
Sparse Model Matrices

Martin Maechler
R Core Development Team
maechler@R-project.org

July 2007, 2008 (typeset on January 20, 2009)

Introduction

Model matrices in the very widely used (generalized) linear models of statistics, (typically fit via lm() or
glm() in R) are often practically sparse — whenever categorical predictors, factors in R, are used.

We show for a few classes of such linear models how to construct sparse model matrices using sparse
matrix (S4) objects from the Matrix package, and typically without using dense matrices in intermediate
steps.

1 One factor: y ∼ f1

Let’s start with an artifical small example:

> (ff <- factor(substring("statistics", 1:10, 1:10), levels=letters))

[1] s t a t i s t i c s
Levels: a b c d e f g h i j k l m n o p q r s t u v w x y z

> factor(ff) # drops the levels that do not occur

[1] s t a t i s t i c s
Levels: a c i s t

> (f. <- ff[, drop=TRUE]) # the same, more transparently

[1] s t a t i s t i c s
Levels: a c i s t

> library(Matrix)

> Matrix(contrasts(f.)) # "treatment" contrasts by default -- level "a" = baseline

5 x 4 sparse Matrix of class "dgCMatrix"
c i s t

a . . . .
c 1 . . .
i . 1 . .
s . . 1 .
t . . . 1

> Matrix(contrasts(C(f., sum)))

1

mailto:maechler@R-project.org


5 x 4 sparse Matrix of class "dgCMatrix"

a 1 . . .
c . 1 . .
i . . 1 .
s . . . 1
t -1 -1 -1 -1

> Matrix(contrasts(C(f., helmert)), sparse=TRUE) # S-plus default; much less sparse

5 x 4 sparse Matrix of class "dgCMatrix"

a -1 -1 -1 -1
c 1 -1 -1 -1
i . 2 -1 -1
s . . 3 -1
t . . . 4

where contrasts is (conceptually) just one major ingredient in the well-known model.matrix() function.
Since 2007, the Matrix package has been providing coercion from a factor object to a sparseMatrix one
to produce the transpose of the model matrix corresponding to a model with that factor as predictor (and
no intercept):

> as(f., "sparseMatrix")

5 x 10 sparse Matrix of class "dgCMatrix"

a . . 1 . . . . . . .
c . . . . . . . . 1 .
i . . . . 1 . . 1 . .
s 1 . . . . 1 . . . 1
t . 1 . 1 . . 1 . . .

which is really almost the transpose of using the above sparsification of contrasts(),

> t( Matrix(contrasts(f.))[as.character(f.),] )

4 x 10 sparse Matrix of class "dgCMatrix"

c . . . . . . . . 1 .
i . . . . 1 . . 1 . .
s 1 . . . . 1 . . . 1
t . 1 . 1 . . 1 . . .

and that is the same as the “sparsification” of model.matrix(), apart from the column names (here trans-
posed),

> t( Matrix(model.matrix(~ 0 + f.)) )

5 x 10 sparse Matrix of class "dgCMatrix"

f.a . . 1 . . . . . . .
f.c . . . . . . . . 1 .
f.i . . . . 1 . . 1 . .
f.s 1 . . . . 1 . . . 1
f.t . 1 . 1 . . 1 . . .

2



A more realistic small example is the chickwts data set,

> str(chickwts)# a standard R data set

'data.frame': 71 obs. of 2 variables:
$ weight: num 179 160 136 227 217 168 108 124 143 140 ...
$ feed : Factor w/ 6 levels "casein","horsebean",..: 2 2 2 2 2 2 2 2 2 2 ...

> x.feed <- as(chickwts$feed, "sparseMatrix")

> x.feed[ , (1:72)[c(TRUE,FALSE,FALSE)]] ## every 3rd column:

6 x 24 sparse Matrix of class "dgCMatrix"

casein . . . . . . . . . . . . . . . . . . . . 1 1 1 1
horsebean 1 1 1 1 . . . . . . . . . . . . . . . . . . . .
linseed . . . . 1 1 1 1 . . . . . . . . . . . . . . . .
meatmeal . . . . . . . . . . . . . . . . 1 1 1 1 . . . .
soybean . . . . . . . . 1 1 1 1 . . . . . . . . . . . .
sunflower . . . . . . . . . . . . 1 1 1 1 . . . . . . . .

