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RMThreshold: Short introduction

The package  RMThreshold attempts to  determine an objective threshold which separates  signal 
from noise in large real-valued, symmetric matrices. Such matrices can for instance describe corre- 
lation or mutual information between data of various origin, or might represent the set of edges in 
undirected networks.  RMThreshold takes advantage of the predictions of Random Matrix Theory 
(RMT)  for  the  distribution  of  the  spacing  between  the  eigenvalues  of  such  matrices.  That 
distribution is usually called Nearest Neighbor Spacing Distribution (NNSD). The predictions of 
RMT are valid in the limit of large matrix dimensions. RMT was initiated by Eugene Wigner in the 
context of nuclear physics in 1955 (Wigner E. P., Annals of Mathematics, 1955). 

RMT predicts two extreme scenarios for the NNSD of eigenvalues: 

1.) If the matrix elements are completely random, the NNSD is characterized by Gaussian Ortho- 
gonal Ensemble (GOE) statistics, and the shape of the NNSD resembles the Wigner-Dyson distribu- 
tion (“Wigner surmise”):

,

where s is the eigenvalue spacing and P(s) it's distribution. This distribution approaches zero for 
s = 0 which can be imagined as if there was some sort of “repulsion” between the eigenvalues.

2.) If the matrix has a non-random, modular structure (associated with block-like composition), the 
NNSD comes close to an Exponential distribution:

Both functions differ most at s = 0, where PGOE = 0 and Pexp = 1. An imaginary “repulsion” does not 
occur in the modular case, and zero-spacings between the eigenvalues frequently occur. This case 
might apply to the adjacency matrix of a large undirected network consisting of relatively indepen- 
dent clusters with weak connections between them. The connections might possibly just being noise 
by their nature. By identifying an appropriate threshold for such matrices, it should be possible to 
reveal the underlying modular structure of the network, i.e. to identify the clusters.

Now, if we assume that a matrix or a network actually has a modular structure which is hidden by 
noise, it should be possible to identify a signal-noise separating  threshold by finding the threshold 
at which the NNSD changes from the Wigner-Dyson case to the Exponential case. Consequentially, 
the  main  function  of  the  package  (rm.get.threshold)  increments  a  suppositional  threshold 
monotonically, thereby recording the eigenvalue spacing distribution of the thresholded matrix. 

A typical procedure to infer a signal-noise separating threshold by using the package RMThreshold 
may consist  of  the  following steps:  1.)  checking the  conformity  of  the  input  matrix  using  the 
function  rm.matrix.validation,  2.)  running the main function  rm.get.threshold  in order to  find a 
candidate  threshold,  3.)  optionally  repeat  running  rm.get.threshold on  a  smaller  interval  of 
thresholds, and 4.) applying the identified threshold to the matrix. The thresholded matrix created 
by the latter step should then represent the real signal. Some important steps of this procedure are 
described in more detail in the following text.
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1. Checking if a matrix is well-conditioned for the RMT-based algorithm

RMT can be applied to large, real-valued, symmetric matrices. The function  rm.matrix.validation 
can be used to assert if a matrix is suitable for the proposed algorithm: 

library(RMThreshold)
set.seed(777)
random.mat <- create.rand.mat(size = 1000, distrib = "norm")$rand.matr 
res <- rm.matrix.validation(random.matrix)    
str(res)

The function rm.matrix.validation checks the input matrix for a number of criteria:

1. The matrix must be symmetric and real-valued. These are natural properties of correlation 
matrices, mutual information matrices, and adjacency matrices for undirected networks. 

2. The matrix must be quite large because the results of RMT in the strict sense only apply for 
the limit of infinite matrices.

3. The matrix should not have a rank which is much smaller than the matrix dimensions. If the 
rank of the input matrix is low, one cannot expect a proper eigenvalue spectrum because the 
rank of the matrix determines the number of non-zero eigenvalues. 

