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Abstract

flexsurv is an R package for fully-parametric modelling of survival data. Any para-
metric time-to-event distribution may be fitted if the user supplies a probability density
or hazard function, and ideally also their cumulative versions. Standard survival distri-
butions are built in, including the three and four-parameter generalized gamma and F
distributions. Any parameter of any distribution can be modelled as a linear or log-linear
function of covariates. The package also includes the spline model of Royston and Parmar
(2002), in which both baseline survival and covariate effects can be arbitrarily flexible
parametric functions of time. The main model-fitting function, flexsurvreg, uses the fa-
miliar syntax of survreg from the standard survival package. Censoring or left-truncation
are specified in Surv objects. Estimates and confidence intervals for any function of the
model parameters can be printed or plotted. flexsurv also provides functions for fitting
and predicting from fully-parametric multi-state models, and connects with the mstate
package (de˜Wreede, Fiocco, and Putter 2011). This article explains the methods and
design principles of the package, giving several worked examples of its use.

Keywords:˜survival.

1. Motivation and design

The Cox model for survival data is ubiquitous in medical research, since the effects of predic-
tors can be estimated without needing to supply a baseline survival distribution that might be
inaccurate. However, fully-parametric models have many advantages, and even the originator
of the Cox model has expressed a preference for parametric modelling (see Reid 1994). Fully-
specified models help to understand the pattern of the change in hazard through time, and
help with prediction and extrapolation. For example, the mean survival E(T ) =

∫∞
0 S(t)dt,

used in health economic evaluations (Latimer 2013), needs the survivor function S(t) to be
fully-specified for all times t.

flexsurv allows parametric distributions of arbitrary complexity to be fitted to survival data,
gaining the convenience of parametric modelling, while avoiding the risk of model misspec-
ification. Built-in choices include spline-based models with any number of knots (Royston
and Parmar 2002) and 3–4 parameter generalized gamma and F distribution families. Any
user-defined model may be employed by supplying at minimum an R function to compute
the probability density or hazard, and ideally also its cumulative form. Any parameters may
be modelled in terms of covariates, and any function of the parameters may be printed or
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plotted in model summaries.

flexsurv is intended as a general platform for survival modelling in R. The survreg function
in the R package survival (Therneau 2014) only supports two-parameter (location/scale)
distributions, though users can supply their own distributions if they can be parameterised
in this form. Some other contributed R packages can fit survival models, e.g. eha (Broström
2014) and VGAM (Yee and Wild 1996), though these are either limited to specific distribution
families, not specifically designed for survival analysis, or (ActuDistns, Nadarajah and Bakar
2013) contain only the definitions of distribution functions. flexsurv enables distribution
functions provided by such packages to be used as survival models.

It is similar in spirit to the Stata packages stpm2 (Lambert and Royston 2009) for spline-based
survival modelling, and stgenreg (Crowther and Lambert 2013) for fitting survival models with
user-defined hazard functions using numerical integration. Though in flexsurv, slow numerical
integration can be avoided if the analytic cumulative distribution or hazard can be supplied,
and optimisation can also be speeded by supplying analytic derivatives. flexsurv also has
features for multi-state modelling and interval censoring, and general output reporting. It
employs functional programming to work with user-defined or existing R functions.

§2 explains the general model that flexsurv is based on. §3 gives examples of its use for
fitting built-in survival distributions with a fixed number of parameters, and §4 explains how
users can define new distributions. §5 concentrates on classes of models where the number
of parameters can be chosen arbitrarily, such as splines. In §6 flexsurv is used for fitting
and predicting from fully-parametric multi-state models. Finally §7 suggests some potential
future extensions.

2. General parametric survival model

2.1. Definitions

The general model that flexsurv fits has probability density for death at time t:

f(t|µ(z),α(z)), t ≥ 0 (1)

The cumulative distribution function F (t), survivor function S(t) = 1 − F (t), cumulative
hazard H(t) = − logS(t) and hazard h(t) = f(t)/S(t) are also defined (suppressing the
conditioning for clarity). µ = α0 is the parameter of primary interest, which usually governs
the mean or location of the distribution. Other parameters α = (α1, . . . , αR) are called
“ancillary” and determine the shape, variance or higher moments.

Covariates All parameters may depend on a vector of covariates z through link-transformed
linear models g0(µ) = γ0 + β

′
0z and gr(αr) = γr + β

′
rz. g() will typically be log() if the

parameter is defined to be positive, or the identity function if the parameter is unrestricted.

Suppose that the location parameter, but not the ancillary parameters, depends on covariates.
If the hazard function factorises as h(t|α, µ(z)) = µ(z)h0(t|α), then this is a proportional
hazards (PH) model, so that the hazard ratio between two groups (defined by two different
values of z) is constant over time t.
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Alternatively, if S(t|µ(z),α) = S(µ(z)t|α) then it is an accelerated failure time (AFT) model,
so that the effect of covariates is to speed or slow the passage of time. For example, doubling
the value of a covariate with coefficient β = log(2) would give half the expected survival time.

Data and likelihood Let ti : i = 1, . . . , n be a sample of times from individuals i. Let
ci = 1 if ti is an observed death time, or ci = 0 if this is censored. Most commonly, ti may be
right-censored, thus the true death time is known only to be greater than ti. More generally,
the survival time may be interval-censored on (ti, t

max
i ). If there is right-censoring but no

left-censoring then tmaxi is infinite, so that S(tmaxi ) = 0, or if there is left-censoring but no
right-censoring then ti = 0.

Also let si be corresponding left-truncation (or delayed-entry) times, meaning that the ith
survival time is only observed conditionally on the individual having survived up to si, thus
si = 0 if there is no left-truncation. Time-dependent covariates (§3.1) and some multi-state
models (§6) can be represented through left-truncation.

The likelihood for the parameters θ = {γ,β} in model (1), given the corresponding data
vectors, is

l({θ}|t, c, s, tmax) =

 ∏
i: ci=1

fi(ti)
∏

i: ci=0

(Si(ti)− Si(tmaxi ))

 /
∏
i

Si(si) (2)

The individual survival times are independent, so that flexsurv does not currently support
shared frailty, clustered or random effects models (see §7).

3. Fitting standard parametric survival models

An example dataset used throughout this paper is from 686 patients with primary node
positive breast cancer, available in the package as bc. This was originally provided with stpm
(Royston 2001), and analysed in much more detail by Sauerbrei and Royston (1999) and
Royston and Parmar (2002). The first two records are:

> library(flexsurv)

> bc[1:2,]

censrec rectime group recyrs

1 0 1342 Good 3.676712

2 0 1578 Good 4.323288

The main model-fitting function is called flexsurvreg. Its first argument is an R formula
object. The left hand side of the formula gives the response as a survival object, using the
Surv function from the survival package.

> fs1 <- flexsurvreg(Surv(recyrs, censrec) ~ group, data=bc, dist="weibull")

Here, this indicates that the response variable is recyrs. This represents the time (in years)
of death or cancer recurrence when censrec is 1, or (right-)censoring when censrec is 0.
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The covariate group is a factor representing a prognostic score, with three levels "Good" (the
baseline), "Medium" and "Poor". All of these variables are in the data frame bc. If the
argument dist is a string, this denotes a built-in survival distribution. In this case we fit a
Weibull survival model.

Printing the fitted model object gives estimates and confidence intervals for the model param-
eters and other useful information. Note that these are the same parameters as represented by
the R distribution function dweibull: the shape α and the scale µ of the survivor function
S(t) = exp(−(t/µ)α), and group has a linear effect on log(µ).