2 One factor, one continuous: y ∼ f1 + x

To create the model matrix for the case of one factor and one continuous predictor—called “analysis of
covariance” in the historical literature— we can adopt the following simple scheme:

— FIXME —
The final model matrix is the catenation of
1) create the sparse 0-1 matrix m1 from the factor – == f1 main-effect
2) the single row/column ’x’ == ’x’ main-effect
3) replacing the values 1 in m1@x (the x-slot of the factor model matrix), by the values of x (our continuous

predictor)

3 Two (or more) factors, main effects only: y ∼ f1 + f2

Let us consider the warpbreaks data set of 54 observations,

> data(warpbreaks)# a standard R data set

> str(warpbreaks) # 2 x 3 (x 9) balanced two-way with 9 replicates:

'data.frame': 54 obs. of 3 variables:
$ breaks : num 26 30 54 25 70 52 51 26 67 18 ...
$ wool : Factor w/ 2 levels "A","B": 1 1 1 1 1 1 1 1 1 1 ...
$ tension: Factor w/ 3 levels "L","M","H": 1 1 1 1 1 1 1 1 1 2 ...

> xtabs(~ wool + tension, data = warpbreaks)

tension
wool L M H

A 9 9 9
B 9 9 9

It is not statistically sensible to assume that Run is a fixed effect, however the example is handy to depict
how a model matrix would be built for the model Speed Expt + Run. Since this is a main effects model

3



(no interactions), the desired model matrix is simply the concatenation of the model matrices of the main
effects. There are two here, but the principle applies to general main effects of factors.

The most sparse matrix is reached by not using an intercept, (which would give an all-1-column) but
rather have one factor fully coded (aka“swallow”the intercept), and all others being at "treatment" contrast,
i.e., here, the transposed model matrix, tmm, is

> tmm <- with(warpbreaks,

+ rBind(as(tension, "sparseMatrix"),

+ as(wool, "sparseMatrix")[-1,,drop=FALSE]))

> print( image(tmm) ) # print(.) the lattice object

Dimensions: 4 x 54

Column

R
ow

1
3

10 20 30 40 50

The matrices are even sparser when the factors have more than just two or three levels, e.g., for the morley
data set,

> data(morley) # a standard R data set

> morley$Expt <- factor(morley$Expt)

> morley$Run <- factor(morley$Run)

> str(morley)

'data.frame': 100 obs. of 3 variables:
$ Expt : Factor w/ 5 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
$ Run : Factor w/ 20 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
$ Speed: int 850 740 900 1070 930 850 950 980 980 880 ...

> t.mm <- with(morley,

+ rBind(as(Expt, "sparseMatrix"),

+ as(Run, "sparseMatrix")[-1,]))

> print( image(t.mm) ) # print(.) the lattice object

4



Dimensions: 24 x 100

Column

R
ow

5
10
15
20

20 40 60 80

4 Interactions of two (or more) factors,.....

In situations with more than one factor, particularly with interactions, the model matrix is currently not
directly available via Matrix functions — but we still show to build them carefully. The easiest—but not at
memory resources efficient—way is to go via the dense model.matrix() result:

> data(npk, package="MASS")

> npk.mf <- model.frame(yield ~ block + N*P*K, data = npk)

> ## str(npk.mf) # the data frame + "terms" attribute

>

> m.npk <- model.matrix(attr(npk.mf, "terms"), data = npk)

> class(M.npk <- Matrix(m.npk))

[1] "dgCMatrix"
attr(,"package")
[1] "Matrix"

> dim(M.npk)# 24 x 13 sparse Matrix

[1] 24 13

> t(M.npk) # easier to display, column names readably displayed as row.names(t(.))

13 x 24 sparse Matrix of class "dgCMatrix"

(Intercept) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
block2 . . . . 1 1 1 1 . . . . . . . . . . . . . . . .
block3 . . . . . . . . 1 1 1 1 . . . . . . . . . . . .
block4 . . . . . . . . . . . . 1 1 1 1 . . . . . . . .
block5 . . . . . . . . . . . . . . . . 1 1 1 1 . . . .
block6 . . . . . . . . . . . . . . . . . . . . 1 1 1 1
N1 . 1 . 1 1 1 . . . 1 1 . 1 1 . . 1 . 1 . 1 1 . .
P1 1 1 . . . 1 . 1 1 1 . . . 1 . 1 1 . . 1 . 1 1 .

