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Summary

A generalization of the transmission/disequilibrium test
to detect association between polymorphic markers and
discrete or quantitative traits is discussed, with particular
emphasis on marker haplotypes formed by several ad-
jacent loci. Furthermore, strategies for testing haplotype
association, using methods from spatial statistics, are
developed. This approach compares the “similarity” of
transmitted and untransmitted haplotypes, with the aim
of determining the regions where there is greater simi-
larity within the transmitted set. This arises from the
fact that, although the original haplotypes carrying the
mutation will be broken down by recombination, there
may be a subset of markers near the mutation that are
common to many of the recombinant haplotypes. Thus,
by examination of each marker in turn and by mea-
surement of the average size of the region shared iden-
tically by state in the transmitted and untransmitted hap-
lotypes, it may be possible to detect regions of linkage
disequilibrium that encompass the susceptibility gene.

Introduction

Association studies look for specific alleles at a marker
locus that are more frequent in affected individuals
(cases) than in the unaffected population (controls). Pop-
ulation-based studies compare allele frequencies in cases
and controls, but this methodology has been criticized
as prone to false positives due to population admixture.
An alternative method is based on cases and both their
parents and uses nontransmitted alleles as family-based
controls (Falk and Rubinstein 1987; Terwilliger and Ott
1992; Spielman et al. 1993).

In order for association to be detectable between a
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marker and a disease, the marker must be sufficiently
close to the susceptibility locus to be in linkage disequi-
librium with it. Furthermore, the causal mutation must
appear in combination with a relatively infrequent
marker allele, since, otherwise, the increased risk asso-
ciated with the marker allele will be modest. To maxi-
mize the chances of these conditions being met, many
closely spaced markers must be used. Typically, such
studies have considered each marker locus separately,
making some correction for multiple testing. However,
an attractive feature of the use of family data in the
transmission/disequilibrium test (TDT) is that it permits
study of the transmission of haplotypes that extend over
several adjacent markers. Descriptive analyses have
shown that such data may produce more-convincing ev-
idence of association, by identifying ancestral marker
haplotypes (Degli-Esposti et al. 1992). The present re-
port is a preliminary attempt to put such analyses on a
more formal quantitative basis.

In the next section, the parameterization of statistical
models for allelic association is reviewed. Here and in
the subsequent section the TDT is presented as a score
test against parametric models for allelic association
with qualitative and quantitative traits, respectively. It
is then shown that these simple methods are no longer
adequate for extended haplotypes, and an alternative
approach based on score tests in a hierarchical proba-
bility model is described. Finally, a case study is pre-
sented, and its implications for further work are
discussed.

Generalizations of the TDT

At a particular locus, the genotype g consists of a pair
of haplotypes, (i,j). There is genetic association when,
at the population level, the risk of disease depends on
the genotype. If pg is the disease risk conditional on
genotype , then the genotype relative risk (GRR)g = (i,j)
fg is defined by . For identifiability, an arbitraryp = p fg 0 g

linear constraint must be imposed on the GRRs. If there
are H distinct haplotypes, then there are G = H(H 1

distinct genotypes, and, even for moderate values1)/2
of H, many GRR parameters are required in order to
model the association. Considerable simplification may
be achieved by adopting the multiplicative model

, the parameters being haplotype rel-bilog f = b 1 b e(i,j) i j
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ative risks (HRR) (again, it will be convenient to take
the first haplotype as reference, so that ).b1b = 0,e = 11

With this model, the (i,j) heterozygote genotype carries
a relative risk equal to the geometric mean of the relative
risks for the homozygote genotypes. In this model,
marker-disease association is represented in terms of

parameters.H 2 1
It might be argued that the multiplicative model rep-

resents a rather strong assumption. A less restrictive
model, which includes the multiplicative model as a spe-
cial case, is the generalized haplotype risk model:

1
[ ]h(f ) = b 1 b = h(f 1 h(f ) , (1)(i,j) i j (i,i) (j,j)2

where h() is an (unspecified) monotone increasing func-
tion. In this more general model, the parameters bi and
bj will be referred to as haplotype “effects.” As in the
multiplicative case, the model predicts that f(i,j) is inter-
mediate between f(i,i) and f(j,j), but its precise placement
in this range depends on which h() is chosen. The tests
discussed in this report have optimal properties against
this wider class of alternatives. Note that the model does
not include pure dominant or pure recessive scenarios
in which f(i,j) is equal to f(i,i) or f(j,j). However, even if
this pattern holds at the disease locus, it will not, in
general, hold at a marker locus in disequilibrium with
it. In simulation studies, not reported here, it has been
shown that association due to linkage disequilibrium
with a causal locus can, when the appropriate h() is
chosen, be closely approximated by the generalized HRR
(GHRR) model (eq. [1]).

The reduction of the number of parameters to H 2
allows the construction of tests with reasonable power1

for single-locus markers, even with microsatellite mark-
ers. Association may be demonstrated either by use of
population-based case-control studies or by transmis-
sion/disequilibrium studies based on cases and their par-
ents (Falk and Rubinstein 1987; Terwilliger and Ott
1992; Spielman et al. 1993; Bickeböller and Clerget-
Darpoux 1995). Although there is the potential that the
ideas developed here can be applied in population-based
case-control studies, haplotype phase is difficult to assign
in such studies, and this report will concentrate on the
transmission/disequilibrium approach. In the remainder
of this section, these methods are briefly reviewed and
some notation is introduced.

The TDT can be derived as a score test of the hy-
pothesis of no association against the GHRR model (eq.
[1]), by use of a likelihood constructed by arguing con-
ditionally on parental genotypes and the presence of dis-
ease in the offspring (Self et al. 1991; Schaid 1996). If
the mother and father of the case have genotypes (p,q)
and (r,s), respectively, then the set of possible offspring
genotypes is . The contributionG = {(p,r),(p,s),(q,r),(q,s)}

of the family to the conditional likelihood for the GRR
parameters is the conditional probability that the off-
spring has genotype c, conditional on parental genotypes
and on having developed disease: , so that thef /S fc gPG g

contribution to the log likelihood is

log f 2 log f . (2)Oc g
gPG

Since , the log likelihood may be written21f = h (b 1 b )(i,j) i j

as a function of the haplotype effects b.
The first stage of the derivation of the score test in-

volves the calculation of the vector of the first derivatives
of the log-likelihood function, evaluated at the null hy-
pothesis. The contribution of a single parent-offspring
trio to the ith element of this vector is obtained by dif-
ferentiation of formula (eq. [2]) with respect to bi,
yielding

N(i,c) N(i,g)
2 f ,O OZ g{ }′ ′f h (f ) h (f )gPG gPGc c g

where N(i,g) counts the occurrence of haplotype i in
genotype g (taking values 0, 1, or 2), and h′(f) is the
first derivative of the function h(f). At the null hypoth-
esis, for all g, and the expression simplifies tof = 1g

1 1
N(i,c) 2 N(i,g) . (3)O{ }′h (1) 4 gPG

Note that N(i,c) counts the transmissions of haplotype
i to the affected offspring in this family, whereas

counts the expected number of such trans-1S N(i,g)gPG4

missions under simple Mendelian inheritance. It follows
that the total score vector is , where t is1

′U = (t 2 e)h (1)

the vector of counts of observed transmissions of hap-
lotypes to affected offspring, and e is the vector of ex-
pected transmissions under Mendelian inheritance.