> fs1

Call:

flexsurvreg(formula = Surv(recyrs, censrec) ~ group, data = bc, dist = "weibull")

Estimates:

data mean est L95% U95% se exp(est) L95%

shape NA 1.3797 1.2548 1.5170 0.0668 NA NA

scale NA 11.4229 9.1818 14.2110 1.2728 NA NA

groupMedium 0.3338 -0.6136 -0.8623 -0.3649 0.1269 0.5414 0.4222

groupPoor 0.3324 -1.2122 -1.4583 -0.9661 0.1256 0.2975 0.2326

U95%

shape NA

scale NA

groupMedium 0.6943

groupPoor 0.3806

N = 686, Events: 299, Censored: 387

Total time at risk: 2113.425

Log-likelihood = -811.9419, df = 4

AIC = 1631.884

For the Weibull (and exponential and log-normal) distributions, flexsurvreg simply uses
survreg in survival to find the maximum likelihood estimates. The same model can be fitted
as

> survreg(Surv(recyrs, censrec) ~ group, data=bc, dist="weibull")

Call:

survreg(formula = Surv(recyrs, censrec) ~ group, data = bc, dist = "weibull")

Coefficients:

(Intercept) groupMedium groupPoor

2.4356168 -0.6135892 -1.2122137

Scale= 0.7248206

Loglik(model)= -811.9 Loglik(intercept only)= -873.2
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Chisq= 122.53 on 2 degrees of freedom, p= 0

n= 686

The maximised log-likelihoods are the same, however the parameterisation is different: the
first coefficient (Intercept) reported by survreg is log(µ), and survreg’s "scale" is dweibull’s
(thus flexsurvreg)’s 1 / shape. The covariate effects β, however, have the same “accelerated
failure time” interpretation, as linear effects on log(µ). The multiplicative effects exp(β) are
printed in the output as exp(est).

3.1. Additional modelling features

If we also had left-truncation times in a variable called start, the response would be
Surv(start,recyrs,censrec). Or if all responses were interval-censored between lower and
upper bounds tmin and tmax, then we would write Surv(tmin,tmax,type="interval2").

Time-dependent covariates can be represented in “counting process” form — as a series of
left-truncated survival times. For each individual there would be multiple records, each cor-
responding to an interval where the covariate is assumed to be constant. The response would
be of the form Surv(start,stop,censrec), where start and stop are the limits of each
interval, and censrec indicates whether a death was observed at stop.

Relative survival models (Nelson, Lambert, Squire, and Jones 2007) can be implemented by
supplying the variable in the data that represents the expected mortality rate in the bhazard

argument to flexsurvreg. Case weights and data subsets can also be specified, as in standard
R modelling functions, using weights or subset arguments.

3.2. Built-in models

flexsurvreg’s currently built-in distributions are listed in Table 1. In each case, the proba-
bility density f() and parameters of the fitted model are taken from an existing R function of
the same name but beginning with the letter d. For the Weibull, exponential (dexp), gamma
(dgamma) and log-normal (dlnorm), the density functions are provided with standard installa-
tions of R. These density functions, and the corresponding cumulative distribution functions
(with first letter p instead of d) are used internally in flexsurvreg to compute the likelihood.

flexsurv provides some additional survival distributions, including a Gompertz distribution
with unrestricted shape parameter (dist="gompertz"), and the three- and four-parameter
families described below. For all built-in distributions, flexsurv also defines functions begin-
ning with h giving the hazard, and H for the cumulative hazard.

Generalized gamma This three-parameter distribution includes the Weibull, gamma and
log-normal as special cases. The original parameterisation from Stacy (1962) is available as
dist="gengamma.orig", however the newer parameterisation (Prentice 1974) is preferred:
dist="gengamma". This has parameters (µ,σ,q), and survivor function

1− I(γ, u) (q > 0)
1− Φ(z) (q = 0)

where I(γ, u) =
∫ u
0 x

γ−1 exp(−x)/Γ(γ) is the incomplete gamma function (the cumulative
gamma distribution with shape γ and scale 1), Φ is the standard normal cumulative distribu-
tion, u = γ exp(|q|z), z = (log(t)− µ)/σ, and γ = q−2. The Prentice (1974) parameterisation
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extends the original one to include a further class of models with negative q, and survivor
function I(γ, u), where z is replaced by −z. This stabilises estimation when the distribution
is close to log-normal, since q = 0 is no longer near the boundary of the parameter space. In
R notation, 1 the parameter values corresponding to the three special cases are

dgengamma(x, mu, sigma, Q=0) == dlnorm(x, mu, sigma)

dgengamma(x, mu, sigma, Q=1) == dweibull(x, shape=1/sigma, scale=exp(mu))

dgengamma(x, mu, sigma, Q=sigma) == dgamma(x, shape=1/sigma^2,

rate=exp(-mu) / sigma^2)

Generalized F This four-parameter distribution includes the generalized gamma, and also
the log-logistic, as special cases. The variety of hazard shapes that can be represented is
discussed by Cox (2008). It is provided here in alternative“original” (dist="genf.orig") and
“stable” parameterisations (dist="genf") as presented by Prentice (1975). See help(GenF)

and help(GenF.orig) in the package documentation for the exact definitions.

3.3. Covariates on ancillary parameters

The generalized gamma model is fitted to the breast cancer survival data. fs2 is an AFT
model, where only the parameter µ depends on the prognostic covariate group. In a second
model fs3, the first ancillary parameter sigma (α1) also depends on this covariate, giving
a model with a time-dependent effect that is neither PH nor AFT. The second ancillary
parameter Q is still common between prognostic groups.

> fs2 <- flexsurvreg(Surv(recyrs, censrec) ~ group, data=bc, dist="gengamma")

> fs3 <- flexsurvreg(Surv(recyrs, censrec) ~ group + sigma(group),

+ data=bc, dist="gengamma")

Ancillary covariates can alternatively be supplied using the anc argument to flexsurvreg.
This syntax is required if any parameter names clash with the names of functions used in
model formulae (e.g. factor() or I()).

fs3 <- flexsurvreg(Surv(recyrs, censrec) ~ group, anc=list(sigma= ~ group),

data=bc, dist="gengamma")

Table 3 compares all the models fitted to the breast cancer data, showing absolute fit to
the data as measured by the maximised -2×log likelihood −2LL, number of parameters p,
and Akaike’s information criterion −2LL + 2p (AIC). The model fs2 has the lowest AIC,
indicating the best estimated predictive ability.

3.4. Plotting outputs

The plot() method for flexsurvreg objects is used as a quick check of model fit. By default,
this draws a Kaplan-Meier estimate of the survivor function S(t), one for each combination
of categorical covariates, or just a single “population average” curve if there are no categorical
covariates (Figure 1). The corresponding estimates from the fitted model are overlaid. Fitted
values from further models can be added with the lines() method.

1The parameter called q here and in previous literature is called Q in dgengamma and related functions,
since the first argument of a cumulative distribution function is conventionally named q, for quantile, in R.



Christopher Jackson, MRC Biostatistics Unit 7

Parameters Density R function dist

(location in red)

Exponential rate dexp "exp"

Weibull shape, scale dweibull "weibull"

Gamma shape, rate dgamma "gamma"

Log-normal meanlog, sdlog dlnorm "lnorm"

Gompertz shape, rate dgompertz "gompertz"

Generalized gamma (Prentice 1975) mu, sigma, Q dgengamma "gengamma"

Generalized gamma (Stacy 1962) shape, scale, k dgengamma.orig "gengamma.orig"

Generalized F (stable) mu, sigma, Q, P dgenf "genf"

Generalized F (original) mu, sigma, s1, s2 dgenf.orig "genf.orig"

Table 1: Built-in parametric survival distributions in flexsurv.