5



K1 1 . . 1 . 1 1 . . 1 . 1 . 1 1 . . . 1 1 1 . 1 .
N1:P1 . 1 . . . 1 . . . 1 . . . 1 . . 1 . . . . 1 . .
N1:K1 . . . 1 . 1 . . . 1 . . . 1 . . . . 1 . 1 . . .
P1:K1 1 . . . . 1 . . . 1 . . . 1 . . . . . 1 . . 1 .
N1:P1:K1 . . . . . 1 . . . 1 . . . 1 . . . . . . . . . .

An other example is the it seems realistic situation of a user who enquired on R-help (July 15, 2008,
https://stat.ethz.ch/pipermail/r-help/2008-July/167772.html) about an “aov error with large data set”:

’m looking to analyze a large data set: a within-Ss 2*2*1500 design with 20 Ss. However, aov() gives me
an error, reproducible as follows:

and gave the following code example (slightly edited):

> id <- factor(1:20)

> a <- factor(1:2)

> b <- factor(1:2)

> d <- factor(1:1500)

> aDat <- expand.grid(id=id, a=a, b=b, d=d)

> aDat$y <- rnorm(length(aDat[, 1])) # generate some random DV data

> dim(aDat) # 120'000 x 5 (120'000 = 2*2*1500 * 20 = 6000 * 20)

[1] 120000 5

and then continued with

m.aov <- aov(y ~ a*b*d + Error(id/(a*b*d)), data=aDat)

which yields the following error:
”
Error in model.matrix.default(mt, mf, contrasts) :
allocMatrix: too many elements specified
" Any suggestions? to which he got the explanation by Peter Dalgaard that the formal model matrix
involved was much too large in this case, and that PD assumed, lme4 would be able to solve the problem.
However, currently there would still be a big problem with using lme4, because of the many levels of fixed
effects:

Specifically1,

dim(model.matrix( ~ a*b*d, data = aDat)) # 120'000 x 6000

where we note that 120′000× 6000 = 720mio, which is 720′000′000 ∗ 8/220 ≈ 5500 Megabytes.
Unfortunately lme4 does not use a sparse X-matrix for the fixed effects (yet), it just uses sparse matrices

for the Z-matrix of random effects and sparse matrix operations for computations related to Z.
Let us use a smaller factor d in order to investigate how sparse the X matrix would be:

> d2 <- factor(1:150) # 10 times smaller

> tmp2 <- expand.grid(id=id, a=a, b=b, d=d2)

> dim(tmp2)

[1] 12000 4

> dim(mm <- model.matrix( ~ a*b*d, data=tmp2))

[1] 12000 600

1the following is not run in R on purpose, rather just displayed here

6

https://stat.ethz.ch/pipermail/r-help/2008-July/167772.html


> ## is 100 times smaller than original example

>

> class(smm <- Matrix(mm)) # automatically coerced to sparse

[1] "dgCMatrix"
attr(,"package")
[1] "Matrix"

> round(object.size(mm) / object.size(smm), 1)

[1] 43

shows that even for the small d here, the memory reduction would be more than an order of magnitude.

> print( image(t(smm), aspect=1/3, col.regions= "red") ) # print(<lattice>)

Dimensions: 600 x 12000

Column

R
ow

100

200

300

400

500

2000 4000 6000 8000 10000

and working with the sparse instead of the dense model matrix is considerably faster as well,

> x <- 1:600

> system.time(y <- smm %*% x) ## sparse is much faster

user system elapsed
0.005 0.001 0.005

> system.time(y. <- mm %*% x) ## than dense

user system elapsed
0.064 0.000 0.064

> identical(as.matrix(y), y.) ## TRUE

[1] TRUE

> toLatex(sessionInfo())

7



• R version 2.8.1 Patched (2009-01-19 r47650), x86_64-unknown-linux-gnu

• Locale: LC_CTYPE=de_CH.UTF-8;LC_NUMERIC=C;LC_TIME=en_US.UTF-8;LC_COLLATE=de_CH.UTF-8;LC_MONETARY=C;LC_MESSAGES=de_CH.UTF-8;LC_PAPER=de_CH.UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=de_CH.UTF-8;LC_IDENTIFICATION=C

• Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils

• Other packages: lattice 0.17-20, Matrix 0.999375-18

• Loaded via a namespace (and not attached): grid 2.8.1

8


	One factor: y  f1
	One factor, one continuous: y  f1 + x
	Two (or more) factors, main effects only: y  f1 + f2
	Interactions of two (or more) factors,.....