The next step in the derivation of the score test is to
calculate the variance-covariance matrix of the score vec-
tor in repetitions of the study, . Standard like-V = Var(U)
lihood theory (e.g., see Cox and Hinkley 1974) shows
that this is given by minus the expected value of the
second derivative matrix of the log likelihood, again
evaluated at the null hypothesis. Some calculus shows
that each parent-offspring trio makes a contribution, to
Vij, of vij/[h

′(1)]2, where vij is the covariance between
N(i,g) and N(j,g), over the possible values for g:

O N(i,g)N(j,g) O N(i,g) O N(j,g)
gPG gPG gPGv = 2 . (4)ij 4 4 4

A z-test for the effect of a specific haplotype, i (i.e., a
test of ) is obtained by dividing the corre-H : b = 00i

sponding element of the score vector, Ui, by its SD,
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. Equivalently, (Ui)
2/Vii can be compared with theÎVii

x2 distribution and 1 df. Note that the constant h′(1) is
eliminated from these statistics. This test is identical to
the TDT as described by Spielman et al. (1993).

When there are several haplotypes, testing each one
in turn presents a multiple-testing problem. Correction
for multiple testing in these circumstances has been dis-
cussed by Morris et al. (1997), but it can be expected
to be an optimal test only when only one haplotype has
a increased risk. An alternative approach is to use the
score test that tests the global null hypothesis that all
the haplotype effects are 0. This generalizes the (Ui)

2/Vii

test to the matrix expression

T 2U V U , (5)

where V2 denotes a generalized inverse of the matrix V.
Asymptotically, the log-likelihood function approaches
a quadratic function of the parameters, b, and statistic
([5]) approaches twice the difference, in log likelihood,
between its value at the null hypothesis and its value
after maximization with respect to all the HRR param-
eters. The statistic is asymptotically distributed as x2

with df equal to the rank of V—usually . AgainH 2 1
the constant h′(1) cancels, and, without loss of generality,
it will be assumed that in the subsequent dis-′h (1) = 1
cussion. This test is closely related to the Stuart-Maxwell
test of marginal homogeneity (Stuart 1955; Maxwell
1970).

When H is large in comparison with the sample size,
this asymptotic test will not generally be reliable, since
the elements of U will be calculated from small observed
and expected frequencies (Sham and Curtis 1995). How-
ever, the exact distribution of the test statistic under the
null hypothesis can be evaluated by simulation. To sim-
ulate the outcome of the study under the null hypothesis
and conditioning on the observed parental genotypes,
each offspring genotype is chosen at random, treating
all four possibilities as equally probable. Each simulation
yields a vector of transmission counts, t*, and a corre-
sponding score vector . When this simula-∗ ∗U = (t 2 e)
tion is repeated many times and the observed value of

is compared with its simulation distribution, anT 2U V U
accurate P value may be calculated.

It should be noted that, although U has the form of
a difference between observed and expected frequencies
of transmitted haplotypes, test statistic ([5]) is not equal
to a conventional x2 test statistic. However,2O (O 2 E) /E
such a test is obtained if the argument of Falk and Ru-
binstein (1987) is adopted and the untransmitted hap-
lotypes are treated as an unmatched “control” sample
for the “cases”—that is, the transmitted haplotypes. This
test replaces V2 by a diagonal matrix with elements
equal to the reciprocals of the expected frequencies, e.
This consistently estimates the correct value only if

Hardy-Weinberg equilibrium exists in the parents, and
the asymptotic distribution of the Terwilliger-Ott test
statistic will be x2 only under these circum-(H 2 1)
stances. This form of the test avoids a matrix inversion,
and, for this reason, Bickeböller and Clerget-Darpoux
(1995) advocated its use, pointing out that, when its
assumptions are not met, the asymptotic x2 approxi-
mation is conservative. However, if the exact distribution
of the statistic is calculated by simulation, this inaccu-
racy is corrected, and, for large values of H, the simpler
computation of this statistic makes it the more natural
choice.

In the foregoing discussion, no real distinction has
been made between the problem of a multiallelic marker
at a single locus and the problem of a multilocus hap-
lotype; both are simply polymorphic markers. In prac-
tice, however, the global statistic is much less useful in
the latter case, since H is so large that the test has little
power. The lack of power is a consequence of the lack
of specificity in the alternative hypothesis, which simply
states that the haplotype effects are different from one
another. This ignores the fact that, when multilocus hap-
lotypes are considered, it is likely that haplotypes that
derive from common ancestral haplotypes may have sim-
ilar risks. Below, it is shown that better tests can be
devised under such circumstances and that these tests
also have the form of quadratic functions of the score
vector of differences between observed and expected
transmissions. First, a further extension to the TDT,
dealing with associations with quantitative traits, is
described.