> plot(fs1, col="gray", lwd.obs=2, xlab="Years", ylab="Recurrence-free survival")

> lines(fs2, col="red", lty=2)

> lines(fs3, col="red")

> legend("bottomleft", col=c("black","gray","red","red"),

+ lty=c(1,1,2,1), bty="n", lwd=rep(2,4),

+ c("Kaplan-Meier","Weibull","Generalized gamma (AFT)",

+ "Generalized gamma (time-varying)"))

The argument type="hazard" can be set to plot hazards from parametric models against
kernel density estimates obtained from muhaz (Hess 2010; Mueller and Wang 1994). Figure
2 shows more clearly that the Weibull model is inadequate for the breast cancer data: the
hazard must be increasing or decreasing — while the generalized gamma can represent the
increase and subsequent decline in hazard seen in the data. Similarly, type="cumhaz" plots
cumulative hazards.

> plot(fs1, type="hazard", col="gray", lwd.obs=2, xlab="Years", ylab="Hazard")

> lines(fs2, type="hazard", col="red", lty=2)

> lines(fs3, type="hazard", col="red")

> legend("topright", col=c("black","gray","red","red"),

+ lty=c(1,1,2,1), bty="n", lwd=rep(2,4),

+ c("Kernel density estimate","Weibull","Gen. gamma (AFT)",

+ "Gen. gamma (time-varying)"))

The numbers plotted are available from the summary.flexsurvreg() method. Confidence
intervals are produced by simulating a large sample from the asymptotic normal distribution
of the maximum likelihood estimates of {βr : r = 0, . . . , R} (Mandel 2013), via the function
normboot.flexsurvreg.

In this example, there is only a single categorical covariate, and the plot and summary methods
return one observed and fitted trajectory for each level of that covariate. For more complicated
models, users should specify what covariate values they want summaries for, rather than
relying on the default 2. This is done by supplying the newdata argument, a data frame

2If there are only factor covariates, all combinations are plotted. If there are any continuous covariates,
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Figure 1: Estimated survival from parametric models and Kaplan-Meier estimates.

or list containing covariate values, just as in standard R functions like predict.lm. Time-
dependent covariates are not understood by these functions.

This plot() method is only for casual exploratory use. For publication-standard figures,
it is preferable to set up the axes beforehand (plot(...,type="n")), and use the lines()

methods for flexsurvreg objects, or construct plots by hand using the data available from
summary.flexsurvreg().

3.5. Custom model summaries

Any function of the parameters of a fitted model can be summarised or plotted by supplying
the argument fn to summary.flexsurvreg or plot.flexsurvreg. This should be an R
function, with optional first two arguments t representing time, and start representing a
left-truncation point (if the result is conditional on survival up to that time). Any remaining
arguments must be the parameters of the survival distribution. For example, median survival

these methods by default return a “population average” curve, with the linear model design matrix set to
its average values, including the 0/1 contrasts defining factors, which doesn’t represent any specific covariate
combination.
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Figure 2: Estimated hazards from parametric models and kernel density estimates.

under the Weibull model fs1 can be summarised as follows

> median.weibull <- function(shape, scale) {

+ qweibull(0.5, shape=shape, scale=scale)

+ }

> summary(fs1, fn=median.weibull, t=1, B=10000)

group=Good

time est lcl ucl

1 1 8.75794 7.125139 10.79093

group=Medium

time est lcl ucl

1 1 4.741585 4.124099 5.458563

group=Poor

time est lcl ucl

1 1 2.605819 2.307577 2.936128
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Although the median of the Weibull has an analytic form as µ log(2)1/α, the form of the code
given here generalises to other distributions. The argument t (or start) can be omitted from
median.weibull, because the median is a time-constant function of the parameters, unlike
the survival or hazard.

10000 random samples are drawn to produce a slightly more precise confidence interval than
the default — users should adjust this until the desired level of precision is obtained. A useful
future extension of the package would be to employ user-supplied (or built-in) derivatives of
summary functions if possible, so that the delta method can be used to obtain approximate
confidence intervals without simulation.

3.6. Computation

The likelihood is maximised in flexsurvreg using the optimisation methods available through
the standard R optim function. By default, this is the "BFGS" method (Nash 1990) using
the analytic derivatives of the likelihood with respect to the model parameters, if these are
available, to improve the speed of convergence to the maximum. These derivatives are built-
in for the exponential, Weibull, Gompertz, and hazard- and odds-based spline models (see
§5.1). For custom distributions (see §4), the user can optionally supply functions with names
beginning "DLd" and "DLS" respectively (e.g. DLdweibull,DLSweibull) to calculate the
derivatives of the log density and log survivor functions with respect to the transformed
baseline parameters γ. Arguments to optim can be passed to flexsurvreg — in particular,
control options, such as convergence tolerance, iteration limit or function or parameter
scaling, may need to be adjusted to achieve convergence.

4. Custom survival distributions

flexsurv is not limited to its built-in distributions. Any survival model of the form (1–2) can
be fitted if the user can provide either the density function f() or the hazard h(). Many
contributed R packages provide probability density and cumulative distribution functions for
positive distributions. Though survival models may be more naturally characterised by their
hazard function, representing the changing risk of death through time. For example, for
survival following major surgery we may want a “U-shaped” hazard curve, representing a high
risk soon after the operation, which then decreases, but increases naturally as survivors grow
older.

To supply a custom distribution, the dist argument to flexsurvreg is defined to be an R
list object, rather than a character string. The list has the following elements.

name Name of the distribution. In the first example below, we use a log-logistic distribution,
and the name is "llogis". Then there is assumed to be at least either

� a function to compute the probability density, which would be called called dllogis

here, or

� a function to compute the hazard, called hllogis.

There should also be a function called pllogis for the cumulative distribution (if d is
given), or H for the cumulative hazard (to complement h), if analytic forms for these are
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available. If not, then flexsurv can compute them internally by numerical integration, as
in stgenreg (Crowther and Lambert 2013). The default options of the built-in R routine
integrate for adaptive quadrature are used, though these may be changed using the
integ.opts argument to flexsurvreg. Models specified this way will take an order of
magnitude more time to fit, and the fitting procedure may be unstable. An example is
given in §5.2.

These functions must be vectorised, and the density function must also accept an argu-
ment log, which when TRUE, returns the log density. See the examples below.

In some cases, R’s scoping rules may not find the functions in the working environment.
They may then be supplied through the dfns argument to flexsurvreg.

pars Character vector naming the parameters of the distribution µ, α1, ..., αR. These must
match the arguments of the R distribution function or functions, in the same order.

location Character: quoted name of the location parameter µ. The location parameter will
not necessarily be the first one, e.g. in dweibull the scale comes after the shape.

transforms A list of functions g() which transform the parameters from their natural ranges
to the real line, for example, c(log,identity) if the first is positive and the second
unrestricted. 3

inv.transforms List of corresponding inverse functions.

inits A function which provides plausible initial values of the parameters for maximum like-
lihood estimation. This is optional, but if not provided, then each call to flexsurvreg

must have an inits argument containing a vector of initial values, which is inconve-
nient. Implausible initial values may produce a likelihood of zero, and a fatal error
message (initial value in ‘vmmin’ is not finite) from the optimiser.