The function  rm.matrix.validation creates several diagnostic plots. The plot created on-the-fly is 
shown in Figure 1. In total, two plots are created and saved to disk, the names of which are returned 
by the  function.  The (hard-coded)  files  names  are  matrix.validation.plot.png and  fit.unfold.png, 
respectively. 
RMT examines the local fluctuations between eigenvalues, and ignores the global properties. There- 
fore, in order to obtain a local eigenvalue spacing distribution, the eigenvalues must be “unfolded”, 
i.e. they must be scaled in such a way that the average (global) spacing is constant over the whole  
spectrum. The resulting NNSD then reflects the short-range “interaction” between the eigenvalues. 
In RMThreshold, two methods are provided for unfolding: one method is based on calculation of the 
Gaussian kernel density of the eigenvalue spectrum; another method is based on fitting a cubic 
spline function to the cumulative empirical eigenvalue distribution. The parameter unfold.method 
determines which method is used. In the above example, Gaussian kernel density – the default - was 
used. 
The magnitudes of the matrix elements (top left in Figure 1) suggest that the matrix is superimposed 
by noise. The example matrix 'random.matrix' used in the code snippet above contains matrix 
elements that are  normally distributed with mean zero (Gaussian matrix).  The top right plot  in 
Figure 1 shows the distribution of the eigenvalues of the matrix. If the matrix is well-conditioned, as 
in the case of a Gaussian matrix, the eigenvalue distribution resembles a characteristic shape called 
Wigner semi-circle. In the bottom left part of Figure 1, a scatterplot of the eigenvalue spacing is 
presented, together with a linear fit (red dotted line). The linear fit should have a slope of 0 and an  
intersect of 1, indicating that the average eigenvalue spacing is constantly 1 over the whole range, 
thereby proving that the unfolding algorithm was completed correctly. The lower right part of the 
figure presents the distribution of the eigenvalues spacings (NNSD). For a matrix dominated by 
noise, as it is the case here, this distribution is close to the Wigner-Dyson distribution, a curve that 
approaches  zero  for  small  eigenvalue  spacings.  The  theoretical  shape  of  the  Wigner-Dyson 
distribution is indicated by the blue solid line in the plot. It should be noted that the diagnostic plots 
rarely look as perfect as those shown in Figure 1. However, even if so, the algorithm might be able 
to successfully separate signal and noise. 



The second plot generated by rm.matrix.validation additionally shows the eigenvalues together with 
the  Gaussian  kernel  density  or  the  cubic  spline  function  (depending  on  the  chosen  unfolding 
method), as well as a scatter plot of the ordered original and unfolded eigenvalues (versus an index).

Fig. 1: Diagnostic plots created by the function  rm.matrix.validation showing a histogram of the 
magnitudes of the matrix elements (top left), the density of the eigenvalue distribution, compared to 
the Wigner semi-circle (top right),  a scatterplot of the eigenvalue spacing including a linear fit 
(bottom left), and the empirical distribution of the spacings between the eigenvalues of the matrix, 
together with both theoretical limiting distributions (bottom right). 



It is very instructive to have a look at another example that illustrates the two extreme scenarios for 
the NNSD mentioned above. By using the function  rm.matrix.validation, it can be demonstrated 
how  the  NNSD  can  be  used  to  distinguish  between  purely  random  and  modularly  composed 
adjacency matrices representing the edges in undirected networks.

To illustrate the random case, we create a single Erdös - Renyi graph using the igraph package in R. 
In such a graph, any two nodes are randomly connected with some given probability p. The edges 
(i.e. the elements of the adjacency matrix) are 1 if two nodes are connected, and 0 if they are not 
connected:

library(igraph); library(Matrix)
g <- erdos.renyi.game(1000, 0.1) 
rm.matrix.validation(as.matrix(get.adjacency(g)))

The corresponding validation plot is shown in Figure 2. Again, the NNSD is shown in the bottom-
right  part  of  the  plot.  It  appears  that  the  randomly distributed  non-zero  off-diagonal  elements, 
representing spurious interactions between the nodes of the graph, cause the NNSD to be Wigner-
Dyson like, where zero-spacings do not occur (“repulsion” of eigenvalues). 