Quantitative Traits

The TDT method can also be used to detect associ-
ations between markers and quantitative traits (Allison
1997). A convenient model for association between a
marker genotype, g, and a quantitative trait, z, is the
normal model . Tests could be constructed2z ∼ N(m ,j )g

on the basis of standard-normal theory, treating z as the
response variable. However, this approach would not
allow for designs that select study subjects from extremes
of the trait distribution, and it is generally preferable to
condition on offspring trait value, z, and parental gen-
otypes and to treat transmission as the random response.
In the absence of knowledge of z, the four genotypes

are equally probable, so that the posterior prob-g P G

ability that the genotype c is transmitted, given z, is

f[(z 2 m )/j]cPr(cFz,G) = ,O f[(z 2 m )/j]g
gPG

where f[] represents the standard-normal density func-
tion and, as before, is the set of four possible offspringG
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genotypes, given the parental genotypes. When the de-
viations of the genotype-specific means from the overall
population trait mean are written as and dgd = m 2 mg g

are assumed to be small (so that terms in can be2dg

ignored), this conditional probability can be approxi-
mated by

2exp [d (z 2 m)/j ]cPr(cFz,G) ≈ .2O exp [d (z 2 m)/j ]g
gPG

Note that, for the purpose of construction of score tests
of the null hypothesis, it is the behavior of the log-like-
lihood function around that is of concern, so thatd = 0g

the assumption of small dg is legitimate here.
Analogously to the GHRR model (eq. [1]), it is further

assumed that, on some arbitrary scale, the genotype ef-
fects on the trait mean may be decomposed into sums
of haplotype effects: . This modelh(m ) = h(m) 1 b 1 b(i,j) i j

predicts that , so that theh(m ) = [h(m ) 1 h(m )]/2(i,j) (i,i) (j,j)

mean for heterozygotes is intermediate between the two
homozygote means, its precise location depending on
which h() is chosen. With this model, the contribution
of each family to the ith element of the score vector is

1 1
(z 2 m) N(i,c) 2 N(i,g) .O{ }′ 2h (m)j 4 gPG

The first term is a constant that cancels in subsequent
calculations, and, again with no loss of generality, it can
be set to 1. When the remainder of the expression is
compared with the equivalent contribution in the dis-
crete-trait case (eq. [3]), it can be seen that the terms
delimited by curly braces {} are identical, being equal to
the difference between observed and expected numbers
of transmissions of haplotype i to the offspring. In the
quantitative-trait case, this contribution is weighted by

. Thus, offspring with extreme values of the trait(z 2 m)
z receive more weight in the score vector, those with
high values receiving positive weight and those with low
values receiving negative weight. The corresponding
contribution of a trio to Vij,, after the value of h′(m)j2 is
set to 1, is , where vij is given by equation (4).2(z 2 m) vij

An asymptotic x2 test on df is similarly providedH 2 1
by UTV2U, but a more accurate test can be calculated
by simulation. As above, simplified computation can be
achieved by replacing V by its expectation under the
assumption of Hardy-Weinberg equilibrium in the par-
ents. In this case, V2 is replaced by a diagonal matrix
with elements , where n is the number2 21{e S(z 2 m) /n}i

of trios.

Structured Alternatives

The move from a single-marker locus to a marker
haplotype involving several loci results, first, in a con-
siderable increase in polymorphism and in a commen-
surate increase in the number of association parameters.
However, it also brings the need to consider rather more
carefully the space of alternative hypotheses, since the
global test for association will usually lack power against
plausible, more restricted alternatives.

