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Abstract

R/qtlbim (www.qtlbim.org) provides a powerful suite of tools for model selection of genetic architec-
ture. The Markov chain Monte Carlo (MCMC) sampling approach draws samples from the more probable
genetic architectures. Subsequent visualization and summary of these MCMC samples can inform users
about the most probable genetic architecture. The tools described herein were developed largely in 2007
to augment or extend tools already in R/qtlbim.

1 Overview

This vignette describes the model selection routines for MCMC samples already obtained. using previ-
ously described tools in the R/qtlbim package. The purpose of these plots and summaries is to help users
select the best or better models to explain the relationship between phenotype and genotype. We focus
on the hyper data set, and more particularly on the MCMC samples already generated, qbHyper.

> library(qtlbim)

> data(qbHyper)

The R/qtlbim model selection tools do the following:

1. evaluate Bayes factor for number or chromosome pattern of QTL (qb.bf);

2. examine proximity of sampled architectures (qb.best);

3. measure closeness of sampled architectures to target (qb.close).

4. one-dimensional (qb.scanone) or two-dimensional (qb.scantwo) genome scan;

5. characterize genetic architecture (qb.arch);

6. stepwise regression on genetic architecture (step.fitqtl);

In addition, several new routines begin to examine linked QTL:

1. examine multiple loci (qb.multloci);

2. find main and epistatic modes (qb.mainmodes, qb.epimodes);

3. split chromosomes for linked QTL (qb.split.chr);

This document assumes familiarity with the hyper analysis using R/qtlbim, as well as with the basics of
this package. Please see the other vignettes for further package details.

2 What is the Best Model?

It is well and good to be able to explore possible genetic architectures, but what is the best? Here we start
by defining the best genetic architecture as the most probable combinations of QTLs across chromosomes
and any epistatic pairs given the data. Formally, this is the pattern of QTL with the highest posterior
probability. In fact, this document focuses on assessing the chromosome pattern of QTLs.

The routine qb.bf (or qb.BayesFactor) can compute the posterior and Bayes factor for the more
probable patterns.

> bf <- qb.bf(qbHyper, item = "pattern")

> summary(bf)
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$pattern

nqtl posterior prior bf bfse

1,4,4,6,15,6:15 6 0.00300 3.15e-07 75.30 25.100

1,1,4,5,6,15,6:15 7 0.00267 2.97e-07 71.00 25.100

1,1,4,6,15,6:15 6 0.00600 8.68e-07 54.70 12.800

1,2,4,6,15,6:15 6 0.00767 1.20e-06 50.30 10.500

1,4,6,15,6:15 5 0.03400 5.86e-06 45.80 4.460

1,4,6,6,15,6:15 6 0.00467 8.52e-07 43.30 11.500

1,2,4,5,6,15,6:15 7 0.00267 5.18e-07 40.70 14.400

1,4,5,6,15,6:15 6 0.00500 1.73e-06 22.80 5.880

1,4,6,15,15,6:15 6 0.00300 1.05e-06 22.50 7.490

1,1,2,4 4 0.00300 3.43e-06 6.92 2.300

1,2,4 3 0.00733 2.57e-05 2.26 0.479

1,1,4 3 0.00400 1.51e-05 2.09 0.603

1,4,19 3 0.00300 1.45e-05 1.63 0.543

1,4 2 0.01430 1.13e-04 1.00 0.151

The pattern with the highest posterior probability is 1,4,6,15,6:15, whereas the pattern with highest
Bayes factor is 1,4,4,6,15,6:15. Patterns are represented a chromosome identifiers separated by commas;
epistatic pairs of chromosomes are joined by a colon. The qb.bf summary model-averages over all possible
loci on each chromosome. That is, with MCMC sampling, we find the frequency of the chromosome
pattern while ignoring the actual loci values.

This might be enough. However, we can now ask for the most probable chromosome pattern, what
are the best estimates of loci? These are the averages of loci positions for those models that include
exactly these chromosome patterns. The routine qb.best can perform this task, and a few more.

