formula,
data = NULL,
x = NULL,
y,
tuning = list(),
args = list(),
splits = foldControl(),
predictFun = predict,
predictArgs = list(),
cost = rmspe,
costArgs = list(),
selectBest = c("min", "hastie"),
seFactor = 1,
final = FALSE,
names = NULL,
envir = parent.frame(),
ncores = 1,
cl = NULL,
seed = NULL,
...

)
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## S3 method for class 'call'
perryTuning(
object,
data = NULL,
x = NULL,
y,
tuning = list(),
splits = foldControl(),
predictFun = predict,
predictArgs = list(),
cost = rmspe,
costArgs = list(),
selectBest = c("min", "hastie"),
seFactor = 1,
final = FALSE,
names = NULL,
envir = parent.frame(),
ncores = 1,
cl = NULL,
seed = NULL,
...

)

Arguments

object a function or an unevaluated function call for fitting a model (see call for the
latter).

... additional arguments to be passed down.

formula a formula describing the model.

data a data frame containing the variables required for fitting the models. This is
typically used if the model in the function call is described by a formula.

x a numeric matrix containing the predictor variables. This is typically used if the
function call for fitting the models requires the predictor matrix and the response
to be supplied as separate arguments.

y a numeric vector or matrix containing the response.

tuning a list of arguments giving the tuning parameter values to be evaluated. The
names of the list components should thereby correspond to the argument names
of the tuning parameters. For each tuning parameter, a vector of values can be
supplied. The prediction error is then estimated for all possible combinations of
tuning parameter values.

args a list of additional arguments to be passed to the model fitting function.

splits an object of class "cvFolds" (as returned by cvFolds) or a control object
of class "foldControl" (see foldControl) defining the folds of the data for
(repeated) K-fold cross-validation, an object of class "randomSplits" (as re-
turned by randomSplits) or a control object of class "splitControl" (see
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splitControl) defining random data splits, or an object of class "bootSamples"
(as returned by bootSamples) or a control object of class "bootControl" (see
bootControl) defining bootstrap samples.

predictFun a function to compute predictions for the test data. It should expect the fitted
model to be passed as the first argument and the test data as the second argument,
and must return either a vector or a matrix containing the predicted values. The
default is to use the predict method of the fitted model.

predictArgs a list of additional arguments to be passed to predictFun.

cost a cost function measuring prediction loss. It should expect the observed values
of the response to be passed as the first argument and the predicted values as the
second argument, and must return either a non-negative scalar value, or a list
with the first component containing the prediction error and the second compo-
nent containing the standard error. The default is to use the root mean squared
prediction error (see cost).

costArgs a list of additional arguments to be passed to the prediction loss function cost.

selectBest a character string specifying a criterion for selecting the best model. Possible
values are "min" (the default) or "hastie". The former selects the model with
the smallest prediction error. The latter is useful for models with a tuning pa-
rameter controlling the complexity of the model (e.g., penalized regression). It
selects the most parsimonious model whose prediction error is no larger than
seFactor standard errors above the prediction error of the best overall model.
Note that the models are thereby assumed to be ordered from the most parsi-
monious one to the most complex one. In particular a one-standard-error rule is
frequently applied.

seFactor a numeric value giving a multiplication factor of the standard error for the selec-
tion of the best model. This is ignored if selectBest is "min".

final a logical indicating whether to fit the final model with the optimal combination
of tuning parameters.

names an optional character vector giving names for the arguments containing the data
to be used in the function call (see “Details”).

envir the environment in which to evaluate the function call for fitting the models
(see eval).

ncores a positive integer giving the number of processor cores to be used for parallel
computing (the default is 1 for no parallelization). If this is set to NA, all available
processor cores are used.

cl a parallel cluster for parallel computing as generated by makeCluster. If sup-
plied, this is preferred over ncores.

seed optional initial seed for the random number generator (see .Random.seed).
Note that also in case of parallel computing, resampling is performed on the
manager process rather than the worker processes. On the parallel worker pro-
cesses, random number streams are used and the seed is set via clusterSetRNGStream
for reproducibility in case the model fitting function involves randomness.
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Details

(Repeated) K-fold cross-validation is performed in the following way. The data are first split into
K previously obtained blocks of approximately equal size (given by folds). Each of the K data
blocks is left out once to fit the model, and predictions are computed for the observations in the
left-out block with predictFun. Thus a prediction is obtained for each observation. The response
and the obtained predictions for all observations are then passed to the prediction loss function cost
to estimate the prediction error. For repeated K-fold cross-validation (as indicated by splits), this
process is replicated and the estimated prediction errors from all replications are returned.