The measurement of one subject in a TDT study rep-
resents assignment to one cell of a multidimensional con-
tingency table. Thus, a natural starting point for the
discussion of association structure is the log-linear model
(Chiano and Clayton 1998). For disease phenotype D
and marker loci A, B, and C in known order, the possible
tests for association form a hierarchy:

A.D
(A ∗ B).D

B.D (A ∗ B ∗ C).D .
(B ∗ C).D

C.D

In this notation, now conventional in generalized linear
modeling, the term (A*B).D expands to A.D 1 B.D 1

, representing first-order associations betweenA.B.D
marker and disease plus the second-order association.
The test against this class of alternatives is calculated as
described in previous sections, by counting the trans-
missions of AFB haplotypes.

For the most part, analyses involving a series of ad-
jacent markers have been concerned with the problem
of disequilibrium mapping—estimating the location of
the causal locus. Most analyses consider tests of first-
order disease-marker associations (A.D, B.D, etc.), al-
though it must be noted that the most informative
marker is not necessarily the marker that is physically
closest. Lazzeroni (1998) has addressed this problem by
combining evidence from surrounding markers with ap-
propriate weighting for informativeness, but that work
still concentrates on first-order marker-disease associa-
tion, and tests based on such association will not always
be optimal. In a given population, the mutations that
are causal in disease etiology will have arisen on one or
more ancestral haplotypes (Degli-Esposti et al. 1992)
and thereafter will have spread to other haplotypes by
recombination. Early on in this process, very-high-order
association will exist, and the most powerful test for
association will be a very-high-order association test,
since the strength of the high-order effect more than
outweighs the large number of df. However, this advan-
tage will not survive in perpetuity, since the high-order
effect will be rapidly diluted by recombination. This can
be demonstrated by consideration of a disease gene G
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Figure 1 Calculation of similarity matrix for the haplotypes.
When a specific locus is considered to be the “focus,” the similarity
between any two haplotypes is taken as the length of the region shared
IBS around this focus.

lying between markers A and B, with recombination
probabilities vAG and vBG in the intervals AG and BG,
respectively. If joint distributions at generation n are de-
noted by [7,7]n and the marginal distributions of alleles
at each locus are assumed to remain constant, it is easily
shown that

{ }[A,G] 2 [A][G] = (1 2 v ) [A,G] 2 [A][G] ,n AG n21

so that the first-order association between A and disease
phenotype D will be attenuated by a factor at1 2 vAG

each successive generation (Lange 1997). Similarly, the
first-order B.D association falls away at a rate of 1 2

. Similar arguments show that higher-order associa-vBG

tions fall away more rapidly; for example,

[A,G,B] [G] 2 [A,G] [B,G] = (1 2 v )(1 2 v )n n n AG BG

#{[A,G,B] [G] 2 [A,G] [B,G] } ,n21 n21 n21

so that the second-order A.B.D association falls away
at the rate . Higher-order associations(1 2 v )(1 2 v )AG BG

fall away at progressively more rapid rates. It follows
that the best level at which to seek association will vary
from one situation to another. There would seem to be
no alternative to searching the hierarchy of tests, al-
though this will lead to a multiple-testing problem.

An alternative approach may be borrowed from spa-
tial statistics. Tests for association between some re-
sponse variable and spatial location commonly suffer
from the same problems that are faced here; the large
number of spatial locations that must be considered
leads to tests on many df, which lack power against
more-specific alternatives. In that setting, the problem is
addressed by making use of additional information con-
cerning spatial contiguity of the locations. It is argued
that, if the response variable tends to be high in one
location, then it also will tend to be high in nearby lo-
cations. Such tests were proposed by Moran (1948) and
Geary (1954). For a full discussion of such tests in spatial
statistics, see the work of Cliff and Ord (1973) and Cres-
sie (1993). In the present report, analogous statistics
based on measures of haplotype similarity are proposed.
The rationale is that haplotypes that have a common
ancestor are likely to have more-similar relative risks
than do two unrelated haplotypes, since they are more
likely to carry the same allele of the susceptibility locus.
In particular, all haplotypes derived from the haplotype
carrying the original mutation by recombination be-
tween flanking markers will have similar or identical
relative risks.