Each distribution will ideally have a heuristic for initialising parameters from summaries
of the data. For example, since the median of the Weibull is µ log(2)1/α, a sensible
estimate of µ might be the median log survival time divided by log(2), with α = 1,
assuming that in practice the true value of α is not far from 1. Then we would define
the function, of one argument t giving the survival or censoring times, returning the
initial values for the Weibull shape and scale respectively 4.

inits = function(t) c(1, median(t[t>0]) / log(2))

More complicated initial value functions may use other data such as the covariate values
and censoring indicators: for an example, see the function flexsurv.splineinits in
the package source that computes initial values for spline models (§5.1).

Example: Using functions from a contributed package The following custom model
uses the log-logistic distribution functions (dllogis and pllogis) available in the package
eha. The survivor function is S(t|µ, α) = 1/(1 + (t/µ)α), so that the odds (1− S(t))/S(t) of
having died are a linear function of log time.

3This is a list, not an atomic vector of functions, so if the distribution only has one parameter, we should
write transforms=c(log) or transforms=list(log), not transforms=log.

4though Weibull models in flexsurvreg are “initialised” by fitting the model with survreg.
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> library(eha)

> custom.llogis <- list(name="llogis", pars=c("shape","scale"), location="scale",

+ transforms=c(log, log), inv.transforms=c(exp, exp),

+ inits=function(t){ c(1, median(t)) })

> fs4 <- flexsurvreg(Surv(recyrs, censrec) ~ group, data=bc, dist=custom.llogis)

This fits the breast cancer data better than the Weibull, since it can represent a peaked
hazard, but less well than the generalized gamma (Table 3).

Example: Wrapping functions from a contributed package Sometimes there may
be probability density and similar functions in a contributed package, but in a different
format. For example, eha also provides a three-parameter Gompertz-Makeham distribution
with hazard h(t|µ, α1, α2) = α2 + α1 exp(t/µ). The shape parameters α1, α2 are provided to
dmakeham as a vector argument of length two. However, flexsurvreg expects distribution
functions to have one argument for each parameter. Therefore we write our own functions
that wrap around the third-party functions.

> dmakeham3 <- function(x, shape1, shape2, scale, ...) {

+ dmakeham(x, shape=c(shape1, shape2), scale=scale, ...)

+ }

> pmakeham3 <- function(q, shape1, shape2, scale, ...) {

+ pmakeham(q, shape=c(shape1, shape2), scale=scale, ...)

+ }

flexsurvreg also requires these functions to be vectorized, as the standard distribution func-
tions in R are. That is, we can supply a vector of alternative values for one or more arguments,
and expect a vector of the same length to be returned. The R base function Vectorize can
be used to do this here.

> dmakeham3 <- Vectorize(dmakeham3)

> pmakeham3 <- Vectorize(pmakeham3)

and this allows us to write, for example,

> pmakeham3(c(0, 1, 1, Inf), 1, c(1, 1, 2, 1), 1)

[1] 0.0000000 0.9340120 0.9757244 1.0000000

We could then use dist=list(name="makeham3", pars=c("shape1","shape2","scale"),...)

in a flexsurvreg model, though in the breast cancer example, the second shape parameter
is poorly identifiable.

Example: Changing the parameterisation of a distribution We may want to fit a
Weibull model like fs1, but with the proportional hazards parameterisation S(t) = exp(−µtα),
so that the covariate effects reported in the printed flexsurvreg object can be interpreted
as hazard ratios or log hazard ratios without any further transformation. Here instead of the
density and cumulative distribution functions, we provide the hazard and cumulative hazard.5

5The eha package needs to be detached first so that flexsurv’s built-in hweibull is used, which returns NaN

if the parameter values are zero, rather than failing as eha’s currently does.
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> detach("package:eha")

> hweibullPH <- function(x, shape, scale = 1, log=FALSE){

+ hweibull(x, shape=shape, scale=scale^{-1/shape}, log=log)

+ }

> HweibullPH <- function(x, shape, scale=1, log=FALSE){

+ Hweibull(x, shape=shape, scale=scale^{-1/shape}, log=log)

+ }

> custom.weibullPH <- list(name="weibullPH",

+ pars=c("shape","scale"), location="scale",

+ transforms=c(log, log), inv.transforms=c(exp, exp),

+ inits = function(t){

+ c(1, median(t[t>0]) / log(2))

+ })

> fs6 <- flexsurvreg(Surv(recyrs, censrec) ~ group, data=bc, dist=custom.weibullPH)

> fs6$res["scale","est"] ^ {-1/fs6$res["shape","est"]}

[1] 11.42286

> - fs6$res["groupMedium","est"] / fs6$res["shape","est"]

[1] -0.6135897

The fitted model is the same as fs1, therefore the maximised likelihood is the same, and the
parameter estimates of fs6 can be transformed to those of fs1 as shown.

A slightly more complicated example is given in the package vignette flexsurv-examples of
constructing a proportional hazards generalized gamma model.

5. Arbitrary-dimension models

flexsurv also supports models where the number of parameters is arbitrary. In the models
discussed previously, the number of parameters in the model family is fixed (e.g. three for
the generalized gamma). In this section, the model complexity can be chosen by the user,
given the model family. We may want to represent more irregular hazard curves by more
flexible functions, or use bigger models if a bigger sample size makes it feasible to estimate
more parameters.

5.1. Royston and Parmar spline model

In the spline-based survival model of Royston and Parmar (2002), a transformation g(S(t, z))
of the survival function is modelled as a natural cubic spline function of log time: g(S(t, z)) =
s(x,γ) where x = log(t). This model can be fitted in flexsurv using the function flexsurvspline,
and is also available in the Stata package stpm2 (Lambert and Royston 2009) (historically
stpm, Royston (2001, 2004)).

Typically we use g(S(t, z)) = log(− log(S(t, z))) = log(H(t, z)), the log cumulative hazard,
giving a proportional hazards model.
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Model g(S(t, z)) In flexsurvspline With m = 0

Proportional hazards log(− log(S(t, z)))
(log cumulative hazard)

scale="hazard" Weibull shape γ1,

scale exp(−γ0/γ1)

Proportional odds log(S(t, z)−1 − 1)
(log cumulative odds)

scale="odds" Log-logistic shape γ1,

scale exp(−γ0/γ1)

Normal / probit Φ−1(S(t, z))
(inverse normal CDF,

qnorm)

scale="normal" Log-normal meanlog

−γ0/γ1, sdlog 1/γ1

Table 2: Alternative modelling scales for flexsurvspline, and equivalent distributions for
m = 0 (with parameter definitions as in the R d functions referred to elsewhere in the paper)

Spline parameterisation The complexity of the model, thus the dimension of γ, is gov-
erned by the number of knots in the spline function s(). Natural cubic splines are piecewise
cubic polynomials defined to be continuous, with continuous first and second derivatives at
the knots, and also constrained to be linear beyond boundary knots kmin, kmax. As well as
the boundary knots there may be up to m ≥ 0 internal knots k1, . . . , km. Various spline
parameterisations exist — the one used here is from Royston and Parmar (2002).

s(x,γ) = γ0 + γ1x+ γ2v1(x) + . . .+ γm+1vm(x) (3)

where vj(x) is the jth basis function

vj(x) = (x− kj)3+ − λj(x− kmin)3+ − (1− λj)(x− kmax)3+, λj =
kmax − kj
kmax − kmin

and (x − a)+ = max(0, x − a). If m = 0 then there are only two parameters γ0, γ1, and
this is a Weibull model if g() is the log cumulative hazard. Table 2 explains two further
choices of g(), and the parameter values and distributions they simplify to for m = 0. The
probability density and cumulative distribution functions for all these models are available as
dsurvspline and psurvspline.