> best <- qb.best(qbHyper)

> summary(best)

Maximum number of QTL in architecture: 11

Summary by pattern

terms percent score cluster

1,4,6,15,6:15 4 3.4000000 4.000000 1

1,2,4,5,6,15,6:15 6 0.2666667 3.956954 1

1,4,4,6,15,6:15 5 0.3000000 3.956954 1

1,1,4,6,15,6:15 5 0.6000000 3.923116 1

1,4,5,6,15,6:15 5 0.5000000 3.919431 1

1,2,4,6,15,6:15 5 0.7666667 3.876550 1

1,1,4,5,6,15,6:15 6 0.2666667 3.842548 1

1,4,6,6,15,6:15 5 0.4666667 3.822012 1

1,4,6,15,15,6:15 5 0.3000000 3.809098 1

1,4 2 1.4333333 2.000000 2

1,2,4 3 0.7333333 2.000000 2

1,4,19 3 0.3000000 2.000000 2

1,1,4 3 0.4000000 1.919431 3

1,1,2,4 4 0.3000000 1.919431 3

Best pattern(s) by sq.atten score

chrom locus variance locus.LCL locus.UCL variance.LCL variance.UCL n.qtl

247 1 69.9 4.331837 24.44875 95.7985 0.03452814 9.871876 2408

245 4 29.5 9.098802 14.20000 74.3000 0.08845976 17.239369 2640

248 6 59.0 4.725800 13.83333 66.7000 0.12963260 10.517350 2129

246 15 19.5 2.638343 13.10000 55.7000 0.08227567 7.310082 2535

The best pattern is by design the most probable, but we now have estimates of the locus and variance

contribution for each QTL. We can view more pattern details, say the top 3 patterns, with the option
n.best = 3. We can see how this pattern compares to other patterns in a few plots.

> plot(best)
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The font size of a pattern is determined by its posterior probability. The 2-D multidimensional
scaling (MDS) projection is based on the score.type (see below). Notice that models that overlap with
1,4,6,15,6:15 are plotted near that pattern. Other patterns with little overlay are some distance away.

The default score.type is sq.atten, the square of the attenuation. When comparing two models,
consider a QTL locus estimated by each to be on the same chromosome. The attenuation is (1 − 2r),
with r the genetic distance (in Morgans) between the estimates. If the loci agree exactly, there is no
attenuation (r = 0). Loci on different chromosomes for different models have a score contribution of 0.
The scores are added up, trying in the process to match of QTL as best as possible between any two
genetic architectures. Other score.types are attenuation (signed or not), recombination, distance,
and explained variance. The latter provides a one-dimensional ordering of models based on overall fit.

It is possible to examine the patterns in another way, by plotting a dendrogram based on hierarchical
clustering.

> plot(best, type = "hclust")
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The default for method of model averaging of the locus and variance for qb.best is to average over
loci from all MCMC samples that include a particular pattern–that is, average over all patterns that have
the target nested within them. Instead, we can model average over all MCMC samples, or only those
with an exact match to the best pattern. The all average uses the most MCMC samples per locus, while
the exact typically involves very few samples, those that exactly match a particular pattern. There is
a tradeoff of bias and variance in the choice of these methods, although bias appears empirically to be
small due to the way MCMC samples cluster around more probable loci. Below are the three choices for
inclusion in model averaging. It is also possible to change the way the center is determined (default is
"median", but "mean" is an alternative). The plots and summaries (not shown) change slightly as well,
as all better patterns are altered similarly.

> qb.best(qbHyper, include = "all")$model[[1]]

chrom locus variance locus.LCL locus.UCL variance.LCL variance.UCL n.qtl

247 1 69.9 4.291848 24.06667 96.18000 0.03516970 10.027673 3993

245 4 29.5 9.206616 14.20000 74.30000 0.08047250 17.222186 4131

248 6 59.0 4.065665 9.80000 66.70000 0.04463393 10.274912 2515

246 15 19.5 2.442734 13.10000 58.26667 0.04279294 7.205367 2882

> qb.best(qbHyper, include = "nested")$model[[1]]

chrom locus variance locus.LCL locus.UCL variance.LCL variance.UCL n.qtl

247 1 69.9 4.331837 24.44875 95.7985 0.03452814 9.871876 2408

245 4 29.5 9.098802 14.20000 74.3000 0.08845976 17.239369 2640

248 6 59.0 4.725800 13.83333 66.7000 0.12963260 10.517350 2129

246 15 19.5 2.638343 13.10000 55.7000 0.08227567 7.310082 2535

> qb.best(qbHyper, include = "exact")$model[[1]]