Geary-Moran tests may be derived as score tests
against random-effects alternatives, if it is assumed that
the haplotype effects, b, are random effects generated by
a stochastic model that has the property that “similar”

haplotypes tend to have similar b’s. Although it is pos-
sible to conceive of population-genetic models that
would have such a property, such models are complex
and speculative. Instead, an empirical approach is
adopted, in which b is generated by a multivariate nor-
mal “prior” distribution with variance-covariance ma-
trix uS, where S is a known matrix expressing haplotype
“similarity” and n is a single “hyperparameter” deter-
mining the extent of association. The possible use of a
model of this form for Bayesian estimation of haplotype
effects has been suggested by Thomas et al. (1995). With
this model, the null hypothesis is expressed as H : n =0

, and a score-test statistic based on differentiation of0
the log likelihood with respect to n is UTSU. Some un-
derstanding of the nature of this statistic is given by
consideration of the situation in which haplotypes are
classed either as similar ( ) or dissimilar ( ). InS = 1 S = 0ij ij

these circumstances, the statistic given above sums the
differences over groups of similar haplotypesU = t 2 ei i i

before squaring them.
The expectation of this statistic under the null hy-

pothesis is Trace(VS), but higher moments depend
strongly on asymptotic multivariate normality of U.
Since many elements of U may be calculated from very
small observed and expected transmission frequencies,
this cannot usually be assumed. As before, the distri-
bution of this statistic under the null hypothesis is best
evaluated by simulation.

A natural measure of the similarity between two hap-
lotypes is the length of the contiguous region over which
they are identical by state (IBS). Since there may be more
than one such region and since interest will generally
focus not only on the existence of association but also
on the likely location of a causal locus, it is also natural
to further restrict the definition of similarity, to require
IBS at one “focal” locus. This is illustrated in figure 1.
With this similarity metric, there are parallels between
this test for association in TDT studies and tests based
on haplotype sharing by seemingly unrelated cases in the
general population (te Meerman et al. 1995; de Vries et
al. 1996).
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Table 1

P Values, Each Based on 5,000 Monte Carlo Simulations, for the Hierarchy of Association
Tests

MARKER OR

SEPARATION

P FOR ORDER OF ASSOCIATIONa

1 2 3 4 5 6 7 8 9 10

1 .162
50 kb .108
2 .793 .012
40 kb .029 .002
3 .044 .132 .030
70 kb .083 .068 .260
4 .112 .283 .234 .200
60 kb .461 .108 .160 .540
5 .365 .238 .187 .394 .593
20 kb .016 .423 .579 .416 .667
6 .718 .037 .513 .494 .405
70 kb .341 .160 .478 .392
7 .153 .087 .062 .272
45 kb .148 .065 .029
8 .150 .005 .023
60 kb .033 !.001
9 .899 .033
135 kb .658
10 .475

a First-order tests look for association between a single marker and the disease phenotype,
second-order tests look for association between two-marker haplotypes and disease, and so on.

Although the length of the haplotype shared IBS
around a focal locus is an obvious measure of haplotype
similarity, any monotone function of this distance could
be used in its place. For example, use of the square of
the distance shared IBS will generate a test that gives
more weight to longer shared haplotypes, whereas use
of the square root of the length will give less weight to
longer shared haplotypes. This will, in turn, make the
test more or less sensitive to high-order association in
the log-linear hierarchy. The choice of focal locus and
of similarity metric thus provide ways of “tuning” the
test that are directly analogous to searching the test hi-
erarchy. As in that case, this introduces a multiple-testing
problem. Analytical expressions for the correlations be-
tween tests with different similarity matrices can be de-
rived and would allow an approximate correction for
multiple testing, but this will not be pursued further here.