Covariates on spline parameters Covariates can be placed on any parameter γ through
a linear model (with identity link function). Most straightforwardly, we can let the intercept
γ0 vary with covariates z, giving a proportional hazards or odds model (depending on g()).

g(S(t, z)) = s(x,γ) + βT z

The spline coefficients γj : j = 1, 2 . . ., the “ancillary” parameters, may also be modelled as
linear functions of covariates z, as

γj(z) = γj0 + γj1z1 + γj2z2 + . . .

giving a model where the effects of covariates are arbitrarily flexible functions of time: a
non-proportional hazards or odds model.
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Spline models in flexsurv The argument k to flexsurvspline defines the number of
internal knots m. Knot locations are chosen by default from quantiles of the log uncensored
death times, or users can supply their own locations in the knots argument. Initial values
for numerical likelihood maximisation are chosen using the method described by Royston and
Parmar (2002) of Cox regression combined with transforming an empirical survival estimate.

For example, the best-fitting model for the breast cancer dataset identified in Royston and
Parmar (2002), a proportional odds model with one internal spline knot, is

> sp1 <- flexsurvspline(Surv(recyrs, censrec) ~ group, data=bc, k=1,

+ scale="odds")

A further model where the first ancillary parameter also depends on the prognostic group,
giving a time-varying odds ratio, is fitted as

> sp2 <- flexsurvspline(Surv(recyrs, censrec) ~ group + gamma1(group),

+ data=bc, k=1, scale="odds")

These models give qualitatively similar results to the generalized gamma in this dataset (Fig-
ure 3), and have similar predictive ability as measured by AIC (Table 3). Though in general,
an advantage of spline models is that extra flexibility is available where necessary.

> plot(sp1, type="hazard", ylim=c(0, 0.5), xlab="Years", ylab="Hazard")

> lines(sp2, type="hazard", col="red", lty=2)

> lines(fs2, type="hazard", col="blue")

> legend("topright", col=c("black","red","red","blue"), lty=c(1,1,2,1), lwd=rep(2,4),

+ c("Kernel density estimate","Spline (proportional odds)",

+ "Spline (time-varying)","Generalized gamma (time-varying)"))

Note that the log hazard ratios, and their standard errors, under the proportional hazards
spline model with one internal knot, are practically the same as under a standard Cox model.

> sp3 <- flexsurvspline(Surv(recyrs, censrec) ~ group, data=bc, k=1, scale="hazard")

> sp3$res[c("groupMedium","groupPoor"),c("est","se")]

est se

groupMedium 0.8334517 0.1712042

groupPoor 1.6111788 0.1640933

> cox3 <- coxph(Surv(recyrs, censrec) ~ group, data=bc)

> coef(summary(cox3))[,c("coef","se(coef)")]

coef se(coef)

groupMedium 0.8401002 0.1713926

groupPoor 1.6180720 0.1645443

> res <- t(sapply(list(fs1, fs2, fs3, fs4, sp1, sp2),

+ function(x)rbind(-2*x$loglik, x$npars, x$AIC)))
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Figure 3: Comparison of spline and generalized gamma fitted hazards.

> rownames(res) <- c("Weibull (fs1)","Generalized gamma (fs2)",

+ "Generalized gamma (fs3)","Log-logistic (fs4)",

+ "Spline (sp1)", "Spline (sp2)")

> colnames(res) <- c("-2 log likelihood","Parameters","AIC")

5.2. Implementing new general-dimension models

The spline model above is an example of the general parametric form (1), but the number of
parameters, R + 1 in (1), m + 2 in (3), is arbitrary. flexsurv has the tools to deal with any
model of this form. flexsurvspline works internally by building a custom distribution and
then calling flexsurvreg. Similar models may in principle be built by users using the same
method. This relies on a functional programming trick.

Creating distribution functions dynamically The R distribution functions supplied
to custom models are expected to have a fixed number of arguments, including one for each
scalar parameter. However, the distribution functions for the spline model (e.g. dsurvspline)
have an argument gamma representing the vector of parameters γ, whose length is determined
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> res

-2 log likelihood Parameters AIC

Weibull (fs1) 1623.884 4 1631.884

Generalized gamma (fs2) 1575.137 5 1585.137

Generalized gamma (fs3) 1572.434 7 1586.434

Log-logistic (fs4) 1598.105 4 1606.105

Spline (sp1) 1577.964 5 1587.964

Spline (sp2) 1574.848 7 1588.848

Table 3: Comparison of parametric survival models fitted to the breast cancer data

by choosing the number of knots. Just as the scalar parameters of conventional distribution
functions can be supplied as vector arguments (as explained in §4), similarly, the vector param-
eters of spline-like distribution functions can be supplied as matrix arguments, representing
alternative parameter values.

To convert a spline-like distribution function into the correct form, flexsurv provides the utility
unroll.function. This converts a function with one (or more) vector parameters (matrix
arguments) to a function with an arbitrary number of scalar parameters (vector arguments).
For example, the 5-year survival probability for the baseline group under the model sp1 is

> gamma <- sp1$res[c("gamma0","gamma1","gamma2"),"est"]

> 1 - psurvspline(5, gamma=gamma, knots=sp1$knots)

[1] 0.6896969

An alternative function to compute this can be built by unroll.function. We tell it that the
vector parameter gamma should be provided instead as three scalar parameters named gamma0,
gamma1, gamma2. The resulting function pfn is in the correct form for a custom flexsurvreg

distribution.

> pfn <- unroll.function(psurvspline, gamma=0:2)

> 1 - pfn(5, gamma0=gamma[1], gamma1=gamma[2], gamma2=gamma[3], knots=sp1$knots)

[1] 0.6896969

Users wishing to fit a new spline-like model with a known number of parameters could just
as easily write distribution functions specific to that number of parameters, and use the
methods in §4. However the unroll.function method is intended to simplify the process of
extending the flexsurv package to implement new model families, through wrappers similar
to flexsurvspline.

Example: splines on alternative scales An alternative to the Royston-Parmar spline
model is to model the log hazard as a function of time instead of the log cumulative hazard.
Crowther and Lambert (2013) demonstrate this model using the Stata stgenreg package.
An advantage explained by Royston and Lambert (2011) is that when there are multiple
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time-dependent effects, time-dependent hazard ratios can be interpreted independently of the
values of other covariates.

This can also be implemented in flexsurvreg using unroll.function. A disadvantage of
this model is that the cumulative hazard (hence the survivor function) has no analytic form,
therefore to compute the likelihood, the hazard function needs to be integrated numerically.
This is done automatically in flexsurvreg (just as in stgenreg) if the cumulative hazard is
not supplied.

Firstly, a function must be written to compute the hazard as a function of time x, the vector
of parameters gamma (which can be supplied as a matrix argument so the function can give
a vector of results), and a vector of knot locations. This uses flexsurv’s function basis to
compute the natural cubic spline basis (3).

> hsurvspline.lh <- function(x, gamma, knots){

+ if(!is.matrix(gamma)) gamma <- matrix(gamma, nrow=1)

+ lg <- nrow(gamma) # return vector of length of longest argument

+ nret <- max(length(x), lg)

+ gamma <- apply(gamma, 2, function(x)rep(x,length=nret))

+ x <- rep(x, length=nret)

+ loghaz <- rowSums(basis(knots, log(x)) * gamma)

+ exp(loghaz)

+ }

The equivalent function is then created for a three-knot example of this model (one internal
and two boundary knots) that has arguments gamma0, gamma1 and gamma2 corresponding to
the three columns of gamma,

> hsurvspline.lh3 <- unroll.function(hsurvspline.lh, gamma=0:2)

> custom.hsurvspline.lh3 <- list(

+ name = "survspline.lh3",

+ pars = c("gamma0","gamma1","gamma2"),

+ location = c("gamma0"),

+ transforms = rep(c(identity), 3), inv.transforms=rep(c(identity), 3)

+ )

To complete the model, the internal knot is placed at the median uncensored log survival
time, and boundary knots are placed at the minimum and maximum. These are passed to
hsurvspline.lh through the aux argument of flexsurvreg.