(Repeated) random splitting is performed similarly. In each replication, the data are split into a
training set and a test set at random. Then the training data are used to fit the model, and predic-
tions are computed for the test data. Hence only the response values from the test data and the
corresponding predictions are passed to the prediction loss function cost.

For the bootstrap estimator, each bootstrap sample is used as training data to fit the model. The
out-of-bag estimator uses the observations that do not enter the bootstrap sample as test data and
computes the prediction loss function cost for those out-of-bag observations. The 0.632 estimator
is computed as a linear combination of the out-of-bag estimator and the prediction loss of the fitted
values of the model computed from the full sample.

In any case, if the response is a vector but predictFun returns a matrix, the prediction error is
computed for each column. A typical use case for this behavior would be if predictFun returns
predictions from an initial model fit and stepwise improvements thereof.

If formula or data are supplied, all variables required for fitting the models are added as one argu-
ment to the function call, which is the typical behavior of model fitting functions with a formula
interface. In this case, the accepted values for names depend on the method. For the function
method, a character vector of length two should supplied, with the first element specifying the argu-
ment name for the formula and the second element specifying the argument name for the data (the
default is to use c("formula", "data")). Note that names for both arguments should be supplied
even if only one is actually used. For the call method, which does not have a formula argument, a
character string specifying the argument name for the data should be supplied (the default is to use
"data").

If x is supplied, on the other hand, the predictor matrix and the response are added as separate
arguments to the function call. In this case, names should be a character vector of length two, with
the first element specifying the argument name for the predictor matrix and the second element
specifying the argument name for the response (the default is to use c("x", "y")). It should be
noted that the formula or data arguments take precedence over x.

Value

If tuning is an empty list, perryFit is called to return an object of class "perry".

Otherwise an object of class "perryTuning" (which inherits from class "perrySelect") with the
following components is returned:

pe a data frame containing the estimated prediction errors for all combinations of tuning parameter
values. In case of more than one replication, those are average values over all replications.

se a data frame containing the estimated standard errors of the prediction loss for all combinations
of tuning parameter values.
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reps a data frame containing the estimated prediction errors from all replications for all combina-
tions of tuning parameter values. This is only returned in case of more than one replication.

splits an object giving the data splits used to estimate the prediction error.

y the response.

yHat a list containing the predicted values for all combinations of tuning parameter values. Each
list component is again a list containing the corresponding predicted values from all replica-
tions.

best an integer vector giving the indices of the optimal combinations of tuning parameters.

selectBest a character string specifying the criterion used for selecting the best model.

seFactor a numeric value giving the multiplication factor of the standard error used for the selec-
tion of the best model.

tuning a data frame containing the grid of tuning parameter values for which the prediction error
was estimated.

finalModel the final model fit with the optimal combination of tuning parameters. This is only
returned if argument final is TRUE.

call the matched function call.

Note

The same data splits are used for all combinations of tuning parameter values for maximum com-
parability.

If a final model with the optimal combination of tuning parameters is computed, class "perryTuning"
inherits the coef(), fitted(), predict() and residuals() methods from its component finalModel.

Author(s)

Andreas Alfons

References

Hastie, T., Tibshirani, R. and Friedman, J. (2009) The Elements of Statistical Learning: Data Min-
ing, Inference, and Prediction. Springer, 2nd edition.

See Also

perryFit, perrySelect, cvFolds, randomSplits, bootSamples, cost

Examples

library("perryExamples")
data("coleman")

## evaluate MM regression models tuned for 85% and 95% efficiency
tuning <- list(tuning.psi = c(3.443689, 4.685061))

## via model fitting function
# perform cross-validation
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# note that the response is extracted from 'data' in
# this example and does not have to be supplied
perryTuning(lmrob, formula = Y ~ ., data = coleman,

tuning = tuning, splits = foldControl(K = 5, R = 10),
cost = rtmspe, costArgs = list(trim = 0.1), seed = 1234)

## via function call
# set up function call
call <- call("lmrob", formula = Y ~ .)
# perform cross-validation
perryTuning(call, data = coleman, y = coleman$Y,

tuning = tuning, splits = foldControl(K = 5, R = 10),
cost = rtmspe, costArgs = list(trim = 0.1), seed = 1234)

randomSplits Random data splits

Description

Split observations or groups of observations into training and test data to be used for (repeated)
random splitting (also known as random subsampling or Monte Carlo cross-validation).