Now, a modular structure is introduced into a network by first creating four smaller Erdös - Renyi 
graphs, which are thereafter assembled into a block-diagonal adjacency matrix (by using bdiag from 
the “Matrix” package). Such a matrix represents a modular network, consisting of four clusters :

matlist = list()
for (i in 1:4) matlist[[i]] = get.adjacency(erdos.renyi.game(250, 0.1))
mat <- bdiag(matlist)    
rm.matrix.validation(as.matrix(mat))   

The validation plot for the second scenario is shown in Figure 3. Notably, the NNSD (bottom-right) 
now resembles the Exponential distribution. 

As mentioned above, we can find a proper signal-noise separating threshold by exploiting the fact 
that the NNSD differs between the two scenarios. In order to do so, the function rm.get.threshold 
can be used.



Fig. 2: Validation plot for the adjacency matrix obtained for a single Erdös-Renyi graph. The NNSD 
(bottom right) resembles the Wigner-Dyson distribution, illustrating that the underlying structure of 
the  matrix  is  completely  random.  In  particular,  eigenvalue  spacings  close  to  zero  rarely  occur 
(“repulsion” of eigenvalues).



Fig. 3: Validation plot for an adjacency matrix composed of four smaller Erdös-Renyi graphs. The 
matrix exhibits a block-diagonal structure, and therefore represents a modular network. Here, the 
NNSD (bottom right) resembles an Exponential distribution. Zero-eigenvalue spacings frequently 
occur for this scenario.



2. Finding a candidate signal-noise separating threshold for the matrix

The function rm.get.threshold is the main function of the package. In the simplest case, it can be 
used as follows:

set.seed(777)
random.mat <- create.rand.mat(size = 1000, distrib = "norm")$rand.matr 
res <- rm.get.threshold(random.matrix)
str(res)

The function rm.get.threshold takes a random matrix as input and applies a sequence of increasing 
suppositional thresholds on it by setting all matrix elements to zero whose absolute magnitude is 
below the actual threshold. The eigenvalue spectrum is then calculated and unfolded by one of the 
two  methods  mentioned  above,  again  controlled  by  the  parameter  unfold.method.  From the 
unfolded  eigenvalues,  the  NNSD is  derived.  According  to  RMT,  that  distribution  undergoes  a 
characteristic change when the threshold properly separates signal from noise. For low thresholds, if 
the assumed modular structure is still covered by noise, the NNSD is close to the Wigner-Dyson 
distribution. This means that the applied threshold was too low, leaving spurious matrix elements 
which should also be set to zero.  
When the threshold has reached sufficiently high levels, the assumed modular (block-like) structure 
of the matrix starts to prevail.  The NNSD then switches to an Exponential  distribution. During 
program execution, this change is monitored in a plot window showing the NNSD and the two 
limiting distributions (read and blue lines, respectively). Figure 4a shows the NNSD for a low 
threshold,  when the thresholded matrix  is  still  ruled by noise.  The modular case is  depicted in 
Figure 4b, where the histogram shape comes close to the Exponential distribution.
By thresholding the matrix,  rows and columns exclusively containing zeros in  the off-diagonal 
matrix  elements  likely  emerge.  The parameter  min.mat.dim determines  the  minimum allowed 
number  of  non-zero  rows  and  columns  of  the  probed  matrix  during  the  loop  over  increasing 
thresholds. The loop is stopped if this number is getting below the chosen value for min.mat.dim. 
The default for that parameter is 40. 
For each threshold, a distance between the empirical eigenvalue spacing distribution and both limi- 
ting distributions is estimated. Two methods of distance computation are implemented: a method 
based on computation of the log likelihood of the empirical eigenvalue spacing, and a method based 
on calculation of the Kullback-Leibler divergence between the NNSD and the limiting distributions. 
The parameter  dist.method determines which method is used (default is “LL” which uses log 
likelihood).
Two additional parameters are critical for proper functioning of the algorithm. Depending on the 
structure of the matrix, it might occur that the eigenvalue spectrum includes outlier eigenvalues 
located far away from the bulk of the spectrum. For some types of input matrices,  it  might be 
necessary to remove such outliers, in order to ensure that the unfolding process works correctly. 
This is achieved by the setting discard.outliers = TRUE, which is the default setting. In some 
other cases, it might not be necessary to remove the outliers. 
Another  critical  parameter  is  discard.zeros.  If  set  to  TRUE,  rows  and  columns  exclusively 
containing zeros outside the main diagonal are removed from the matrix at each threshold. This 
causes the matrix to shrink during the loop over thresholds. Setting  discard.zeros = TRUE is 
especially recommended when the eigenvalue spacing distribution piles up at the left tail of the 
NNSD during thresholding. 