Type I Diabetes and Chromosome 18q21

As an example of the method, data from a large study
of IDDM6, comprising of 10 highly polymorphic mark-
ers on chromosome 18q21, was examined (Merriman
et al. 1997). In 1,160 parent-offspring trios, phase could
be assigned unequivocally in 861, providing 1,712 in-
formative transmissions. There were a total of 1,719
distinct haplotypes observed in the families. Although
linkage studies implicate a causal locus in this region,
its existence is not universally accepted. Nevertheless,

these data serve to demonstrate some of the problems
outlined and to demonstrate the methods proposed.

The P values for the hierarchy of association tests are
shown in table 1. The P values are for global tests of
association, equivalent to a multiple-df x2 test, although
the exact P values have been estimated by Monte Carlo
methods. In single-locus (first-order association) analy-
ses, only one marker (marker 3) achieves conventional
levels of statistical significance. Nevertheless, the results
are, at least informally, suggestive of association in the
region: of the 55 tests shown, 18 have , 13 haveP ! .1

, and 3 have .P ! .05 P ! .01
The strongest findings are associations with haplo-

types for markers 1–4 and with haplotypes for markers
7–10. If genuine, these results, which point to opposite
ends of the region, seem puzzling. However, such find-
ings are not necessarily contradictory; there may be a
number of ancestral haplotypes with anomalous risks
(both high and low), and different parts of these hap-
lotypes may be maximally informative. As an example,
consider a problem in which the ancestral mutation has
occurred midway between the second and third of four
markers, on the haplotype 4-8-6-3. If “normal” x-8-6-
x haplotypes are common, then the observed associa-
tions of disease with haplotypes based on loci 1 and 2
or with haplotypes based on loci 3 and 4 could be
stronger than the association with haplotypes based on
loci 2 and 3, which bracket the causal locus. In effect,
this is the same difficulty that arises when first-order
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Table 2

Geary-Moran Tests for Association

FOCAL

LOCUS

P VALUE, FOR POWER

TRANSFORMATIONa

Square
Root Linear Square

1 .742 .595 .512
2 .662 .519 .477
3 .017 .044 .246
4 .007 .010 .068
5 .248 .136 .139
6 .620 .373 .228
7 .208 .169 .128
8 .237 .201 .172
9 .739 .511 .258
10 .237 .200 .139

a Each P shown is based on 5,000 Monte
Carlo simulations.

associations are interpreted. It should also be noted that
the dilution of high-order associations when the lower-
order margins are examined will not usually occur sym-
metrically. For example, if the association is limited to
a single high-risk AFB haplotype that falls on a common
A allele but on a rare B allele, then, if A and B are in
linkage equilibrium in the general population, the first-
order association with A suffers more attenuation than
does the association with B.

The results of the various Geary-Moran tests are
shown in table 2. The similarity metric used is a power
of the length of the IBS region measured from midway
between the last shared and first unshared locus on either
side of the focal marker locus. Three power transfor-
mations are investigated. Here the use of a similarity
metric that gives increased weight to long haplotypes
obscures the association. This may reflect the fact that
the association observed is of a rather low order. For
any choice of similarity metric, there is a suggestion of
significant association only if “similarity” of haplotypes
requires sharing IBS at locus 4.

Discussion

Testing for association with clusters of closely linked
markers presents a variety of statistical problems, and
the methods outlined here represent only some of the
possible approaches. It is clear that there is a long way
to go, but some general principles emerge. First, disease-
marker associations may not be detectable as first-order
associations between single markers and disease but may
require consideration of extended marker haplotypes.
Second, for multiple markers, the rapid increase in the
number of haplotypes, H, with an increasing number of
markers means that the statistical power of conventional
tests will be low. It is therefore necessary to consider
statistical methods that take account of between-hap-
lotype similarities arising out of their common ancestry.
Whether the Geary-Moran statistics proposed here are
optimal is open to debate, but something very much like
them will be necessary. Important questions remain as
to both the choice of similarity metric and the relative
weight given to transmitted-transmitted and untrans-
mitted-untransmitted comparisons. Even within the class
of similarity metrics proposed, the problem of multiple
testing has not been directly addressed when a number
of different focal loci and power transformations have
been examined. This will be necessary in practice, since
it seems unlikely that there would be sufficient a priori
knowledge to make a guided choice. There are strong
dependencies between the multiple tests, and a simple
Bonferroni correction is not appropriate, but the Monte
Carlo method proposed could be extended to allow for
a multiple testing. It will be particularly important to
allow for multiplicity in the context of whole-genome