Usage

randomSplits(n, m, R = 1, grouping = NULL)

Arguments

n an integer giving the number of observations to be split into training and test
data. This is ignored if grouping is supplied in order to split groups of observa-
tions into folds.

m an integer giving the number of observations or groups of observations to be
used as test data.

R an integer giving the number of random data splits.
grouping a factor specifying groups of observations. If supplied, the data are split accord-

ing to the groups rather than individual observations such that all observations
within a group belong either to the training or test data.

Value

An object of class "randomSplits" with the following components:

n an integer giving the number of observations or groups.
m an integer giving the number of observations or groups in the test data.
R an integer giving the number of random data splits.
subsets an integer matrix in which each column contains the indices of the observations or groups

in the test data of the corresponding random data split.
grouping a list giving the indices of the observations belonging to each group. This is only re-

turned if a grouping factor has been supplied.



36 reperry

Note

This is a simple wrapper function for perrySplits with a control object generated by splitControl.

Author(s)

Andreas Alfons

See Also

perrySplits, splitControl, cvFolds, bootSamples

Examples

set.seed(1234) # set seed for reproducibility
randomSplits(20, m = 5)
randomSplits(20, m = 5, R = 10)

reperry Recompute resampling-based prediction error measures

Description

Recompute prediction error measures for previously obtained objects that contain resampling-based
prediction error results. This is useful for computing a different measure of prediction loss.

Usage

reperry(object, ...)

## S3 method for class 'perry'
reperry(object, cost = rmspe, ...)

## S3 method for class 'perrySelect'
reperry(object, cost = rmspe, ...)

Arguments

object an object inheriting from class "perry" or "perrySelect" that contains pre-
diction error results.

... for the generic function, additional arguments to be passed down to methods.
For the methods, additional arguments to be passed to the prediction loss func-
tion cost.

cost a cost function measuring prediction loss. It should expect the observed values
of the response to be passed as the first argument and the predicted values as the
second argument, and must return either a non-negative scalar value, or a list
with the first component containing the prediction error and the second compo-
nent containing the standard error. The default is to use the root mean squared
prediction error (see cost).
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Value

An object similar to object containing the results for the new measure of prediction loss.

Author(s)

Andreas Alfons

See Also

perryFit, perryTuning, perrySelect

Examples

library("perryExamples")
data("coleman")
set.seed(1234) # set seed for reproducibility

## set up folds for cross-validation
folds <- cvFolds(nrow(coleman), K = 5, R = 10)

## compare raw and reweighted LTS estimators for 50% and 75%
## subsets based on their RTMSPE with 25% trimming

# 50% subsets
fit50 <- ltsReg(Y ~ ., data = coleman, alpha = 0.5)
cv50 <- perry(fit50, splits = folds, fit = "both",

cost = rtmspe, trim = 0.25)

# 75% subsets
fit75 <- ltsReg(Y ~ ., data = coleman, alpha = 0.75)
cv75 <- perry(fit75, splits = folds, fit = "both",

cost = rtmspe, trim = 0.25)

# combine results into one object
cv <- perrySelect("0.5" = cv50, "0.75" = cv75)
cv

## recompute the RTMSPE with 10% trimming
reperry(cv50, cost = rtmspe, trim = 0.1)
reperry(cv, cost = rtmspe, trim = 0.1)

setupPerryPlot Set up a plot of resampling-based prediction error results

Description

Extract and prepare the relevant information for a plot of results of resampling-based prediction
error measures.



38 setupPerryPlot

Usage

setupPerryPlot(object, ...)

## S3 method for class 'perry'
setupPerryPlot(
object,
which = c("box", "density", "dot"),
select = NULL,
seFactor = NA,
...