chrom locus variance locus.LCL locus.UCL variance.LCL variance.UCL n.qtl

247 1 69.9 4.768429 43.7 77.60 43.7 77.60 102

245 4 29.5 11.538096 29.5 30.60 29.5 30.60 102

248 6 61.2 5.173255 54.1 66.70 54.1 66.70 102

246 15 17.5 3.183654 13.1 26.45 13.1 26.45 102

3 Model Diagnostics

A number of diagnostic routines have been described in other vignettes for this package. For instance,
qb.scanone and qb.scantwo can be used to identify the strength of main and epistatic QTL. In addition,
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the routines qb.arch and step.fitqtl can be helpful to refine model selection for genetic architecture.
They are illustrated in the document on a prototype QTL study of the hyper dataset. All these routines
have some connection to R/qtl (www.rqtl.org) routines, such as scanone, scantwo and fitqtl.

4 How Close are Other Models to a Target?

A target model might arise from another study, or from another analysis of the same dataset. Right here,
we will use the most probably model as target, but the target object is simply a data frame with columns
for chrom, locus and variance. [If variance is omitted, it is filled in with 0s.] Here is the target we are
using:

> target <- best$model[[1]]

The routine qb.close gives a score comparison for each MCMC realization. These are summarized
over chromosome pattern, or over number of QTL using boxplots.

> close <- qb.close(qbHyper, target)

> summary(close)

target for score sq.atten

chrom locus variance

247 1 69.9 4.331837

245 4 29.5 9.098802

248 6 59.0 4.725800

246 15 19.5 2.638343

score by sample number of qtl

Min. 1st Qu. Median Mean 3rd Qu. Max.

2 1.437 1.735 1.919 1.834 1.919 2.000

3 1.351 1.735 1.916 1.900 1.919 2.916

4 1.270 1.916 2.437 2.648 3.574 4.000

5 1.295 1.919 2.835 2.798 3.611 4.000

6 1.257 2.254 3.451 3.029 3.648 4.000

7 1.351 2.836 3.492 3.212 3.677 3.923

8 1.329 3.237 3.574 3.340 3.744 4.000

9 1.295 3.272 3.576 3.334 3.727 4.000

10 2.000 3.432 3.614 3.475 3.762 4.000

11 1.899 3.382 3.525 3.428 3.697 3.923

12 1.391 2.702 3.574 3.174 3.661 3.759

13 3.694 3.694 3.694 3.694 3.694 3.694

score by sample chromosome pattern

Percent Min. 1st Qu. Median Mean 3rd Qu. Max.

4@1,4,6,15,6:15 3.4 2.946 3.500 3.630 3.613 3.758 4.000

2@1,4 1.4 1.437 1.735 1.919 1.832 1.919 2.000

5@1,2,4,6,15,6:15 0.8 3.137 3.536 3.622 3.611 3.777 3.923

3@1,2,4 0.7 1.351 1.700 1.821 1.808 1.919 2.000

5@1,1,4,6,15,6:15 0.6 3.257 3.484 3.563 3.575 3.698 3.916

5@1,4,5,6,15,6:15 0.5 3.237 3.515 3.595 3.622 3.777 3.923

5@1,4,6,6,15,6:15 0.5 3.203 3.541 3.646 3.631 3.757 3.835

3@1,1,4 0.4 1.616 1.735 1.803 1.790 1.858 1.919

5@1,4,6,15,15,6:15 0.3 3.154 3.461 3.687 3.642 3.839 3.919

5@1,4,4,6,15,6:15 0.3 3.497 3.500 3.681 3.630 3.719 3.735

4@1,1,2,4 0.3 1.616 1.616 1.803 1.775 1.876 1.919

3@1,4,19 0.3 1.351 1.839 1.916 1.837 1.919 1.919

6@1,2,4,5,6,15,6:15 0.3 3.009 3.513 3.542 3.493 3.584 3.658

6@1,1,4,5,6,15,6:15 0.3 3.054 3.540 3.574 3.557 3.638 3.919

It is more intuitive to look at the boxplots. Notice how patterns that miss the 6:15 interaction have
much lower attenuation scores.
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> plot(close)
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Now examine close-ness summarized by number of QTL in the sample. Notice that the samples with
6 or more QTL essentially pick up the four target QTL. It is common for Bayesian interval mapping to
”overfit”. This is not necessarily a bad thing. Some of the QTL will have small effects. Other tools such
as qb.scanone can be used to investigate which QTL fit have weak evidence.

