
2nd Introduction to the Matrix package

Martin Maechler and Douglas Bates
R Core Development Team

maechler@stat.math.ethz.ch, bates@r-project.org

September 2006 (typeset on August 2, 2007)

Abstract

Linear algebra is at the core of many areas of statistical computing and
from its inception the S language has supported numerical linear algebra . . . FIXME . . .

1 Introduction

The most automatic way to use the Matrix package is via the Matrix() function
which is very similar to the standard R function matrix(),

> library(Matrix)

> M <- Matrix(10 + 1:28, 4, 7)

> M

4 x 7 Matrix of class "dgeMatrix"
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 11 15 19 23 27 31 35
[2,] 12 16 20 24 28 32 36
[3,] 13 17 21 25 29 33 37
[4,] 14 18 22 26 30 34 38

> tM <- t(M)

Such a matrix can be appended to (using cBind() or rBind() with capital “B”)
or indexed,

> (M2 <- cBind(-1, M))

4 x 8 Matrix of class "dgeMatrix"
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] -1 11 15 19 23 27 31 35
[2,] -1 12 16 20 24 28 32 36
[3,] -1 13 17 21 25 29 33 37
[4,] -1 14 18 22 26 30 34 38

1

mailto:maechler@stat.math.ethz.ch
mailto:bates@r-project.org

> M[2, 1]

[1] 12

> M[4,]

[1] 14 18 22 26 30 34 38

where the last two statements show customary matrix indexing, returning a
simple numeric vector each1. We assign 0 to some columns and rows to “spar-
sify” it, and some NAs (typically “missing values” in data analysis) in order to
demonstrate how they are dealt with; note how we can “subassign” as usual, for
classical R matrices (i.e., single entries or whole slices at once),

> M2[, c(2,4:6)] <- 0

> M2[2,] <- 0

> M2 <- rBind(0, M2, 0)

> M2[1:2,2] <- M2[3,4:5] <- NA

and then coerce it to a sparse matrix,

> sM <- as(M2, "sparseMatrix")

> 10 * sM

6 x 8 sparse Matrix of class "dgCMatrix"

[1,] . NA
[2,] -10 NA 150 . . . 310 350
[3,] . . . NA NA . . .
[4,] -10 . 170 . . . 330 370
[5,] -10 . 180 . . . 340 380
[6,]

> identical(sM * 2, sM + sM)

[1] TRUE

> is(sM / 10 + M2 %/% 2, "sparseMatrix")

[1] TRUE

where we see above that multiplication by a scalar keeps sparcity, as does other
arithmetic, but addition to a“dense”object does not, as you might have expected
after thought about “sensible” behavior:

> sM + 10

1because there’s an additional default argument to indexing, drop = TRUE. If you add
“ , drop = FALSE ” you will get submatrices instead of simple vectors.

2

6 x 8 Matrix of class "dgeMatrix"
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 10 NA 10 10 10 10 10 10
[2,] 9 NA 25 10 10 10 41 45
[3,] 10 10 10 NA NA 10 10 10
[4,] 9 10 27 10 10 10 43 47
[5,] 9 10 28 10 10 10 44 48
[6,] 10 10 10 10 10 10 10 10

Operations on our classed matrices include (componentwise) arithmetic (+,
−, ∗, /, etc) as partly seen above, comparison (>, ≤, etc), e.g.,

> Mg2 <- (sM > 2)

> Mg2

6 x 8 sparse Matrix of class "lgCMatrix"

[1,] . N
[2,] . N | . . . | |
[3,] . . . N N . . .
[4,] . . | . . . | |
[5,] . . | . . . | |
[6,]

returning a logical sparse matrix. When interested in the internal structure,
str() comes handy, and we have been using it ourselves more regulary than
print()ing (or show()ing as it happens) our matrices; alternatively, summary()
gives output similar to Matlab’s printing of sparse matrices.

> str(Mg2)

Formal class 'lgCMatrix' [package "Matrix"] with 6 slots
..@ i : int [1:16] 1 3 4 0 1 1 3 4 2 2 ...
..@ p : int [1:9] 0 3 5 8 9 10 10 13 16
..@ Dim : int [1:2] 6 8
..@ Dimnames:List of 2
.. ..$: NULL
.. ..$: NULL
..@ x : logi [1:16] FALSE FALSE FALSE NA NA TRUE ...
..@ factors : list()

> summary(Mg2)

6 x 8 sparse Matrix of class "lgCMatrix", with NA entries
i j x

1 2 1 FALSE
2 4 1 FALSE
3 5 1 FALSE

3

4 1 2 NA
5 2 2 NA
6 2 3 TRUE
7 4 3 TRUE
8 5 3 TRUE
9 3 4 NA
10 3 5 NA
11 2 7 TRUE
12 4 7 TRUE
13 5 7 TRUE
14 2 8 TRUE
15 4 8 TRUE
16 5 8 TRUE