> dtime <- log(bc$recyrs)[bc$censrec==1]

> ak <- list(knots=quantile(dtime, c(0, 0.5, 1)))

Initial values must be provided in the call to flexsurvreg, since the custom distribution list
did not include an inits component. For this example, “default” initial values of zero suffice,
but the permitted values of γ2 are fairly tightly constrained (from -0.5 to 0.5 here) using
the "L-BFGS-B" bounded optimiser from R’s optim (Nash 1990). Without the constraint,
extreme values of γ2, visited by the optimiser, cause the numerical integration of the hazard
function to fail.
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> sp4 <- flexsurvreg(Surv(recyrs, censrec) ~ group, data=bc, aux=ak,

+ inits=c(0, 0, 0, 0, 0), dist=custom.hsurvspline.lh3,

+ method="L-BFGS-B", lower=c(-Inf,-Inf,-0.5), upper=c(Inf,Inf,0.5),

+ control=list(trace=1,REPORT=1))

This takes around ten minutes to converge, so is not presented here, though the fit is poorer
than the equivalent spline model for the cumulative hazard. The 95% confidence interval for
γ2 of (0.16, 0.37) is firmly within the constraint. Crowther and Lambert (2014) present a
combined analytic / numerical integration method for this model that may make fitting it
more stable.

Other arbitrary-dimension models Another potential application is to fractional poly-
nomials (Royston and Altman 1994). These are of the form

∑M
m=1 αmx

pm log(x)n where the
power pm is in the standard set {2,−1,−0.5, 0, 0.5, 1, 2, 3} (except that log(x) is used instead
of x0), and n is a non-negative integer. They are similar to splines in that they can give
arbitrarily close approximations to a nonlinear function, such as a hazard curve, and are par-
ticularly useful for expressing the effects of continuous predictors in regression models. See
e.g. Sauerbrei, Royston, and Binder (2007), and several other publications by the same au-
thors, for applications and discussion of their advantages over splines. The R package gamlss
(Rigby and Stasinopoulos 2005) has a function to construct a fractional polynomial basis that
might be employed in flexsurv models.

Polyhazard models (Louzada-Neto 1999) are another potential use of this technique. These
express an overall hazard as a sum of latent cause-specific hazards, each one typically from
the same class of distribution, e.g. a poly-Weibull model if they are all Weibull. For example,
a U-shaped hazard curve following surgery may be the sum of early hazards from surgical
mortality and later deaths from natural causes. However, such models may not always be
identifiable without external information to fix or constrain the parameters of particular
hazards (Demiris, Lunn, and Sharples 2011).

6. Multi-state models

A multi-state model represents how an individual moves between multiple states in continuous
time. Survival analysis is a special case with two states, “alive” and “dead”. Competing risks
are a further special case, where there are multiple causes of death, that is, one starting state
and multiple possible destination states.

Given that an individual is in state S(t) at time t, their next state, and the time of the change,
are governed by a set of transition intensities

qrs(t, z(t),Ft) = lim
δt→0

P (S(t+ δt) = s|S(t) = r, t, z(t),Ft)/δt

for states r, s = 1, . . . , R, which for a survival model are equivalent to the hazard h(t). The
intensity represents the instantaneous risk of moving from state r to state s, and is zero if
the transition is impossible. It may depend on the time t, patient characteristics z(t), and
possibly also the “history” of the process up to that time, Ft: the states previously visited or
the length of time spent in them.



20 flexsurv: a platform for parametric survival modelling in R

Data Instead of a single event time, there may now be a series of event times t1, . . . , tn
for an individual. The last of these may be an observed or right-censored event time. Note
panel data are not considered here — that is, observations of the state of the process at an
arbitrary set of times (Kalbfleisch and Lawless 1985). In panel data, we do not necessarily
know the time of each transition, or even whether transitions of a certain type have occurred
at all between a pair of observations. Multi-state models for that type of data (and also exact
event times) can be fitted with the msm package for R (Jackson 2011), but are restricted
to (piecewise) exponential event time distributions. Knowing the exact event times enables
much more flexible models, which flexsurv can fit.

Alternative time scales In semi-Markov (clock-reset) models, qrs(t) depends on the time
t since entry into the current state, but otherwise, the time since the beginning of the process
is forgotten. Any software to fit survival models can also fit this kind of multi-state model.

In an inhomogeneous Markov (clock-forward) model, t represents the time since the beginning
of the process, but the intensity qrs(t) does not depend further on Ft. Again any survival
modelling software can be used, with the additional requirement that it can deal with left-
truncation or counting process data, which survreg, for example, does not currently support.

These approaches are equivalent for competing risks models, since there is at most one tran-
sition for each individual, so that the time since the beginning of the process equals the time
spent in the current state. Therefore no left-truncation is necessary.

Example For illustration, consider a simple three-state example, previously studied by
Heng, Sharples, McNeil, Stewart, Wreghitt, and Wallwork (1998). Recipients of lung trans-
plants are are risk of bronchiolitis obliterans syndrome (BOS). This was defined as a decrease
in lung function to below 80% of a baseline value defined in the six months following trans-
plant. A three-state “illness-death” model represents the risk of developing BOS, the risk of
dying before developing BOS, and the risk of death after BOS. BOS is assumed to be irre-
versible, so there are only three allowed transitions (Figure 4), each with an intensity function
qrs(t).

State 1:
No BOS

State 2:
BOS

State 3:
Death

Figure 4: Three-state multi-state model for bronchiolitis obliterans syndrome (BOS).

6.1. Representing multi-state data as survival data

Putter, Fiocco, and Geskus (2007) explain how to implement multi-state models by manipu-
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lating the data into the a suitable form for survival modelling software — an overview is given
here. For each permitted r → s transition in the multi-state model, there is a corresponding
“survival” (time-to-event) model, with hazard rates defined by qrs(t). For a patient who enters
state r at time tj , their next event at tj+1 is defined by the model structure to be one of a set
of competing events s1, . . . , snr . This implies there are nr corresponding survival models for
this state r, and

∑
r nr models over all states r. In the BOS example, there are n1 = 2, n2 = 1

and n3 = 0 possible transitions from states 1, 2 and 3 respectively.

The data to inform the nr models from state r consists firstly of an indicator for whether
the transition to the corresponding state s1, . . . , snr is observed or censored at tj+1. If the
individual moves to state sk, the transitions to all other states in this set are censored at this
time. This indicator is coupled with:

� (for a semi-Markov model) the time elapsed dtj = tj+1 − tj from state r entry to state
s entry. The “survival” model for the r → s transition is fitted to this time.

� (for an inhomogeneous Markov model) the start and stop time (tj , tj+1), as in §3.1. The
r → s model is fitted to the right-censored time tj+1 from the start of the process, but is
conditional on not experiencing the r → s transition until after the state r entry time.
In other words, the r → s transition model is left-truncated at the state r entry time.