> plot(close, category = "nqtl")
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5 Multiple Linked Loci

Sometimes there appear to be evidence for linked loci. While 2-dimensional scans with scantwo or
qb.scantwo can disambiguate such situations, it can be helpful to have tools to look finer, and even to
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break chromosomes apart.
The routine qb.multloci allows a look at evidence for two or more linked QTL. The upper right

panel shows the posterior for number of linked QTL. The lower right panel shows the density broken up
by a reasonable guess at the number of QTL (the highest value with at least 20% of the samples). The
suggested break is based on the valley between peaks, using discriminant analysis. The upper left panel
shows the epistatic pairs, and the lower left panel shows a two way plot of singletons (diagonal), pairs,
triplets (as three pairs), etc.

> mult <- qb.multloci(qbHyper, chr = 1)

> plot(mult)
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> summary(mult)

Posterior Percent by Number of QTL

1 2 3 4

70.2 26.7 2.9 0.2

Estimated Number of QTL: 2

Peaks

1 2

43.76686 68.11157

Valleys

1

55.41529
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QTL Summaries

Min. 1st Qu. Median Mean 3rd Qu. Max. Pct. Ties

QTL 1 3.30 37.2 43.7 39.63 46.45 54.6 30.77 1.53

QTL 2 57.08 67.8 72.1 73.73 77.60 115.8 102.33 8.63

It is helpful sometimes to separate out samples with different number of QTL. This can be done with
the merge option.

> summary(mult, merge = FALSE)

Posterior Percent by Number of QTL

1 2 3 4

70.2 26.7 2.9 0.2

Estimated Number of QTL: 2

Peaks

1 2

43.76686 68.11157

Valleys

1

55.41529

QTL Summaries

$`nqtl = 1`

Min. 1st Qu. Median Mean 3rd Qu. Max. Pct. Ties

QTL 1 17.65 43.7 46.45 45.31 49.2 54.60 6.33 0

QTL 2 57.08 67.8 72.10 71.54 74.3 84.15 63.87 0

$`nqtl = 2`

Min. 1st Qu. Median Mean 3rd Qu. Max. Pct. Ties

QTL 1 3.30 37.2 41.5 38.55 46.45 54.6 20.37 0.33

QTL 2 57.08 72.1 75.4 76.78 79.80 115.8 33.03 6.67

$`nqtl >= 3`

Min. 1st Qu. Median Mean 3rd Qu. Max. Pct. Ties

QTL 1 3.30 28.43 40.43 36.12 46.45 54.6 3.67 1.07

QTL 2 57.08 69.90 77.60 80.87 86.30 115.8 5.03 1.83

$`nqtl >= 4`

Min. 1st Qu. Median Mean 3rd Qu. Max. Pct. Ties

QTL 1 3.30 31.29 41.53 36.88 49.88 54.6 0.4 0.13

QTL 2 59.55 71.55 80.90 83.37 90.95 113.6 0.4 0.13

> plot(mult, merge = FALSE)
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The peaks and valleys are computed with qb.mainmodes. While this routine is visible to the user, it
is seldom actually needed. qb.epimodes serves a similar function for epistatic pairs only.

Once a logical split for a chromosome has been established, we can use qb.split.chr to formalize
the split. By default, it uses the results from qb.mainmodes.

> qbHyper <- qb.split.chr(qbHyper)

> qb.get(qbHyper, "split.chr")

$`1`

1

55.41529

$`4`

1

46.21198

The split can be negated by the argument split = NULL. A few routines now use this split, and more
are planned. For now, qb.scanone, qb.scantwo and qb.bf take advantage of this. Chromosomes are
recoded as chr.1, chr.2, etc.