Fig.  4a:  Eigenvalue 
spacing distribution for 
a  low  threshold  of 
0.095.  The  matrix  is 
ruled by noise, and the 
NNSD  resembles  the 
Wigner-Dyson 
distribution.

Fig.  4b:  Eigenvalue 
spacing  distribution  for 
a  high  threshold  of 
3.684.  Now,  the  matrix 
has a block structure be- 
cause  spurious  matrix 
elements  induced  by 
noise  have  been  remo- 
ved.



The distance of the empirical NNSD to the limiting distributions is not calculated over the whole 
range of eigenvalue spacings, but over an interval (0, max.ev.spacing).  At a spacing of zero, 
the difference between the Wigner-Dyson and the Exponential distribution is biggest. The max- 
imum spacing considered is determined by the parameter max.ev.spacing. This parameter should 
not be lower than √(2/π) , where the peak of the Wigner-Dyson distribution resides. On the other 
hand, is does not make sense to choose too high values for  max.ev.spacing, because both the 
Wigner-Dyson and the Exponential distribution assume rather low values at the right tail, not worth 
to compare with empirical results.
If the matrix contains an inherent modular structure which is covered by noise, a relatively sharp 
transition from the Wigner-Dyson case to the Exponential case takes place when the threshold is 
increased  gradually.  This  is  confirmed in  a  plot  showing up after  completion  of  the  loop over 
thresholds, as presented in  Figure 5. The plot shows the calculated distance between NNSD and 
both  limiting  distributions  versus  applied  threshold.  At  a  certain  threshold,  a  striking  change 
becomes apparent: while the log-likelihood belonging to the Wigner-Dyson limit increases sharply 
(red curve), the log likelihood based on the Exponential case decreases (blue curve). Note that the 
plot actually shows the negative log-likelihood per eigenvalue.

Fig. 5: A plot showing the distances of the NNSD to both limiting distributions (Wigner-Dyson  and 
Exponential distribution). Log likelihood was used as a distance measure. At a certain threshold (of 
about 3.2), a distinct change occurs. Candidate thresholds have been marked in this plot using the 
left mouse button (indicated by the labels close to the points). 



In this plot, the user can choose candidate thresholds by clicking with the left mouse button on the 
points of the red-colored curve. The selection is terminated by a right mouse-click somewhere on 
the plot. The hereby chosen candidate thresholds are returned by the function. 
Two additional plots pop up after completion of the loop (if interactive = TRUE was chosen). 
The first one shows the p-values for the Kolmogorov-Smirnov test for significance of difference 
between empirical NNSD and Exponential distribution versus chosen thresholds. The NNSD can be 
considered close to the  Exponential distribution if the p-values rise. The second plot shows some 
sort of Sum of Squared Errors (SSE) between empirical NNSD and Exponential function versus 
thresholds.  The NNSD comes close to the Exponential  function if  the SSE drops considerably. 
Likewise, in both plots, candidate thresholds can be marked using the mouse.

In Figure 5, the (somewhat scaled) log likelihood was used as a distance measure. We can also use 
the Kullback-Leibler divergence to estimate the distance to the limiting distributions: 

res <- rm.get.threshold(random.matrix, dist.method = "KLD")   

which results in a similar plot (not shown).

In the next example, we refrain from removing outliers in the eigenvalue spectrum:

res <- rm.get.threshold(random.matrix, discard.outliers = F)

For the random input matrix created above, retaining outliers is not a problem. However, it must be  
noted that outliers actually can cause problems for other types of matrices. 