In this form, the outcomes of two patients in the BOS data are

> bosms3[18:22,]

id from to Tstart Tstop years status trans

18 7 1 2 0.0000000 0.1697467 0.1697467 1 1

19 7 1 3 0.0000000 0.1697467 0.1697467 0 2

20 7 2 3 0.1697467 0.6297057 0.4599589 1 3

21 8 1 2 0.0000000 8.1615332 8.1615332 0 1

22 8 1 3 0.0000000 8.1615332 8.1615332 1 2

Each row represents an observed (status=1) or censored (status=0) transition time for one
of three time-to-event models indicated by the categorical variable trans (defined as a factor).
Times are expressed in years, with the baseline time 0 representing six months after transplant.
Values of trans of 1, 2, 3 correspond to no BOS→BOS, no BOS→death and BOS→death
respectively. The first row indicates that the patient (id 7) moved from state 1 (no BOS) to
state 2 (BOS) at 0.17 years, but (second row) this is also interpreted as a censored time of
moving from state 1 to state 3, potential death before BOS onset. This patient then died,
given by the third row with status 1 for trans 3. Patient 8 died before BOS onset, therefore
at 8.2 years their potential BOS onset is censored (fourth row), but their death before BOS
is observed (fifth row).

The mstate R package (de˜Wreede, Fiocco, and Putter 2010; de˜Wreede et˜al. 2011) has a
utility msprep to produce data of this form from “wide-format” datasets where rows represent
individuals, and times of different events appear in different columns. msm has a similar utility
msm2Surv for producing the required form given longitudinal data where rows represent state
observations.
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6.2. Fitting parametric multi-state models

Three multi-state models are fitted to the BOS data using flexsurvreg. The first two use
the “clock-reset” time scale. crexp is a simple time-homogeneous Markov model where all
transition intensities are constant through time, so that the clock-forward and clock-reset
scales are identical. The time to the next event is exponentially-distributed, but with a
different rate qrs for each transition type trans. crwei is a semi-Markov model where the
times to BOS onset, death without BOS and the time from BOS onset to death all have
Weibull distributions, with a different shape and scale for each transition type. cfwei is
a clock-forward, inhomogeneous Markov version of the Weibull model: the 1→2 and 1→3
transition models are the same, but the third has a different interpretation, now the time
from baseline to death with BOS has a Weibull distribution.

> crexp <- flexsurvreg(Surv(years, status) ~ trans, data=bosms3,

+ dist="exp")

> crwei <- flexsurvreg(Surv(years, status) ~ trans + shape(trans),

+ data=bosms3, dist="weibull")

> cfwei <- flexsurvreg(Surv(Tstart, Tstop, status) ~ trans + shape(trans),

+ data=bosms3, dist="weibull")

The equivalent Cox models are also fitted using coxph from the survival package. These
specify a different baseline hazard for each transition type through a function strata in the
formula, so since there are no other covariates, they are essentially non-parametric. Note
that the strata function is not currently understood by flexsurvreg — the user must say
explicitly what parameters, if any, vary with the transition type, as in crwei.

> crcox <- coxph(Surv(years, status) ~ strata(trans), data=bosms3)

> cfcox <- coxph(Surv(Tstart, Tstop, status) ~ strata(trans), data=bosms3)

In all cases, if there were other covariates, they could simply be included in the model formula.
Typically, covariate effects will vary with the transition type, so that an interaction term
with trans would be included. Some post-processing might then be needed to combine the
main covariate effects and interaction terms into an easily-interpretable quantity (such as the
hazard ratio for the r, s transition). Alternatively, mstate has a utility expand.covs to expand
a single covariate in the data into a set of transition-specific covariates, to aid interpretation
(see de˜Wreede et˜al. 2011).

Any parametric distribution can be fitted, just as for standard survival models with flexsurvreg.
Spline models may also be fitted with flexsurvspline, and if hazards are assumed propor-
tional, they are expected to give similar results to the Cox model. A restriction is that all
transition-specific models must be from the same parametric family. Though to enable a
mixture of simpler and more complex models, we could choose a very flexible family, such as
the generalized gamma or a spline, and use the fixedpars argument to flexsurvreg to fix
parameters for certain transitions at values for which the flexible family collapses to a simpler
one (e.g. §3.2, Table 2).

6.3. Obtaining cumulative transition-specific hazards

Multi-state models are often characterised by their cumulative r → s transition-specific hazard
functions Hrs(t) =

∫ t
0 qrs(u)du. For semi-parametric multi-state models fitted with coxph, the
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function msfit in mstate (de˜Wreede et˜al. 2010, 2011) provides piecewise-constant estimates
and covariances for Hrs(t). For the Cox models for the BOS data,

> library(mstate)

> tmat <- rbind(c(NA,1,2),c(NA,NA,3),c(NA,NA,NA))

> mrcox <- msfit(crcox, trans=tmat)

> mfcox <- msfit(cfcox, trans=tmat)

tmat describes the transition structure, as a matrix of integers whose r, s entry is i if the ith
transition type is r, s, and has NAs on the diagonal and where the r, s transition is disallowed.

flexsurv provides an analogous function msfit.flexsurvreg to produce cumulative hazards
from fully-parametric multi-state models in the same format. This is a short wrapper around
summary.flexsurvreg(...,type="cumhaz"), previously mentioned in §3.4. The difference
from mstate’s method is that hazard estimates can be produced for any grid of times t, at
any level of detail and even beyond the range of the data, since the model is fully parametric.
The argument newdata can be used in the same way to specify a desired covariate category,
though in this example there are no covariates in addition to the transition type. The name
of the (factor) covariate indicating the transition type can also be supplied through the tvar

argument, in this case it is the default, "trans".

> tgrid <- seq(0,14,by=0.1)

> mrwei <- msfit.flexsurvreg(crwei, t=tgrid, trans=tmat)

> mrexp <- msfit.flexsurvreg(crexp, t=tgrid, trans=tmat)

> mfwei <- msfit.flexsurvreg(cfwei, t=tgrid, trans=tmat)

These can be plotted (Figure 5) to show the fit of the parametric models compared to the
non-parametric estimates. Both models appear to fit adequately, though give diverging ex-
trapolations after around 6 years when the data become sparse. The Weibull clock-reset model
has an improved AIC of 1091, compared to 1099 for the exponential model. For th e2 → 3
transition, the clock-forward and clock-reset models give slightly different hazard trajectories.

> cols <- c("black","red","blue")

> plot(mrcox, xlab="Years after baseline", lwd=3, xlim=c(0,14), cols=cols)

> for (i in 1:3){

+ lines(tgrid, mrexp$Haz$Haz[mrexp$Haz$trans==i], col=cols[i], lty=2, lwd=2)

+ lines(tgrid, mrwei$Haz$Haz[mrwei$Haz$trans==i], col=cols[i], lty=3, lwd=2)

+ }

> lines(mfcox$Haz$time[mfcox$Haz$trans==3], mfcox$Haz$Haz[mfcox$Haz$trans==3],

+ type="s", col="darkgreen", lty=1, lwd=2)

> lines(tgrid, mfwei$Haz$Haz[mfwei$Haz$trans==3], col="darkgreen", lty=3, lwd=2)

> legend("topleft", inset=c(0,0.2), lwd=2, col=c("darkgreen"),

+ c("2 -> 3 (clock-forward)"), bty="n")

> legend("topleft", inset=c(0,0.3), c("Non-parametric","Exponential","Weibull"),

+ lty=c(1,2,3), lwd=c(3,2,2), bty="n")

6.4. Prediction from parametric multi-state models

The transition probabilities of the multi-state model are the probabilities of occupying each
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Figure 5: Cumulative hazards for three transitions in the BOS multi-state model (clock-
reset), under non-parametric, exponential and Weibull models. For the 2 → 3 transition, an
alternative clock-forward scale is shown for the non-parametric and Weibull models.

state s at time t > t0, given that the individual is in state r at time t0.