TDT screening, as discussed by Risch and Merikangas
(1996). In addition to the calculation of the appropriate
measure of statistical significance, it will be important
to know the power of such tests. Determining the power
of these statistics in such a context is extremely difficult,
because of lack of knowledge of the history of the pop-
ulation being studied. The power will depend on a va-
riety of factors, including the age of the mutation, the
frequency of recombination, the mutation rate, the
strength of linkage disequilibrium, and the density and
polymorphism of the markers used in the study. Only
as more information available about the history of a
particular disease mutation becomes will it be possible
to calculate meaningful estimates of statistical power.

A further problem arises from the fact that, because
of their different allele frequencies, different markers
(and haplotypes) have different informativeness. This
variation in the information across the haplotype can
confound attempts to locate the disease gene by high-
order tests, in the same way that it does for standard
first-order tests. To try and alleviate this problem, it will
be necessary to address the problem of estimation of the
HRRs. This would allow both the identification of high-
risk ancestral haplotypes and the study of the HRR in
their recombinants. This will be of particular importance
for estimation of the precise location of causal muta-
tions. The multiplicity of parameters means that maxi-
mum-likelihood estimates of the haplotype effects, b,
will usually be unstable, and a more attractive possibility
is to use Bayes or empirical Bayes estimates. Thomas et
al. (1995) discussed the computation of such estimates,
using Markov-chain Monte Carlo methods with ran-
dom-effects log-linear models. They considered (a) mod-
els with first-order associations only, (b) models with
exchangeable effects at the highest order of association,
and (c) a combined model. They also indicated the pos-
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sibility of random-effects models based on a prior “sim-
ilarity” matrix, S, a model very similar to that used here
to motivate the generalized Geary-Moran test statistics.
This is a promising approach, but further work is nec-
essary on the construction of appropriate “prior” mod-
els for haplotype effects.

Throughout this report, it has been assumed that the
information available allows unequivocal assignment of
haplotypes to study subjects. This is a fairly safe as-
sumption if, as in the example given here, families are
complete and haplotypes are based on highly polymor-
phic markers, so that few phase uncertainties remain.
More usually, phase uncertainties and missing data pre-
sent a considerable practical problem and will present
increasing difficulty as the likely trend toward the use
of larger numbers of less polymorphic markers takes
effect. It is possible to use standard theory for likelihoods
in missing-data problems (Little and Rubin 1987), to
obtain extended expressions for U and V.

However, in order to apply this approach it is nec-
essary to introduce a large number of nuisance param-
eters representing the haplotype frequencies in the pop-
ulation of parents. In such circumstances, asymptotic
approximations may be poor, and no obvious simulation
approach to the computation of exact tests suggests it-
self. The Markov-chain Monte Carlo approach to esti-
mation of haplotype effects that was proposed by Tho-
mas et al. (1995) could be extended to allow for phase
uncertainty, but, again, the population haplotype fre-
quencies would enter as unknown nuisance parameters.
After specification of an appropriate prior distribution,
these can be integrated out of the likelihood by the
Monte Carlo method, but it is not clear whether the
prior distribution for haplotype frequencies should take
account of haplotype similarity arising out of their an-
cestral history.

Implementation by Computer

The method described above has been implemented
in a computer program available from the corresponding
author. It is written in a mixture of C and the S language
for statistical computation (Becker et al. 1988). Com-
putation is often quite laborious, since the quadratic
form UTSU must be calculated for each of a large number
of simulations under the null hypothesis, with the matrix
S usually being large. Computation can be speeded by
noting that many elements of S are zero and by storing
S as a linked list of its nonzero elements.
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