3. Uncovering the modular structure of a network by thresholding the adjacency matrix

In order to show how the function rm.get.threshold can be used to find a threshold which removes 
noise from a matrix or network, it is again worthwhile to look at a random graph created using the 
igraph package. As in section 1, four Erdös - Renyi graphs are created and subsequently assembled 
into a block-diagonal matrix, representing a modular network with four clusters:

## Create modular matrix and validate:
matlist = list()
set.seed(979)
for (i in 1:4) matlist[[i]] = get.adjacency(erdos.renyi.game(250, 0.1))
mat <- bdiag(matlist)  
rm.matrix.validation(as.matrix(mat))

As expected, the NNSD (bottom right of the plot) is exponential because the matrix is modular. 
Furthermore,  we can reveal the clustered structure of the corresponding graph with the  clusters 
command of the igraph package:

m <- mat != 0
g  <- graph.adjacency(m, mode = "undirected")
clusters(g) # 4 clusters of size 250, as expected



Now, we hide the modular structure of the matrix by adding Gaussian noise to it using the function 
add.Gaussian.noise from the RMThreshold package:

set.seed(979)
mat1 = add.Gaussian.noise(as.matrix(mat), mean = 0, stddev = 0.1)
rm.matrix.validation(mat1)

A validation of that new, noisy matrix (mat1) reveals that it is completely random – the NNSD is 
Wigner-like (bottom-right of the validation plot). A modular structure is no longer visible, and the 
whole matrix seems to consist of a single large cluster, because spurious matrix elements have been 
generated which now connect the true clusters:

m1 <- mat1 != 0
g1  <- graph.adjacency(m1, mode = "undirected")
clusters(g1) # a single big cluster with 1000 nodes

Next, we try to find a threshold for the adjacency matrix that removes the noise, i.e. we try to set 
those matrix elements to zero that are noise by their nature: 

res <- rm.get.threshold(mat1) # noisy matrix as input

We can assume the threshold somewhere between 0.52 and about 1 where a plateau in the distance 
plot appears. Trying with 0.6, we should be able to reconstruct the original clusters by using the  
command rm.denoise.mat which simply applies the identified threshold to the noisy matrix:  

cleaned <- rm.denoise.mat(mat1, 0.6)
matr <- cleaned != 0
g  <- graph.adjacency(matr, mode = "undirected")
clusters(g) # 4 clusters reconstructed  

It appears that the four original clusters have been successfully reconstructed. 

4. Running the main algorithm on a smaller interval of thresholds

The  main  function  of  RMThreshold records  the  eigenvalue  spacing  distribution  at  each 
suppositional threshold. By default, the interval of searched thresholds ranges from the minimum 
absolute value of all matrix elements to the maximum absolute value of all matrix elements. This 
interval can be narrowed down by adjusting the parameter interval: 

res <- rm.get.threshold(random.matrix, interval = c(2.5, 3.5))

The above command only searches thresholds between 2.5 and 3.5 (recall that the threshold found 
for the matrix 'random.matrix' was about 3). The result of the refined search is shown in Figure 6. 
However, in most of the cases, searching a smaller interval of thresholds might not be necessary.



Fig. 6:  A plot showing the distances between NNSD and both limiting distributions. A smaller 
interval of thresholds was searched by setting the interval parameter to (2.5, 3.5).

5.  Applying the identified threshold to the matrix

We have already seen in section 3 how the command rm.denoise.mat can be used to remove spuri- 
ous matrix elements from adjacency matrices. For the matrix 'random.matrix', we had identified a 
threshold of about 3.2 (section 2, Figure 5):

cleaned.matrix <- rm.denoise.mat(random.matrix, threshold = 3.2)
cleaned.matrix <- rm.discard.zeros(cleaned.matrix)   
dim(cleaned.matrix)

The first command sets all matrix elements whose absolute value is below 3.2 to zero. The second 
command can be used if discard.zeros = FALSE had been chosen during execution of the main 
function. It removes those rows/columns of the matrix that exclusively contain zeros outside of the 
main diagonal (with regard to networks, it removes isolated nodes). 



Finally, let us try to find clusters in the graph corresponding this matrix, i.e. let's assume that it was 
an adjacency matrix:

m3 <- cleaned.matrix != 0
g3  <- graph.adjacency(m3, mode = "undirected")
clusters(g3)

Here, we cannot expect a clear clustered structure, because the matrix is exclusively built up from 
Gaussian noise (by using the function create.rand.mat). 
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