)

## S3 method for class 'perrySelect'
setupPerryPlot(
object,
which = c("box", "density", "dot", "line"),
subset = NULL,
select = NULL,
seFactor = object$seFactor,
...

)

## S3 method for class 'perryTuning'
setupPerryPlot(object, ...)

Arguments

object an object inheriting from class "perry" or "perrySelect" that contains pre-
diction error results.

... for the "perryTuning" method, additional arguments to be passed down to the
"perrySelect" method. For the other methods, additional arguments are cur-
rently ignored.

which a character string specifying the type of plot to prepare. Possible values are
"box" to prepare a box plot, "density" to prepare a smooth density plot, "dot"
to prepare a dot plot, or "line" to prepare a plot of the (average) results for each
model as a connected line (for objects inheriting from class "perrySelect").
Note that the first two plots are only meaningful in case of repeated resampling.
The default is to use "box" in case of repeated resampling and "dot" otherwise.

select a character, integer or logical vector indicating the columns of prediction error
results to be prepared for plotting.

seFactor a numeric value giving the multiplication factor of the standard error for dis-
playing error bars in dot plots or line plots. Error bars in those plots can be
suppressed by setting this to NA.

subset a character, integer or logical vector indicating the subset of models to be pre-
pared for plotting.
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Value

An object of class "setupPerryPlot" with the following components:

data a data frame containing the following columns:

Fit a vector or factor containing the identifiers of the models.
Name a factor containing the names of the predictor error results (not returned in case of only

one column of prediction error results with the default name).
PE the estimated prediction errors.
Lower the lower end points of the error bars (only returned if possible to compute).
Upper the upper end points of the error bars (only returned if possible to compute).

which a character string specifying the type of plot.

grouped a logical indicating whether density plots should be grouped due to multiple model fits
(only returned in case of density plots for the "perrySelect" and "perryTuning" methods).

includeSE a logical indicating whether error bars based on standard errors are available (only
returned in case of dot plots or line plots).

mapping default aesthetic mapping for the plots.

facets default faceting formula for the plots (not returned in case of only one column of prediction
error results with the default name).

tuning a data frame containing the grid of tuning parameter values for which the prediction error
was estimated (only returned for the "perryTuning" method).

Note

Duplicate indices in subset or select are removed such that all models and prediction error results
are unique.

Author(s)

Andreas Alfons

See Also

perryPlot,

perryFit, perrySelect, perryTuning,

ggplot, autoplot, plot

Examples

library("perryExamples")
data("coleman")
set.seed(1234) # set seed for reproducibility

## set up folds for cross-validation
folds <- cvFolds(nrow(coleman), K = 5, R = 10)

## compare LS, MM and LTS regression



40 splitControl

# perform cross-validation for an LS regression model
fitLm <- lm(Y ~ ., data = coleman)
cvLm <- perry(fitLm, splits = folds,

cost = rtmspe, trim = 0.1)

# perform cross-validation for an MM regression model
fitLmrob <- lmrob(Y ~ ., data = coleman, maxit.scale = 500)
cvLmrob <- perry(fitLmrob, splits = folds,

cost = rtmspe, trim = 0.1)

# perform cross-validation for an LTS regression model
fitLts <- ltsReg(Y ~ ., data = coleman)
cvLts <- perry(fitLts, splits = folds,

cost = rtmspe, trim = 0.1)

# combine results into one object
cv <- perrySelect(LS = cvLm, MM = cvLmrob, LTS = cvLts,

.selectBest = "min")
cv

## convert MM regression results to data frame for plotting
# all replications for box plot
cvLmrobBox <- setupPerryPlot(cvLmrob, which = "box")
perryPlot(cvLmrobBox)
# aggregated results for dot plot
cvLmrobDot <- setupPerryPlot(cvLmrob, which = "dot", seFactor = 2)
perryPlot(cvLmrobDot)

## convert combined results to data frame for plotting
# all replications for box plot
cvBox <- setupPerryPlot(cv, which = "box")
perryPlot(cvBox)
# aggregated results for dot plot
cvDot <- setupPerryPlot(cv, which = "dot", seFactor = 2)
perryPlot(cvDot)

splitControl Control object for random data splits

Description

Generate an object that controls how to split n observations or groups of observations into training
and test data to be used for (repeated) random splitting (also known as random subsampling or
Monte Carlo cross-validation).