Further, i.e., in addition to the above "Ops" operators, the "Math"-operations
(such as exp(), sin() or gamma()) and "Math2" (round() etc) and the "Summary"
group of functions, min(), range(), sum(), all work on our matrices as they
should. Note that all these are implemented via so called group methods, see
e.g., ?Arith in R. The intention is that sparse matrices remain sparse when-
ever sensible, given the matrix classes and operators involved, but not content
specifically. E.g., <sparse> + <dense> gives <dense> even for the

These classed matrices can be “indexed” (more technically “subset”) as nor-
mal ones, as partly seen above. This also includes the idiom M [M 〈cop〉 〈num〉
] which returns simple vectors,

> sM[sM > 2]

[1] NA NA 15 17 18 NA NA 31 33 34 35 37 38

> sml <- sM[sM <= 2]

> sml

[1] 0 -1 0 -1 -1 0 NA NA 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0
[24] NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . . FIXME
2nd introduc-
tion – maybe
keep some?
. . .

1.1 Matrix package for numerical linear algebra

Linear algebra is at the core of many statistical computing techniques and, from
its inception, the S language has supported numerical linear algebra via a ma-
trix data type and several functions and operators, such as %*%, qr, chol, and
solve. most of these functions have been switched to use routines from the
Lapack Anderson et al. (1999) library which is the state-of-the-art implementa-
tion of numerical dense linear algebra. Furthermore, R can be configured to use
accelerated BLAS (Basic Linear Algebra Subroutines), such as those from the
Atlas Whaley et al. (2001) project or other ones, see the R manual “Installation
and Administration”.

4

Lapack provides routines for operating on several special forms of matrices,
such as triangular matrices and symmetric matrices. Furthermore, matrix de-
compositions like the QR decompositions produce multiple output components
that should be regarded as parts of a single object. There is some support in R
for operations on special forms of matrices (e.g. the backsolve, forwardsolve
and chol2inv functions) and for special structures (e.g. a QR structure is im-
plicitly defined as a list by the qr, qr.qy, qr.qty, and related functions) but it
is not as fully developed as it could be.

Also there is no direct support for sparse matrices in R although Koenker
and Ng (2003) have developed the SparseM package for sparse matrices based
on SparseKit.

The Matrix package provides S4 classes and methods for dense and sparse
matrices. The methods for dense matrices use Lapack and BLAS. The sparse
matrix methods use CHOLMOD (Davis, 2005a), CSparse (Davis, 2005b) and
other parts of Tim Davis’ “SuiteSparse” collection of sparse matrix libraries,
many of which also use BLAS.
Todo: triu(), tril(), diag(), ... and as(.,.) , but of course only when
they’ve seen a few different ones.
Todo: matrix operators include %*%, crossprod(), tcrossprod(), solve()
Todo: expm() is the matrix exponential
Todo: factorizations include Cholesky() (or chol()), lu(), qr() (not yet for
dense)
Todo: Although generally the result of an operation on dense matrices is a
dgeMatrix, certain operations return matrices of special types.
Todo: E.g. show the distinction between t(mm) %*% mm and crossprod(mm).

... The following is the old ‘Introduction.Rnw’ ... FIXME

2 Classes for dense matrices

The Matrix package provides classes for real (stored as double precision) and
logical dense (and sparse) matrices. There are provisions to also provide integer
and complex (stored as double precision complex) matrices. The basic real
classes are

dgeMatrix Real matrices in general storage mode

dsyMatrix Symmetric real matrices in non-packed storage

dspMatrix Symmetric real matrices in packed storage (one triangle only)

dtrMatrix Triangular real matrices in non-packed storage

dtpMatrix Triangular real matrices in packed storage (triangle only)

dpoMatrix Positive semi-definite symmetric real matrices in non-packed stor-
age

5

dppMatrix ditto in packed storage

Methods for these classes include coercion between these classes, when appro-
priate, and coercion to the matrix class; methods for matrix multiplication
(%*%); cross products (crossprod), matrix norm (norm); reciprocal condition
number (rcond); LU factorization (lu) or, for the poMatrix class, the Cholesky
decomposition (chol); and solutions of linear systems of equations (solve).

Further, group methods have been defined for the Arith (basic arithmetic,
including with scalar numbers) and the Math (basic mathematical functions)
group..

Whenever a factorization or a decomposition is calculated it is preserved as a
(list) element in the factors slot of the original object. In this way a sequence of
operations, such as determining the condition number of a matrix then solving
a linear system based on the matrix, do not require multiple factorizations of
the same matrix nor do they require the user to store the intermediate results.

3 Classes for sparse matrices

Used for large matrices in which most of the elements are known to be zero.
Todo: E.g. model matrices created from factors with a large number of levels
Todo: or from spline basis functions (e.g. COBS, package cobs), etc.
Todo: Other uses include representations of graphs. indeed; good you men-
tioned it! particularly since we still have the interface to the graph package. I
think I’d like to draw one graph in that article — maybe the undirected graph
corresponding to a crossprod() result of dimension ca. 502

Todo: Specialized algorithms can give substantial savings in amount of storage
used and execution time of operations.
Todo: Our implementation is based on the CHOLMOD and CSparse libraries
by Tim Davis.