> qb.bf(qbHyper, item = "pattern")

$pattern

nqtl posterior prior bf bfse

1.1,1.2,4.1,6,15,6:15 6 0.00533 8.49e-07 52.10 13.000

1.2,4.1,6,15,6:15 5 0.03170 5.54e-06 47.30 4.780

1.2,2,4.1,6,15,6:15 6 0.00700 1.26e-06 45.90 9.980
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1.2,4.1,6,6,15,6:15 6 0.00433 9.03e-07 39.80 11.000

1.2,4.1,5,6,15,6:15 6 0.00467 1.82e-06 21.20 5.670

1.2,4.1,6,15,15,6:15 6 0.00267 1.16e-06 19.00 6.720

1.2,2,4.1 3 0.00700 2.57e-05 2.26 0.491

1.1,1.2,4.1 3 0.00333 1.51e-05 1.83 0.577

1.2,4.1,19 3 0.00267 1.45e-05 1.52 0.537

1.2,4.1 2 0.01370 1.13e-04 1.00 0.155

> qb.best(qbHyper)

Maximum number of QTL in architecture: 10

Summary by pattern

terms percent score cluster

1.2,4.1,6,15,6:15 4 3.1666667 4.000000 1

1.2,4.1,5,6,15,6:15 5 0.4666667 4.000000 1

1.2,4.1,6,15,15,6:15 5 0.2666667 3.852144 1

1.2,2,4.1,6,15,6:15 5 0.7000000 3.838877 1

1.2,4.1,6,6,15,6:15 5 0.4333333 3.822012 1

1.1,1.2,4.1,6,15,6:15 5 0.5333333 3.799457 1

1.2,4.1 2 1.3666667 2.000000 2

1.2,2,4.1 3 0.7000000 2.000000 2

1.2,4.1,19 3 0.2666667 2.000000 2

1.1,1.2,4.1 3 0.3333333 1.876341 3

Best pattern(s) by sq.atten score

chrom locus variance locus.LCL locus.UCL variance.LCL variance.UCL n.qtl

247 1.2 72.1 4.856429 62.02500 98.36 0.07011681 10.152792 1876

245 4.1 29.5 10.495860 12.17143 37.00 0.16116154 17.797911 1890

248 6 59.0 4.721857 13.83333 66.70 0.14104050 10.436823 1985

246 15 19.5 2.672603 13.10000 55.70 0.08939935 7.274024 2357

> one <- qb.scanone(qbHyper, type = "LPD")

> summary(one)

LPD of bp for main,epistasis,sum

n.qtl pos m.pos e.pos main epistasis sum

1.1 0.3077 49.20 49.20 37.20 3.582 1.596 3.889

1.2 1.0233 67.80 67.80 67.80 5.972 0.459 6.172

2 0.3477 51.90 51.90 42.63 2.011 0.492 2.396

3 0.1453 30.63 30.63 8.76 1.145 3.068 1.678

4.1 1.1040 29.50 29.50 29.50 11.347 0.377 11.472

4.2 0.2730 74.30 74.30 74.30 0.717 4.884 5.336

5 0.2447 68.87 68.87 82.00 2.029 1.095 2.525

6 0.8383 59.00 59.00 59.00 3.745 5.959 9.069

7 0.1553 15.28 55.60 15.28 0.418 3.029 3.042

8 0.1320 56.93 59.00 17.52 0.946 1.626 1.488

9 0.1173 12.00 64.87 12.00 0.662 2.561 2.548

10 0.0947 37.95 75.40 37.95 0.581 0.840 0.984

11 0.1717 13.10 39.57 13.10 0.916 1.853 1.951

12 0.0947 1.10 46.55 1.10 0.452 2.197 2.368

13 0.0767 24.40 28.40 14.23 0.648 1.346 1.432

14 0.0840 0.00 46.35 0.00 0.621 2.059 2.310

15 0.9607 17.50 17.50 17.50 1.320 6.153 7.112

16 0.0813 8.37 8.37 10.46 0.396 1.710 1.744

17 0.1123 50.30 50.30 50.30 0.377 1.943 2.090

18 0.0663 2.20 14.20 2.20 0.599 2.070 2.245

19 0.1117 55.70 53.62 55.70 1.211 0.985 1.869

> plot(one, chr = 1)
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