Usage

splitControl(m, R = 1, grouping = NULL)
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Arguments

m an integer giving the number of observations or groups of observations to be
used as test data.

R an integer giving the number of random data splits.

grouping a factor specifying groups of observations.

Value

An object of class "splitControl" with the following components:

m an integer giving the number of observations or groups of observations to be used as test data.

R an integer giving the number of random data splits.

grouping if supplied, a factor specifying groups of observations. The data will then be split ac-
cording to the groups rather than individual observations such that all observations within a
group belong either to the training or test data.

Author(s)

Andreas Alfons

See Also

perrySplits, randomSplits, foldControl, bootControl

Examples

set.seed(1234) # set seed for reproducibility
perrySplits(20, splitControl(m = 5))
perrySplits(20, splitControl(m = 5, R = 10))

subset.perry Subsetting resampling-based prediction error results

Description

Extract subsets of resampling-based prediction error results.

Usage

## S3 method for class 'perry'
subset(x, select = NULL, ...)

## S3 method for class 'perrySelect'
subset(x, subset = NULL, select = NULL, ...)
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Arguments

x an object inheriting from class "perry" or "perrySelect" that contains pre-
diction error results.

select a character, integer or logical vector indicating the prediction error results to be
extracted.

... currently ignored.

subset a character, integer or logical vector indicating the subset of models for which
to keep the prediction error results.

Value

An object similar to x containing just the selected results.

Note

Duplicate indices in subset or select are removed such that all models and prediction error results
are unique.

Author(s)

Andreas Alfons

See Also

perryFit, perrySelect, perryTuning, subset

Examples

library("perryExamples")
data("coleman")
set.seed(1234) # set seed for reproducibility

## set up folds for cross-validation
folds <- cvFolds(nrow(coleman), K = 5, R = 10)

## compare raw and reweighted LTS estimators for
## 50% and 75% subsets

# 50% subsets
fit50 <- ltsReg(Y ~ ., data = coleman, alpha = 0.5)
cv50 <- perry(fit50, splits = folds, fit = "both",

cost = rtmspe, trim = 0.1)

# 75% subsets
fit75 <- ltsReg(Y ~ ., data = coleman, alpha = 0.75)
cv75 <- perry(fit75, splits = folds, fit = "both",

cost = rtmspe, trim = 0.1)

# combine results into one object
cv <- perrySelect("0.5" = cv50, "0.75" = cv75)
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cv

# extract reweighted LTS results with 50% subsets
subset(cv50, select = "reweighted")
subset(cv, subset = c(TRUE, FALSE), select = "reweighted")

summary.perry Summarize resampling-based prediction error results

Description

Produce a summary of resampling-based prediction error results.

Usage

## S3 method for class 'perry'
summary(object, ...)

## S3 method for class 'perrySelect'
summary(object, ...)

## S3 method for class 'perryTuning'
summary(object, ...)

Arguments

object an object inheriting from class "perry" or "perrySelect" that contains predic-
tion error results (note that the latter includes objects of class "perryTuning").

... currently ignored.

Value

An object of class "summary.perry", "summary.perrySelect" or "summary.perryTuning", de-
pending on the class of object.

Author(s)

Andreas Alfons

See Also

perryFit, perrySelect, perryTuning, summary
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Examples

library("perryExamples")
data("coleman")
set.seed(1234) # set seed for reproducibility

## set up folds for cross-validation
folds <- cvFolds(nrow(coleman), K = 5, R = 10)

## compare raw and reweighted LTS estimators for
## 50% and 75% subsets

# 50% subsets
fit50 <- ltsReg(Y ~ ., data = coleman, alpha = 0.5)
cv50 <- perry(fit50, splits = folds, fit = "both",

cost = rtmspe, trim = 0.1)

# 75% subsets
fit75 <- ltsReg(Y ~ ., data = coleman, alpha = 0.75)
cv75 <- perry(fit75, splits = folds, fit = "both",

cost = rtmspe, trim = 0.1)

# combine results into one object
cv <- perrySelect("0.5" = cv50, "0.75" = cv75)
cv

# summary of the results with the 50% subsets
summary(cv50)
# summary of the combined results
summary(cv)
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