3.1 Representations of sparse matrices

3.1.1 Triplet representation (TsparseMatrix)

Conceptually, the simplest representation of a sparse matrix is as a triplet of an
integer vector i giving the row numbers, an integer vector j giving the column
numbers, and a numeric vector x giving the non-zero values in the matrix. 2.
In Matrix the TsparseMatrix class is the virtual class of all sparse matrices in
triplet representation. Its main use is for easy input or transfer to other classes.

3.1.2 Compressed representations: CsparseMatrix (and RsparseMatrix)

For most sparse operations we use the compressed column-oriented represen-
tation (virtual class CsparseMatrix) (also known as “csc”, “compressed sparse

2For efficiency reasons, we use “zero-based” indexing in teh Matrix package, i.e., the row
indices i are in 0:(nrow(.)-1) and the column indices j accordingly

6

column”). Here, instead of storing all column indices j, only the start index of
every column is stored.

Analogously, there is also a compressed sparse row (csr) representation,
which e.g. is used in in the SparseM package, and we provide the RsparseMatrix
for compatibility and completeness purposes, in addition to basic coercion ((as(.,
<cl>) between the classes.

There are certain advantages to csc in systems like R and Matlab where
dense matrices are stored in column-major order, therefore it is used in sparse
matrix libraries such as CHOLMOD or CSparse of which we make use.

The Matrix package provides the following classes for sparse matrices . . . FIXME
many more
— maybe ex-
plain naming
scheme? . . .

dgTMatrix general, numeric, sparse matrices in (a possibly redundant) triplet
form. This can be a convenient form in which to construct sparse matrices.

dgCMatrix general, numeric, sparse matrices in the (sorted) compressed sparse
column format.

dsCMatrix symmetric, real, sparse matrices in the (sorted) compressed sparse
column format. Only the upper or the lower triangle is stored. Although
there is provision for both forms, the lower triangle form works best with
TAUCS.

dtCMatrix triangular, real, sparse matrices in the (sorted) compressed sparse
column format.

Todo: Can also read and write the Matrix Market and Harwell-Boeing repre-
sentations.
Todo: Can convert from a dense matrix to a sparse matrix (or use the Matrix
function) but going through an intermediate dense matrix may cause problems
with the amount of memory required.
Todo: similar range of operations as for the dense matrix classes.

4 More detailed examples of “Matrix” opera-
tions

Todo: Solve a sparse least squares problem and demonstrate memory / speed
gain
Todo: mention lme4 and lmer(), maybe use one example to show the matrix
sizes.

5 Notes about S4 classes and methods imple-
mentation

Maybe we could give some glimpses of implementations at least on the R level
ones?

7

Todo: The class hierarchy: a non-trivial tree where only the leaves are “actual”
classes.
Todo: The main advantage of the multi-level hierarchy is that methods can
often be defined on a higher (virtual class) level which ensures consistency [and
saves from “cut & paste” and forgetting things]
Todo: Using Group Methods

6 Session Info

> toLatex(sessionInfo())

• R version 2.5.1 Patched (2007-08-01 r42386), x86_64-unknown-linux-gnu

• Locale: LC_CTYPE=de_CH.UTF-8;LC_NUMERIC=C;LC_TIME=en_US.UTF-8;LC_COLLATE=de_CH.UTF-8;LC_MONETARY=en_US.UTF-8;LC_MESSAGES=de_CH.UTF-8;LC_PAPER=de_CH.UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=de_CH.UTF-8;LC_IDENTIFICATION=C

• Base packages: base, datasets, graphics, grDevices, methods, stats, tools,
utils

• Other packages: lattice 0.16-2, Matrix 0.999375-1

References

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LA-
PACK Users’ Guide. SIAM, Philadelphia, PA, 3rd edition, 1999.

Tim Davis. CHOLMOD: sparse supernodal Cholesky factorization and up-
date/downdate. http://www.cise.ufl.edu/research/sparse/cholmod, 2005a.

Tim Davis. CSparse: a concise sparse matrix package.
http://www.cise.ufl.edu/research/sparse/CSparse, 2005b.

Roger Koenker and Pin Ng. SparseM: A sparse matrix package for R. J. of
Statistical Software, 8(6), 2003.

R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Auto-
mated empirical optimization of software and the ATLAS project.
Parallel Computing, 27(1–2):3–35, 2001. Also available as Univer-
sity of Tennessee LAPACK Working Note #147, UT-CS-00-448, 2000
(www.netlib.org/lapack/lawns/lawn147.ps).

8

	Introduction
	=-1 Matrix package for numerical linear algebra

	Classes for dense matrices
	Classes for sparse matrices
	Representations of sparse matrices
	Triplet representation (=-1 TsparseMatrix)
	Compressed representations: =-1 CsparseMatrix (and =-1 RsparseMatrix)

	More detailed examples of ``Matrix'' operations
	Notes about S4 classes and methods implementation
	Session Info