P (t0, t) = P (S(t) = s|S(t0) = r)

Markov models For a time-inhomogeneous Markov model, these are related to the tran-
sition intensities via the Kolmogorov forward equation

dP (t0, t)

dt
= P (t0, t)Q(t)

with initial condition P () = I (Cox and Miller 1965). This can be solved numerically, as in
Titman (2011). This is implemented in the function pmatrix.fs, using the deSolve package
(Soetaert, Petzoldt, and Setzer 2010). This returns the full transition probability matrix
P (t0, t) from time t0 = 0 to a time or set of times t specified in the call. Under the Weibull
model, the probability of remaining alive and free of BOS is estimated at 0.3 at 5 years and
0.09 at 10 years:
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> pmatrix.fs(cfwei, t=c(5,10), trans=tmat)

$`5`

[,1] [,2] [,3]

[1,] 0.3042166 0.2521698 0.4436136

[2,] 0.0000000 0.2804130 0.7195870

[3,] 0.0000000 0.0000000 1.0000000

$`10`

[,1] [,2] [,3]

[1,] 0.09116592 0.12048155 0.7883525

[2,] 0.00000000 0.06903971 0.9309603

[3,] 0.00000000 0.00000000 1.0000000

Confidence intervals can be obtained by simulation from the asymptotic distribution of the
maximum likelihood estimates — see help(pmatrix.fs) for full details. A similar function
totlos.fs is provided to estimate the expected total amount of time spent in state s up to
time t for a process that starts in state r, defined as

∫ t
u=0 P (0, u)rsdu.

Semi-Markov models For semi-Markov models, the Kolmogorov equation does not apply,
since the transition intensity matrix Q(t) is no longer a deterministic function of t, but
depends on when the transitions occur between time t0 and t. Predictions can then be made
by simulation. The function sim.fmsm simulates trajectories from parametric semi-Markov
models by repeatedly generating the time to the next transition until the individual reaches
an absorbing state or a specified censoring time. This requires the presence of a function
to generate random numbers from the underlying parametric distribution — and is fast for
built-in distributions which use vectorised functions such as rweibull.

pmatrix.simfs calculates the transition probability matrix by using sim.fmsm to simu-
late state histories for a large number of individuals, by default 100000. Simulation-based
confidence-intervals are also available in pmatrix.simfs, at an extra computational cost, and
the expected total length of stay in each state is available from totlos.simfs.

> pmatrix.simfs(crwei, trans=tmat, t=5)

> pmatrix.simfs(crwei, trans=tmat, t=10)

Prediction via mstate Alternatively, predictions can be made by supplying the cumulative
transition-specific hazards, calculated with msfit.flexsurvreg, to functions in the mstate
package.

For Markov models, an approximate solution to the Kolmogorov equation (e.g. Aalen, Borgan,
and Gjessing 2008) is given by a product integral

P (t0, t) =
m−1∏
i=0

{I +Q(ti)dt}

where a fine grid of times t0, t1, . . . , tm = t is chosen to span the prediction interval, and
Q(ti)dt is the increment in the cumulative hazard matrix between times ti and ti+1. Q may
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also depend on other covariates, as long as these are known in advance. In mstate, these can
be calculated with the probtrans function, applied to the cumulative hazards returned by
msfit. For Cox models, the time grid is naturally defined by the observed survival times,
giving the Aalen-Johansen estimator (Andersen, Borgan, Gill, and Keiding 1993). Here, the
probability of remaining alive and free of BOS is estimated at 0.27 at 5 years and 0.17 at 10
years.

> ptc <- probtrans(mfcox, predt=0, direction="forward")[[1]]

> ptc[c(165, 193),]

time pstate1 pstate2 pstate3 se1 se2 se3

165 4.999316 0.2727122 0.29427877 0.4330090 0.03740559 0.03882367 0.04036366

193 9.872690 0.1740995 0.03975934 0.7861412 0.04031056 0.02224179 0.04462605

For parametric models, using a similar discrete-time approximation was suggested by Cook
and Lawless (2014). This is achieved by passing the object returned by msfit.flexsurvreg

to probtrans in mstate. It can be made arbitrarily accurate by choosing a finer resolution
for the grid of times when calling msfit.flexsurvreg.

> ptw <- probtrans(mfwei, predt=0, direction="forward")[[1]]

> ptw[ptw$time %in% c(5,10),]

time pstate1 pstate2 pstate3 se1 se2 se3

51 5 0.29984304 0.2543239 0.4458331 0.03306019 0.03609578 0.03847572

101 10 0.08853844 0.1194541 0.7920075 0.02788693 0.03317185 0.04269108

pstate1–pstate3 are close to the first rows of the matrices returned by pmatrix.fs. The
discrepancy from the Cox model is more marked at 10 years when the data are more sparse
(Figure˜5). A finer time grid would be required to achieve a similar level of accuracy to
pmatrix.fs for the point estimates, at the cost of a slower run time than pmatrix.fs. How-
ever, an advantage of probtrans is that standard errors are available more cheaply.

For semi-Markov models, mstate provides the function mssample to produce both simulated
trajectories and transition probability matrices from semi-Markov models, given the estimated
piecewise-constant cumulative hazards (Fiocco, Putter, and van Houwelingen 2008), produced
by msfit or msfit.flexsurvreg, though this is generally less efficient than pmatrix.simfs.
In this example, 1000 samples from mssample give estimates of transition probabilities that are
accurate to within around 0.02. However with pmatrix.simfs, greater precision is achieved
by simulating 100 times as many trajectories in a shorter time.

> mssample(mrcox$Haz, trans=tmat, clock="reset", M=1000, tvec=c(5, 10))

> mssample(mrwei$Haz, trans=tmat, clock="reset", M=1000, tvec=c(5, 10))

7. Potential extensions
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More tools and documentation for multi-state modelling would be a useful addition to flexsurv.
The msm package currently has a more accessible interface for fitting and summarising multi-
state models, but it was designed mainly for panel data rather than event time data, and
therefore the event time distributions it fits are relatively inflexible.

Models where multiple survival times are assumed to be correlated within groups, sometimes
called (shared) frailty models (Hougaard 1995), would also be a useful development. See,
e.g. Crowther, Look, and Riley (2014) for a recent application based on parametric mod-
els. These might be implemented by exploiting tractability for specific distributions, such as
gamma frailties, or by adjusting standard errors to account for clustering, as implemented
in survreg. More complex random effects models would require numerical integration, for
example, Crowther et˜al. (2014) provide Stata software based on Gauss-Hermite quadrature.
Alternatively, a probabilistic modelling language such as Stan (Stan Development Team 2014)
or BUGS (Lunn, Jackson, Best, Thomas, and Spiegelhalter 2012) would be naturally suited
to complex extensions such as random effects on multiple parameters or multiple hierarchical
levels.

flexsurv is intended as a platform for parametric survival modelling. Extensions of the soft-
ware to deal with different models may be written by users themselves, through the facilities
described in §4 and §5.2. These might then be included in the package as built-in distribu-
tions, or at least demonstrated in the package’s other vignette flexsurv-examples. Each
new class of models would ideally come with

� guidance on what situations the model is useful for, e.g. what shape of hazards it can
represent

� some intuitive interpretation of the model parameters, their plausible values in typical
situations, and potential identifiability problems. This would also help with choosing
initial values for numerical maximum likelihood estimation, ideally through an inits

function in the custom distribution list (§4).

The examples in this paper were run using version 0.5 of flexsurv, available from http:

//CRAN.R-project.org/package=flexsurv. Development versions are available on https:

//github.com/chjackson/flexsurv-dev, and contributions are welcome.
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